掌桥专利:专业的专利平台
掌桥专利
首页

一种高含泥质砂岩声速的计算方法

文献发布时间:2023-06-19 11:29:13


一种高含泥质砂岩声速的计算方法

技术领域

本发明属于石油天然气勘探技术领域,涉及一种高含泥质砂岩声速的计算方法,可以正演预测高含泥质砂岩声速,也可以地震和测井反演估算高含泥质砂岩的孔隙度。

背景技术

泥质砂岩油气藏是最重要的油气藏之一。声速作为泥质砂岩最重要的岩石物理特征参数之一,可以反映骨架以及孔隙流体的性质,是地震和测井评价储层孔隙度、饱和度等参数的重要物理性质。

高含泥质砂岩中含有多种分布形式的泥质:胶结泥质、分散泥质、结构泥质,它们会对泥质砂岩的声速性质产生不同的影响,在研究其声学性质时需要加以区分。

现有的胶结泥质含量约束的胶结砂岩模型中,假设泥质只存在于孔隙空间中,并将泥质分为胶结泥质与分散泥质两种类型,其中胶结泥质起胶结作用强化骨架,分散泥质起填充作用降低孔隙度,两种泥质都能够使泥质砂岩声速增加。

如韩学辉等通过观察铸体薄片中泥质与颗粒之间的接触关系和相对分布提出了一种区分胶结泥质和分散泥质的方法:与两个或两个以上颗粒接触的连续分布的泥质为胶结泥质;与一个颗粒接触或者不与颗粒接触的泥质为分散泥质.基于这一准则,本文基于像素拾取法估算了人造泥质砂岩的胶结泥质含量,并将胶结泥质含量作为胶结砂岩模型的输入参数优化CCT模型.对比原始模型,该方法声速误差下降了20%,预测准确度显著提高(韩学辉,聂俊光,郭俊鑫等.2020.泥质砂岩中接触胶结泥质定量估算及对砂岩弹性的影响.地球物理学报,63(4):1654-1662)。然而,上述模型忽略了结构泥质对声速的影响,无法解释声速随泥质含量增加呈现减小趋势的现象,故不再适用于计算高含泥质砂岩的声速。

因此,有必要建立胶结泥质含量、结构泥质含量双重约束下的高含泥质砂岩声速计算方法,以准确正演预测高含泥质砂岩的声速,并为应用地震和测井声速反演孔隙度等参数提供依据。

发明内容

本发明的目的在于提供一种高含泥质砂岩声速的计算方法,该计算方法通过将高含泥质砂岩的泥质分为胶结泥质、分散泥质和结构泥质三部分,基于改进的CCT理论、微分等效介质模型、未胶结砂岩模型,在高含泥质砂岩模量的计算中引入“胶结泥质起胶结作用、分散泥质起填充作用、结构泥质替换石英骨架”的概念,以此建立不同泥质分布方式下高含泥质砂岩声速的计算方法。

为了实现上述目的,本发明采用以下的技术方案:

一种高含泥质砂岩声速的计算方法,包括以下步骤:

S1、利用样品薄片鉴定结果,确定高含泥质砂岩中泥质分布方式;

S2、利用染色标记-像素拾取的方法,定量区分胶结泥质含量V

S3、利用物质平衡方法,计算结构泥质含量V

S4、基于修正CCT模型,计算石英和胶结泥质的等效体积模量K

S5、利用DEM模型将结构泥质替换部分石英作为骨架,计算结构泥质替换骨架后的等效体积模量K

S6、基于未固结砂岩模型将分散泥质填充到孔隙中,计算得到结构泥质、胶结泥质和分散泥质约束下的高含泥质砂岩的等效体积弹性模量K

S7、利用步骤S6得到的高含泥质砂岩模量,计算其纵波速度V

优选地,步骤S1中所述高含泥质砂岩的泥质含量为30-50%。

优选地,步骤S1中所述泥质分布方式为胶结泥质、分散泥质和结构泥质。

优选地,所述步骤S1中还包括测量所述高含泥质砂岩的孔隙度

优选地,步骤S3中所述结构泥质含量V

V

其中,V

优选地,步骤S3中所述分散泥质V

V

其中,V

优选地,步骤S4中所述石英和胶结泥质的等效体积模量K

其中,

胶结物分布模式1:

胶结物分布模式2:

式中,α

ε是胶结物中心厚度与颗粒半径的比值,即归一化的胶结物中心厚度;

Φ

Φ为疏松砂岩的真实孔隙度;

G

v

胶结物分布模式1为胶结物仅分布在颗粒之间的情况;胶结物分布模式2是胶结物均匀分布在颗粒表面时的情况。

优选地,步骤S5中所述的结构泥质替换骨架后的等效模量:等效体积模量K

式中,K

K

优选地,步骤S6中所述高含泥质砂岩模量:等效体积弹性模量K

式中,K

Φ为现存孔隙度;

Φ

K

其中,胶结物含量为胶结泥质含量,即

K

本发明还提供了上述计算方法在正演预测高含泥质砂岩声速、地震和测井反演估算高含泥质砂岩孔隙度中的应用。

本发明的有益效果为:

本发明通过将高含泥质砂岩的泥质分为胶结泥质、分散泥质和结构泥质三部分,基于改进的CCT理论、微分等效介质模型、未胶结砂岩模型,在高含泥质砂岩模量的计算中引入“胶结泥质起胶结作用、分散泥质起填充作用、结构泥质替换石英骨架”的概念,以此建立不同泥质分布方式下高含泥质砂岩声速的计算方法,相比现有技术,本发明的高含泥质砂岩声速的计算方法的准确度更高。

附图说明

图1为本发明方法流程图。

图2为泥质砂岩的薄片实验结果。

图3为使用IPP软件识别胶结泥质含量。

图4为基底式胶结砂岩疏松砂岩模型。

图5为高含泥质砂岩模量求解过程图。

具体实施方式

为使本发明实施例的目的、技术方案和优点更加清楚,下面结合附图对本发明的技术方案做进一步详述。

如图1-5所示,本发明提供了一种高含泥质砂岩声速的计算方法,包括以下步骤:

S1、根据样品薄片鉴定结果,确定高含泥质砂岩中泥质分布方式,如图2所示,当泥质含量较小时,泥质主要分布在颗粒与颗粒之间,此时胶结泥质占主导作用;随着泥质含量的继续升高,泥质主要分布在孔隙空间,此时分散泥质起主导作用;当泥质含量达到某一临界点,随着泥质含量继续升高,泥质主要分布在石英骨架中,此时结构泥质起主导作用;

S2、对于高含泥质砂岩,假设开始胶结砂岩的骨架是孔隙度为Φ

V

其中,V

然后,在同一张人造泥质砂岩铸体薄片图像下,使用染色标记-像素拾取的方法定量区分胶结泥质含量V

再次,根据物质平衡方程,计算分散泥质V

V

其中,V

S3、对于泥质砂岩样品,首先考虑石英与胶结泥质的胶结作用,即在石英中加入胶结泥质起到减小孔隙度和增加颗粒集合体(骨架)的有效模量的作用,故利用连续胶结理论(CCT模型),计算石英与胶结泥质的等效体积模量K

胶结物分布模式1:

胶结物分布模式2:

式中,α

ε是胶结物中心厚度与颗粒半径的比值,即归一化的胶结物中心厚度;

Φ

Φ为疏松砂岩的真实孔隙度;

G

v

其中,胶结物分布方式如图4所示:胶结物分布模式1为胶结物含量较少且仅分布在颗粒之间的情况;胶结物分布模式2是胶结物含量较多且均匀分布在颗粒表面时的情况,参照《基于CCT模型的基底式胶结疏松砂岩声波速度修正模型》(韩学辉等,中国石油大学学报(自然科学版),2013年第37卷第4期)中胶结物分布模式1和2;

S4、利用微分等效介质理论(DEM模型)进行骨架替换,计算结构泥质替换骨架后的等效模量:等效体积模量K

式中,K

K

P和Q是用来表征填充物几何形状的几何因子,根据Minear研究,替代石英作为骨架的结构泥质纵横比为1.0,P和Q的上标*2指的是此几何因子是针对具有等效模量K

S5、基于未固结砂岩模型将分散泥质填充到孔隙中,计算得到结构泥质、胶结泥质和分散泥质约束下的高含泥质砂岩的等效体积弹性模量K

式中,K

Φ为现存孔隙度;

Φ

K

其中,胶结物含量为胶结泥质含量,即

K

S6、利用步骤S5得到的高含泥质砂岩模量,计算纵波速度V

实施例1

使用本发明的方法对人造高含泥质砂岩进行声速计算,其操作方法包括以下步骤:

S1、选取4块总泥质含量分布在30%-50%的人造高含泥质砂岩样品,由铸体薄片鉴定结果(如图2)可知,样品中的泥质分布形式有胶结泥质、分散泥质以及结构泥质三种,测量样品的孔隙度

S2、镜下观察样品薄片确定泥质分布方式,使用图像处理软件添加接触泥质分布线,其中粗黑色线为分布在颗粒与颗粒之间起胶结作用的胶结泥质,如图3所示,使用Image-pro-plus软件对胶结泥质进行像素拾取,确定胶结泥质含量V

S3、利用物质平衡法,确定结构泥质含量V

步骤S3中所述结构泥质含量V

V

其中,V

优选地,步骤S3中所述分散泥质V

V

其中,V

S4、基于改进的CCT模型,计算得到石英和胶结泥质的等效体积模量K

所述石英和胶结泥质的等效骨架模量:等效体积模量K

其中,

胶结物分布模式1:

胶结物分布模式2:

式中,α

ε是胶结物中心厚度与颗粒半径的比值,即归一化的胶结物中心厚度;

Φ

Φ为疏松砂岩的真实孔隙度;

G

v

其中,胶结物分布方式如图4所示:胶结物分布模式1为胶结物含量较少且仅分布在颗粒之间的情况;胶结物分布模式2是胶结物含量较多且均匀分布在颗粒表面时的情况;

S5、利用DEM模型,计算结构泥质替换部分石英作为骨架后的胶结砂岩等效模量:等效体积模量K

步骤S5中所述的结构泥质替换骨架后的等效体积模量K

式中,K

K

P和Q是用来表征填充物几何形状的几何因子,根据Minear研究,替代石英作为骨架的结构泥质纵横比为1.0,P和Q的上标*2指的是此几何因子是针对具有等效模量K

S6、基于未固结砂岩模型将分散泥质填充到孔隙中,计算得到结构泥质、胶结泥质、分散泥质约束下的高含泥质砂岩的等效体积弹性模量K

步骤S6中所述高含泥质砂岩的等效体积弹性模量K

式中,K

Φ为现存孔隙度;

Φ

K

其中,胶结物含量为胶结泥质含量,即

K

S7、利用步骤S6得到的高含泥质砂岩模量,计算纵波速度V

计算结果如表1所示。

表1实施例1计算结果

注:表中泥质含量V

由表1知,应用新模型计算得到的纵横波速度与实验测量结果较为吻合,其中纵波速度预测相对误差小于5%,横波速度预测相对误差小于15%。

需要强调的是,本发明所述的实施例是说明性的,而不是限定性的,因此本发明包括并不限于具体实施方式中所述的实施例,凡是由本领域技术人员根据本发明的技术方案得出的其他实施方式,同样属于本发明保护的范围。

相关技术
  • 一种高含泥质砂岩声速的计算方法
  • 一种含随机分布裂缝横向各向同性岩石的声速计算方法
技术分类

06120112943453