掌桥专利:专业的专利平台
掌桥专利
首页

功率控制方法及装置

文献发布时间:2023-06-19 12:07:15


功率控制方法及装置

本申请为于2018年12月24日提交中国专利局、申请号为201811588371.0、申请名称为“功率控制方法及装置”中国专利申请的分案,其全部内容通过引用结合在本申请中。

技术领域

本申请涉及通信技术领域,尤其涉及一种功率控制方法及装置。

背景技术

在第三代合作伙伴计划(the 3rd generation partnership project,3GPP)提出的长期演进(long term evolution,LTE)技术的网络下,车与任何事物通信(vehicle-to-everything,V2X)的车联网技术被提出,V2X通信是指车辆与外界的任何事物的通信,包括车与车的通信(vehicle to vehicle,V2V)、车与行人的通信(vehicle to pedestrian,V2P)、车与基础设施的通信(vehicle to infrastructure,V2I)、车与网络的通信(vehicleto network,V2N)。

V2X通信针对以车辆为代表的高速设备,是未来对通信时延要求非常高的场景下应用的基础技术和关键技术,如智能汽车、自动驾驶、智能交通运输系统等场景。基于V2X通信,车辆用户能将自身的一些信息,例如位置、速度、意图(转弯、并线、倒车)等信息周期性以及一些非周期性的事件触发的信息向周围的车辆用户发送,同样地车辆用户也可以实时接收周围用户的信息。

其中,LTE-V2X主要面对的业务类型是广播消息,因此V2X接收用户不确定,所有感兴趣的V2X用户均可处于监听状态,所以发送端以最大可能的发送功率来发送数据信息。同时在有网络覆盖的场景下,LTE-V2X信号在上行时隙发送,所以需要考虑V2X发送功率对上行基站侧接收的干扰。

因此,在NR-V2X中如何进行功率控制分配和功率控制亟待解决。

发明内容

本申请实施例提供了一种功率控制方法及装置,可合理地进行功率控制。

第一方面,本申请实施例提供了一种功率控制方法,包括:

第一终端设备确定第一数据信道部分的发送功率和第二数据信道部分的发送功率;其中,所述第一数据信道部分为与控制信道有时域重叠且无频域重叠的数据信道部分,所述第二数据信道部分为与所述控制信道有频域重叠且无时域重叠的数据信道部分;所述第一终端设备以所述第一数据信道部分的发送功率向第二终端设备发送所述第一数据信道部分中的数据;以及以所述第二数据信道部分的发送功率向所述第二终端设备发送所述第二数据信道部分中的数据。

通过区分第一数据信道部分和第二数据信道部分,可对不同的数据信道部分进行不同的功率控制,如可通过不同的发送功率分别发送第一数据信道部分中的数据以及第二数据信道部分中的数据,避免了在所有情况下都通过相同的发送功率来发送数据,而避免了资源浪费的情况如避免了基于同一种方式确定数据信道的发送功率时第一数据信道部分或第二数据信道部分的发送功率过高,而实际不需要过高的发送功率就可完成对数据的发送的情况;从而通过将数据信道分为两部分,分别确定两部分的发送功率,不仅能够满足不同数据信道部分的功率要求,还可避免在所有情况下都通过相同的发送功率发送数据,而导致第一数据信道部分或第二数据信道部分的发送功率过高,而造成对其他终端设备的干扰,进而降低了对其他终端设备的干扰,提高了系统性能。

结合第一方面,在一种可能的实现方式中,在所述控制信道的带宽为N,数据信道的带宽为M的情况下,所述第一数据信道部分的带宽为M-N,其中,所述M大于所述N;所述第一数据信道部分的发送功率根据最大发送功率、所述第一数据信道部分的带宽M-N以及所述控制信道的带宽N确定。

结合第一方面或第一方面的任一种可能的实现方式中,所述第一数据信道部分的发送功率满足如下公式:

P

其中,所述P

本申请实施例中,通过第一数据信道部分的实际带宽M-N来确定第一数据信道部分的发送功率,避免由于数据信道中存在带宽不相同的第一数据信道部分和第二数据信道部分,而导致确定数据信道的发送功率不准确的情况,提高了确定第一数据信道部分的发送功率的准确性。

结合第一方面或第一方面的任一种可能的实现方式中,所述第二数据信道部分的发送功率与所述第一数据信道部分的发送功率的比值,和所述第二数据信道部分的带宽与所述第一数据信道部分的带宽的比值,成正相关。

结合第一方面或第一方面的任一种可能的实现方式中,所述第二数据信道部分的发送功率满足如下公式:

P

其中,所述P

本申请实施例中,第一数据信道部分中的资源单元(resource element,RE)和第二数据信道部分中的RE以相同的发送功率来发送数据,通过第一数据信道部分的带宽和第二数据信道部分的带宽比值,来确定第一数据信道部分的发送功率和第二数据信道部分的发送功率的比值,一方面,可有效解决数据信道中不同符号(symbol)上可用的有效带宽不相同的问题;另一方面,还提高了第二终端设备确定接收的中频缩放因子的效率,即第二终端设备可根据第一数据信道部分的中频缩放因子,以及第一数据信道部分的带宽和第二数据信道部分的带宽比值来对第二数据信道部分进行缩放,即可使得整体时隙的接收数据处于合适的接收功率范围。

结合第一方面或第一方面的任一种可能的实现方式中,所述第二数据信道部分的发送功率根据所述最大发送功率以及所述第二数据信道部分的链路预算确定,所述第二数据信道部分的链路预算根据所述第二数据信道部分的带宽M确定。

结合第一方面或第一方面的任一种可能的实现方式中,所述第二数据信道部分的发送功率满足如下公式:

P

其中,所述P

本申请实施例中,第一数据信道部分中的RE和第二数据信道部分中的RE以不同的发送功率来发送数据,可最大程度的提高数据信道的发送功率,具体的,尽可能的提高了第二数据信道部分的每个RE的发送功率,从而获得更高的SNR,提高了译码性能。

结合第一方面或第一方面的任一种可能的实现方式中,所述参考链路损耗PL根据服务小区内的上下行传输损耗或链路传输损耗确定,所述链路传输损耗包括侧行链路传输损耗;所述链路传输损耗为所述第一终端设备到所述第二终端设备的链路损耗;或者,所述链路传输损耗为所述第一终端设备到第一终端设备集合中的终端设备的链路损耗中的最大值;或者,所述链路传输损耗为所述第一终端设备到第二终端设备集合中的终端设备的链路损耗中的最大值,其中所述第二终端设备集合属于所述第一终端设备集合,且所述第二终端设备集合中的终端设备的第一参数满足所述第一参数的阈值范围。

结合第一方面或第一方面的任一种可能的实现方式中,所述第一参数为参考信号接收功率RSRP、信号与干扰加噪声比SINR、信噪比SNR或信道质量指示CQI中的任意一项。

本申请实施例中,通过从服务小区内的上下行传输损耗或链路传输损耗中确定参考链路损耗,可降低第一终端设备的发送功率,从而进一步降低对其他终端设备的干扰,提高系统性能。

结合第一方面或第一方面的任一种可能的实现方式中,所述第一终端设备确定第一数据信道部分的发送功率和第二数据信道部分的发送功率之前,所述方法还包括:

所述第一终端设备接收来自网络设备的指示信息,所述指示信息用于指示所述第二数据信道部分的发送功率;第一终端设备确定第一数据信道部分的发送功率和第二数据信道部分的发送功率,包括:所述第一终端设备根据所述指示信息确定所述第二数据信道部分的发送功率满足的公式为P

本申请实施例中,通过接收来自网络设备的指示信息,可使得第一终端设备明确得知第二数据信道部分的发送功率所满足的条件,从而提高第一终端设备确定第二数据信道部分的发送功率的效率。

结合第一方面或第一方面的任一种可能的实现方式中,所述第一数据信道部分的发送功率满足如下公式:

P

其中,所述P

结合第一方面或第一方面的任一种可能的实现方式中,所述第二数据信道部分的发送功率满足如下公式:

P

其中,所述P

结合第一方面或第一方面的任一种可能的实现方式中,所述P

本申请实施例中,通过根据P

结合第一方面或第一方面的任一种可能的实现方式中,所述第一数据信道部分的发送功率满足如下公式:

P

其中,所述P

结合第一方面或第一方面的任一种可能的实现方式中,所述第二数据信道部分的发送功率满足如下公式:

P

其中,所述P

第二方面,本申请实施例提供了一种功率控制装置,包括:

处理单元,用于确定第一数据信道部分的发送功率和第二数据信道部分的发送功率;其中,所述第一数据信道部分为与控制信道有时域重叠且无频域重叠的数据信道部分,所述第二数据信道部分为与所述控制信道有频域重叠且无时域重叠的数据信道部分;发送单元,用于以所述第一数据信道部分的发送功率向第二终端设备发送所述第一数据信道部分中的数据;以及以所述第二数据信道部分的发送功率向所述第二终端设备发送所述第二数据信道部分中的数据。

结合第二方面,在一种可能的实现方式中,在所述控制信道的带宽为N,数据信道的带宽为M的情况下,所述第一数据信道部分的带宽为M-N,其中,所述M大于所述N;所述第一数据信道部分的发送功率根据最大发送功率、所述第一数据信道部分的带宽M-N以及所述控制信道的带宽N确定。

结合第二方面或第二方面的任一种可能的实现方式中,所述第一数据信道部分的发送功率满足如下公式:

P

其中,所述P

结合第二方面或第二方面的任一种可能的实现方式中,所述第二数据信道部分的发送功率与所述第一数据信道部分的发送功率的比值,和所述第二数据信道部分的带宽与所述第一数据信道部分的带宽的比值,成正相关。

结合第二方面或第二方面的任一种可能的实现方式中,所述第二数据信道部分的发送功率满足如下公式:

P

其中,所述P

结合第二方面或第二方面的任一种可能的实现方式中,所述第二数据信道部分的发送功率根据所述最大发送功率以及所述第二数据信道部分的链路预算确定,所述第二数据信道部分的链路预算根据所述第二数据信道部分的带宽M确定。

结合第二方面或第二方面的任一种可能的实现方式中,所述第二数据信道部分的发送功率满足如下公式:

P

其中,所述P

结合第二方面或第二方面的任一种可能的实现方式中,所述参考链路损耗PL根据服务小区内的上下行传输损耗或链路传输损耗确定,所述链路传输损耗包括侧行链路传输损耗;所述链路传输损耗为所述第一终端设备到所述第二终端设备的链路损耗;或者,所述链路传输损耗为所述第一终端设备到第一终端设备集合中的终端设备的链路损耗中的最大值;或者,所述链路传输损耗为所述第一终端设备到第二终端设备集合中的终端设备的链路损耗中的最大值,其中所述第二终端设备集合属于所述第一终端设备集合,且所述第二终端设备集合中的终端设备的第一参数满足所述第一参数的阈值范围。

结合第二方面或第二方面的任一种可能的实现方式中,所述第一参数为参考信号接收功率RSRP、信号与干扰加噪声比SINR、信噪比SNR或信道质量指示CQI中的任意一项。

结合第二方面或第二方面的任一种可能的实现方式中,所述装置还包括:接收单元,用于接收来自网络设备的指示信息,所述指示信息用于指示所述第二数据信道部分的发送功率;所述处理单元,具体用于根据所述指示信息确定所述第二数据信道部分的发送功率满足的公式为P

结合第二方面或第二方面的任一种可能的实现方式中,所述第一数据信道部分的发送功率满足如下公式:

P

其中,所述P

结合第二方面或第二方面的任一种可能的实现方式中,所述第二数据信道部分的发送功率满足如下公式:

P

其中,所述P

结合第二方面或第二方面的任一种可能的实现方式中,所述P

结合第二方面或第二方面的任一种可能的实现方式中,所述第一数据信道部分的发送功率满足如下公式:

P

其中,所述P

结合第二方面或第二方面的任一种可能的实现方式中,所述第二数据信道部分的发送功率满足如下公式:

P

其中,所述P

第三方面,本申请实施例还提供了一种功率控制装置,包括处理器、存储器和收发器,所述处理器和所述存储器耦合,所述处理器用于运行所述存储器内的指令或程序;所述处理器,用于确定第一数据信道部分的发送功率和第二数据信道部分的发送功率;其中,所述第一数据信道部分为与控制信道有时域重叠且无频域重叠的数据信道部分,所述第二数据信道部分为与所述控制信道有频域重叠且无时域重叠的数据信道部分;所述收发器和所述处理器耦合,所述收发器,用于以所述第一数据信道部分的发送功率向第二终端设备发送所述第一数据信道部分中的数据;以及以所述第二数据信道部分的发送功率向所述第二终端设备发送所述第二数据信道部分中的数据。

结合第三方面,在一种可能的实现方式中,在所述控制信道的带宽为N,数据信道的带宽为M的情况下,所述第一数据信道部分的带宽为M-N,其中,所述M大于所述N;所述第一数据信道部分的发送功率根据最大发送功率、所述第一数据信道部分的带宽M-N以及所述控制信道的带宽N确定。

结合第三方面或第三方面的任一种可能的实现方式中,所述第一数据信道部分的发送功率满足如下公式:

P

其中,所述P

结合第三方面或第三方面的任一种可能的实现方式中,所述第二数据信道部分的发送功率与所述第一数据信道部分的发送功率的比值,和所述第二数据信道部分的带宽与所述第一数据信道部分的带宽的比值,成正相关。

结合第三方面或第三方面的任一种可能的实现方式中,所述第二数据信道部分的发送功率满足如下公式:

P

其中,所述P

结合第三方面或第三方面的任一种可能的实现方式中,所述第二数据信道部分的发送功率根据所述最大发送功率以及所述第二数据信道部分的链路预算确定,所述第二数据信道部分的链路预算根据所述第二数据信道部分的带宽M确定。

结合第三方面或第三方面的任一种可能的实现方式中,所述第二数据信道部分的发送功率满足如下公式:

P

其中,所述P

结合第三方面或第三方面的任一种可能的实现方式中,所述参考链路损耗PL根据服务小区内的上下行传输损耗或链路传输损耗确定,所述链路传输损耗包括侧行链路传输损耗;所述链路传输损耗为所述第一终端设备到所述第二终端设备的链路损耗;或者,所述链路传输损耗为所述第一终端设备到第一终端设备集合中的终端设备的链路损耗中的最大值;或者,所述链路传输损耗为所述第一终端设备到第二终端设备集合中的终端设备的链路损耗中的最大值,其中所述第二终端设备集合属于所述第一终端设备集合,且所述第二终端设备集合中的终端设备的第一参数满足所述第一参数的阈值范围。

结合第三方面或第三方面的任一种可能的实现方式中,所述第一参数为参考信号接收功率RSRP、信号与干扰加噪声比SINR、信噪比SNR或信道质量指示CQI中的任意一项。

结合第三方面或第三方面的任一种可能的实现方式中,所述收发器,还用于接收来自网络设备的指示信息,所述指示信息用于指示所述第二数据信道部分的发送功率;所述处理器,具体用于根据所述指示信息确定所述第二数据信道部分的发送功率满足的公式为P

结合第三方面或第三方面的任一种可能的实现方式中,所述第一数据信道部分的发送功率满足如下公式:

P

其中,所述P

结合第三方面或第三方面的任一种可能的实现方式中,所述第二数据信道部分的发送功率满足如下公式:

P

其中,所述P

结合第三方面或第三方面的任一种可能的实现方式中,所述P

结合第三方面或第三方面的任一种可能的实现方式中,所述第一数据信道部分的发送功率满足如下公式:

P

其中,所述P

结合第三方面或第三方面的任一种可能的实现方式中,所述第二数据信道部分的发送功率满足如下公式:

P

其中,所述P

第四方面,本申请实施例提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。

第五方面,本申请实施例提供了一种包括指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。

附图说明

图1a是本申请实施例提供的一种通信系统的结构示意图;

图1b是一种数据信道和控制信道的结构示意图;

图2是四种帧结构的示意图;

图3a是本申请实施例提供的一种侧行链路通信的场景示意图;

图3b是本申请实施例提供的另一种侧行链路通信的场景示意图;

图3c是本申请实施例提供的又一种侧行链路通信的场景示意图;

图3d是本申请实施例提供的又一种侧行链路通信的场景示意图;

图3e是本申请实施例提供的又一种侧行链路通信的场景示意图;

图3f是本申请实施例提供的又一种侧行链路通信的场景示意图;

图3g是本申请实施例提供的又一种侧行链路通信的场景示意图;

图4是本申请实施例提供的一种功率控制方法的流程示意图;

图5a是本申请实施例提供的一种数据信道和控制信道的示意图;

图5b是本申请实施例提供的另一种数据信道和控制信道的示意图;

图5c是本申请实施例提供的又一种数据信道和控制信道的示意图;

图5d是本申请实施例提供的又一种数据信道和控制信道的示意图;

图5e是本申请实施例提供的又一种数据信道和控制信道的示意图;

图5f是本申请实施例提供的又一种数据信道和控制信道的示意图;

图6是本申请实施例提供的一种时频资源的结构示意图;

图7是本申请实施例提供的另一种功率控制方法的流程示意图;

图8是本申请实施例提供的一种功率控制装置的结构示意图;

图9是本申请实施例提供的另一种功率控制装置的结构示意图;

图10是本申请实施例提供的又一种终端设备的结构示意图。

具体实施方式

下面将结合本申请实施例中的附图对本申请实施例进行描述。

本申请的说明书、权利要求书及附图中的术语“第一”和“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。

应当理解,在本申请中,“至少一个(项)”是指一个或者多个,“多个”是指两个或两个以上,“至少两个(项)”是指两个或三个及三个以上,“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”,其中a,b,c可以是单个,也可以是多个。

本申请使用的通信系统可理解为无线蜂窝通信系统,又或者理解为基于蜂窝网络架构的无线通信系统。例如第五代移动通信(5th-generation,5G)系统以及下一代移动通信等等。图1a是本申请实施例提供的一种通信系统的示意图,本申请中的方案可适用于该通信系统。该通信系统可以包括至少一个网络设备,仅示出一个,如图中的下一代基站(thenext generation Node B,gNB);以及与该网络设备连接的一个或多个终端设备,如图中的终端设备1和终端设备2。

其中,网络设备可以是能和终端设备通信的设备。网络设备可以是任意一种具有无线收发功能的设备,包括但不限于基站。例如,该基站可以为gNB,又或者该基站为未来通信系统中的基站。可选的,该网络设备还可以为无线局域网(wireless fidelity,WiFi)系统中的接入节点、无线中继节点、无线回传节点等。可选的,该网络设备还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器。可选的,该网络设备还可以是可穿戴设备或车载设备等。可选的,该网络设备还可以是小站,传输节点(transmission reference point,TRP)等。当然本申请不限于此。

终端设备,也可称为用户设备(user equipment,UE)、终端等。终端设备是一种具有无线收发功能的设备,可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上,如轮船上等;还可以部署在空中,例如部署在飞机、气球或卫星上等。终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtualreality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。

可理解,图1a所示的通信系统中,终端设备1和终端设备2也可以通过设备到设备(device to device,D2D)技术或车与任何事物通信(vehicle-to-everything,V2X)技术进行通信。

长期演进(long term evolution,LTE)V2X解决了V2X场景中的一些部分基础性的需求,但对于未来的完全智能驾驶、自动驾驶等应用场景而言,现阶段的LTE V2X还不能有效的支持。随着第五代移动通信(5th-generation,5G)新无线(new radio,NR)技术在3GPP标准组织中的开发,5G NR-V2X也将进一步发展,比如可以支持更低的传输时延,更可靠的通信传输,更高的吞吐量,更好的用户体验,以满足更加广泛的应用场景需求。因此NR-V2X提出要支撑99.99%甚至99.999%的可靠性传输。同时为了支撑不同的业务需求,NR-V2X也需要支撑单播、多播、广播等业务形态。

以图1b所示的资源图为例,在一次发送的时频资源上控制信道和数据信道以频分的方式复用在一起,从时域来看,控制信道和数据信道是共存关系。所以控制信道和数据信道的发送功率需要一起考虑。其中,LTE-V2X基于网络设备(如基站)调度的功率控制可满足如下公式:

其中,P

上述公式(1)还可以变化为:

上述公式(2)还可以变化为:

其中,公式(3)和公式(4)中分别包括两个子项,其中第一项表示当前信道分配到的最大发送功率,如公式(3)中第一项可以表示数据信道分配到的最大发送功率,公式(4)中第一项可以表示控制信道分配到的最大发送功率。根据第一项可知控制信道和数据信道分配到的最大发送功率跟信道本身的带宽成正比例关系,且与数据信道相比,控制信道每个子信道的发送功率有10

其中,第二项表示根据Uu口的链路损耗和期望达到的信噪比(signal-noise-ratio,SNR)计算得到链路预算,即链路预期发送功率。最终数据信道的发送功率和控制信道的发送功率分别为第一项和第二项中的最小值,即在终端设备允许的发送功率足够大的时候,按照链路需求(即链路预算)发送,在终端设备允许的功率小于链路需求时,按照终端设备允许的最大功率发送。

进一步地,LTE-V2X基于竞争模式的数据信道的功率控制可满足如下公式:

其中,系统可以根据当前子信道的繁忙程度,定义子信道内的最大发送功率P

LTE-V2X基于竞争模式的控制信道的功率控制可满足如下公式:

其中,B可满足如下公式:

以上介绍了LTE-V2X场景下的功率控制方法,然而,NR-V2X场景下可能的帧结构如图2所示。对于LTE-V2X和设备到设备(device to device,D2D)的功率分配和功率控制方法,仅适用于图2中的2a、2b和2c,如果NR-V2X的帧结构出现如图2中的2d所示的结构,即控制信道和数据信道既有时域重叠,又有频域重叠的混合复用场景,那么LTE-V2X或D2D的功率分配方式就不再适用。因此,对于图2中的2d所示的结构的功率控制方法,可参考本申请实施例图4所示的方法。

以下将以NR-V2X中的终端设备1和终端设备2为例,来具体说明本申请实施例所提供的功率控制方法的通信场景。

如图3a至图3g所示,分别为本申请实施例提供的一种侧行链路(sidelink)通信的场景示意图。

图3a所示的场景中终端设备1和终端设备2均处于小区覆盖范围外。

图3b所示的场景中终端设备1处于小区覆盖范围内,终端设备2处于小区覆盖范围外。

图3c所示的场景中终端设备1和终端设备2均处于同一个小区的覆盖范围内,且在一个公共陆地移动网络(public land mobile network,PLMN)中,如PLMN1。

图3d所示的场景中终端设备1和终端设备2在一个PLMN中如PLMN1,但处于不同的小区覆盖范围。

图3e所示的场景中终端设备1和终端设备2分别在不同的PLMN,不同的小区,且终端设备1和终端设备2分别处于两个小区的共同覆盖范围内。如终端设备1在PLMN1中,而终端设备2在PLMN2中。

图3f所示的场景中终端设备1和终端设备2分别在不同的PLMN,不同的小区,且终端设备1处于两个小区的共同覆盖范围内,终端设备2处于服务小区的覆盖范围内。

图3g所示的场景中终端设备1和终端设备2分别在不同的PLMN,不同的小区,且终端设备1和终端设备2分别处于各自的服务小区的覆盖范围内。

可理解,以上所示的场景可适用于车联万物(vehicle-to-everything,V2X),也可称为V2X中。

参见图4,图4是本申请实施例提供的一种功率控制方法的流程示意图,该功率控制方法可应用于图3a至图3g所示的终端设备,且该功率控制方法可有效解决上述的功率控制问题。如图4所示,该功率控制方法可包括:

401、第一终端设备确定第一数据信道部分的发送功率和第二数据信道部分的发送功率。

其中,上述第一数据信道部分为与控制信道有时域重叠且无频域重叠的数据信道部分,上述第二数据信道部分为与上述控制信道有频域重叠且无时域重叠的数据信道部分。

为更形象的理解本申请实施例所描述的第一数据信道部分和第二数据信道部分,图5a提供了一种数据信道和控制信道的示意图。如图5a所示,数据信道可分为第一数据信道部分和第二数据信道部分,也就是说,第一数据信道部分和第二数据信道部分可以构成完整的数据信道。又或者,第一数据信道部分和第二数据信道部分可以组成完整的数据信道。其中,第一数据信道部分与控制信道有时域重叠,但无频域重叠,第二数据信道部分与控制信道有频域重叠,但无时域重叠。也就是说,第一数据信道部分与控制信道有时域复用关系,但无频域复用关系,第二数据信道部分与控制信道有频域复用关系,但无时域复用关系。

作为示例,数据信道的带宽为M,控制信道的带宽为N,且M大于N,则第一数据信道部分的带宽为M-N,第二数据信道部分的带宽为M。可理解,其中M可表示M个资源块(resource block,RB),N可表示N个RB。可能的,在数据信道的带宽和控制信道的带宽还可以子载波为单位等等,本申请不作限定。可理解,在以子载波为单位的情况下,还需要根据子载波间隔来确定第一数据信道部分的发送功率、第二数据信道部分的发送功率以及控制信道的发送功率。

作为示例,控制信道可理解为用来承载侧行链路控制信息(sidelink controlinformation,SCI)的信道,该SCI中包括数据信道中传输的数据的解码信息等等。数据信道可理解为用来承载数据的信道,如该数据可为第一终端设备向第二终端设备发送的数据,进一步地,该数据可用来承载第一终端设备向第二终端设备发送的业务数据,例如侧行链路的数据信道可以是物理侧行共享信道(physical sidelink shared channel,PSSCH),侧行链路的控制信道可以是物理侧行控制信道(physical sidelink control channel,PSCCH)。

进一步地,对于数据信道和控制信道的示意图,还可参考图5b至图5f所示的示意图,这里不再一一详述。

本申请实施例中,终端设备(如第一终端设备)在确定发送功率时可将数据信道分为两部分,分别确定两部分的发送功率,即第一数据信道部分的发送功率以及第二数据信道部分的发送功率。下文将会描述第一终端设备确定第一数据信道部分的发送功率和第二数据信道部分的发送功率的详细过程。

402、上述第一终端设备以上述第一数据信道部分的发送功率向第二终端设备发送上述第一数据信道部分中的数据;以及以上述第二数据信道部分的发送功率向上述第二终端设备发送上述第二数据信道部分中的数据。

本申请实施例中,通过区分第一数据信道部分和第二数据信道部分,可对不同的数据信道部分进行不同的功率控制,如可通过不同的发送功率分别发送第一数据信道部分中的数据以及第二数据信道部分中的数据,避免了在所有情况下都通过相同的发送功率来发送数据,而避免了资源浪费的情况如避免了基于同一种方式确定数据信道的发送功率时第一数据信道部分或第二数据信道部分的发送功率过高,而实际不需要过高的发送功率就可完成对数据的发送的情况;从而通过将数据信道分为两部分,分别确定两部分的发送功率,不仅能够满足不同数据信道部分的功率要求,还可避免在所有情况下都通过相同的发送功率发送数据,而导致第一数据信道部分或第二数据信道部分的发送功率过高,而造成对其他终端设备的干扰,进而降低了对其他终端设备的干扰,提高了系统性能。

接下来,详细描述第一终端设备如何确定控制信道的发送功率、第一数据信道部分的发送功率和第二数据信道部分的发送功率。可理解,以下将以图5a所示的控制信道和数据信道的示意图来说明。

一、控制信道的发送功率:

本申请的一些实施例中,对于控制信道的发送功率,第一终端设备可根据最大发送功率P

P

其中,P

可理解,公式(9)中f(M-N,N)也可理解为第一数据信道部分的带宽M-N与控制信道的带宽N的表达式,或者,也可理解为第一数据信道部分的带宽M-N与控制信道的带宽N的关系式等。

对于公式(9),P

具体的,f(M-N,N)可满足如下公式:

也就是说,由于控制信道与第一数据信道部分有时域重叠无频域重叠,因此控制信道和第一数据信道部分分别是在同一时刻发送控制信息和数据,因此控制信道与第一数据信道部分需要做功率分配。由此f(M-N,N)可理解为控制信道与第一数据信道部分之间的功率分配关系。

具体的,f(N)可满足如下公式:

进一步地,结合公式(10)和公式(11)控制信道的发送功率可满足如下公式:

或者,本实施例还提供了另一种形式来表示控制信道的发送功率所满足的公式,如下所示:

可理解,公式(12)和公式(13)为在基站调度模式下,控制信道的发送功率的两种不同形式,在第一终端设备需要确定控制信道的发送功率时,不管是通过公式(12)还是公式(13),该第一终端设备所确定出的控制信道的发送功率的结果是一致的。因此,第一终端设备还可以通过公式(9),进一步地通过公式(12)或公式(13)确定控制信道的发送功率,从而第一终端设备以控制信道的发送功率向第二终端设备发送控制信道中的控制信息。

以上所示的控制信道所满足的公式(9)、公式(12)和公式(13)是在基站调度模式下示出的,而在竞争模式下,由于每个子信道有繁忙功率控制设定,因此,在本申请的一些实施例中,控制信道的发送功率可满足如下公式:

P

其中,P

进一步地,结合公式(10)和公式(11)在竞争模式下,控制信道的发送功率可满足如下公式:

或者,在竞争模式下,控制信道的发送功率满足如下公式:

可理解,公式(15)和公式(16)为控制信道的发送功率的两种不同形式,第一终端设备通过公式(15)和公式(16)确定出的控制信道的发送功率是一致的。

在通过控制信道发送控制信息时,不同的控制信息可能包括不同的优先级,因此,在本申请的一些实施例中,还可根据控制信息的优先级来确定控制信道的发送功率的方法。如控制信道的发送功率满足如下公式:

P

其中,P

结合公式(10)和公式(11),控制信道的发送功率可满足如下公式:

可理解,对于以上各个参数的具体描述可参考前述各个实施例,这里不再一一详述。

可理解,公式(17)和公式(18)可理解为在基站调度模式下,不同的控制信息可能包括不同的优先级,从而根据控制信道分配到的发送功率、控制信道的链路预算以及控制信道的门限功率(P

而在竞争模式下,不同的控制信息也可能会包括不同的优先级,因此,在本申请的一些实施例中,还提供了一种确定控制信道的发送功率的方法,如下所示,控制信道的发送功率可满足如下公式:

结合公式(10)和公式(11),控制信道的发送功率可满足如下公式:

可理解,对于以上各个参数的具体描述可参考前述各个实施方式,这里不再一一详述。

可理解,对于以上各个实施例,控制信道的发送功率可能还存在其他变形,因此,不应将以上所示的各个实施例理解为对本申请的限定。

二、第一数据信道部分的发送功率:

本申请一些实施例中,对于第一数据信道部分的发送功率可根据最大发送功率P

P

其中,P

可理解,f(N,M-N)还可以理解为第一数据信道部分的带宽M-N与控制信道的带宽N的表达式或关系式等等,以及f(M-N)还可以理解为第一数据信道部分的带宽M-N的表达式或关系式等。

其中,P

具体的,f(N,M-N)满足如下公式:

具体的,f(M-N)满足如下公式:

f(M-N)=10log

进一步地,结合公式(22)和公式(23)第一数据信道部分的发送功率可满足如下公式:

或者,本实施例还提供了另一种形式来表示第一数据信道部分的发送功率所满足的公式,如下所示:

公式(24)和公式(25)为第一数据信道部分的发送功率的两种不同形式,第一终端设备通过公式(24)和公式(25)确定出的第一数据信道部分的发送功率是一致的。

以上所示的第一数据信道部分所满足的公式(21)、公式(24)和公式(25)是在基站调度模式下示出的,而在竞争模式下,由于每个子信道有繁忙功率控制设定,因此,在本申请的一些实施例中,第一数据信道部分的发送功率可满足如下公式:

P

其中,P

进一步地,结合公式(22)和公式(23)在竞争模式下,第一数据信道部分的发送功率满足如下公式:

或者,在竞争模式下,第一数据信道部分的发送功率满足如下公式:

可理解,对于该实施例中各个参数的具体描述,可对应参考前述实施方式,这里不再一一详述。

更进一步地,由于数据信道中发送的数据承载的业务有不同的服务质量(qualityof service,QoS),所以数据信道中发送的数据承载的业务可以用不同的功率限制。比如涉及紧急避险和自动驾驶等安全性要求比较高的业务时,该安全性比较高的业务会对QoS有比较高的需求。也就是说,在这些对安全性要求比较高的场景下,数据信道中发送的数据承载的业务要求有更高的QoS。因此,在本申请的一些实施例中,第一终端设备可以根据业务的QoS需求来确定第一数据信道部分的发送功率。

因此,第一数据信道部分的发送功率可满足如下公式:

P

其中,P

该P

具体的,结合公式(22)和公式(23),在该实施例中第一数据信道部分的发送功率可满足如下公式:

本实施例中,通过不同业务的QoS需求,设定不同的门限功率,从而可确保第一终端设备承载的高优先级业务传输的可靠性;另外,对不同优先级的业务,通过设置不同的门限功率限制,可使得高优先级业务在相同的干扰情况下具有更高的可靠性。

可理解,公式(29)和公式(30)可理解为在基站调度模式下,通过不同的业务的QoS需求,设定不同的门限功率,从而根据第一数据信道部分分配到的发送功率、第一数据信道部分的链路预算以及第一数据信道部分的门限功率确定第一数据信道部分的发送功率的一种方法。

而在竞争模式下,不同业务的QoS需求也可能会不同,因此,在本申请的一些实施例中,第一终端设备确定第一数据信道部分的发送功率还可满足如下公式:

结合公式(22)和公式(23),第一数据信道部分的发送功率可满足如下公式:

可理解,对于以上各个参数的具体描述可参考前述各个实施方式,这里不再一一详述。

三、第二数据信道部分的发送功率:

本实施例提供了两种实现方式来说明第二数据信道部分的发送功率,分别如下所示:

实现方式一、

该实现方式下,第二数据信道部分的发送功率与第一数据信道部分的发送功率的比值,和第二数据信道部分的带宽与第一数据信道部分的带宽的比值,成正相关。具体的,第二数据信道部分的发送功率与第一数据信道部分的发送功率的比值,和第二数据信道部分的带宽与第一数据信道部分的带宽的比值,相同。

对于该实现方式,可理解为数据信道中所有资源单元(resource element,RE)以相同的发送功率发送数据。

作为示例,参见图6,图6是本申请实施例提供的一种时频资源的结构示意图,其中,一个RE在时域上为一个正交频分复用((orthogonal frequency divisionmultiplexing,OFDM)符号,频域上为一个子载波。在LTE系统中,时频资源被划分成时间域维度上的OFDM或单载波频分复用多址(single carrier frequency divisionmultiplexing access,SC-FDMA)符号和频率域维度上的子载波,而最小的资源粒度叫做RE,即表示时间域上的一个时域符号和频率域上的一个子载波组成的时频格点。可理解,以上仅为本申请实施例提供的一种示例,在未来通信技术中,RE的结构可能会发生变化,因此,不应将图6所示的RE理解为对本申请实施例的限定。

由于RE是时频资源,因此,本实施例所描述的数据信道中所有RE以相同的发送功率发送数据,可理解为在RE所表示的频域资源上以相同的发送功率发送数据。也就是说,本实施例所描述的控制信道的发送功率、第一数据信道部分的发送功率或第二数据信道部分的发送功率,均指的是在某一时刻或某一时间单元上的发送功率。

因此,在本申请的一些实施例中,第二数据信道部分的发送功率满足如下公式:

P

其中,P

可理解,由于第二数据信道部分的发送功率是基于第一数据信道部分的发送功率来确定,因此,对应的,在基站调度模式下,且无门限功率P

而在竞争模式下,且无门限功率时,第一数据信道部分的发送功率所满足的公式可参考第一数据信道部分的发送功率中的示例,即参考公式(26)、公式(27)和公式(28)中的一项或多项。以及控制信道的发送功率所满足的公式可参考控制信道的发送功率中的示例,即公式(14)、公式(15)和公式(16)中的一项或多项。

而在基站调度模式下,对不同的业务有不同的QoS需求(即有门限功率)时,第一数据信道部分的发送功率所满足的公式可参考第一数据信道部分的发送功率中的示例,即参考公式(29)和/或公式(30)。以及控制信道的发送功率所满足的公式可参考控制信道的发送功率中的示例,即公式(17)和/或公式(18)。

在竞争模式下,且对不同的业务有不同的QoS需求,即设定有门限功率时,第一数据信道部分的发送功率所满足的公式可参考第一数据信道部分的发送功率所满足的公式(31)和/或(32)。以及控制信道的发送功率所满足的公式可参考公式(19)和/或公式(20)。

进一步地,第二数据信道部分的发送功率可满足如下公式:

P

结合图5a可知,第二数据信道部分的实际有效带宽M大于第一数据信道部分的实际有效带宽M-N,以及基于第一数据信道部分和第二数据信道部分中的RE均以相同的发送功率发送数据,因此,第二数据信道部分的发送功率可基于第一数据信道部分的发送功率,进行正比例带宽的放大。

基于实现方式一,解决了图2中2d所示的帧结构中数据信道不同符号上可用的有效带宽不同的问题,并保证了数据信道中所有RE可以采用相同的发送功率发送数据。进一步地,第一数据信道部分的发送功率与第二数据信道部分的发送功率有确定比例,有助于第二终端设备接收的中频缩放因子,即第二终端设备如果确定了第一数据信道部分的中频缩放因子,就可以根据确定的比例确定第二数据信道部分的中频缩放因子,由此可使得整体时隙的接收数据处于合适的接收功率范围。

对于实现方式一,数据信道中所有RE以相同的发送功率发送数据,但是,如果在一次传输中,数据信道的链路预算比较高,使得第一数据信道部分中的每个RE的发送功率由分配的最大发送功率决定。在这种情况下,会造成第二数据信道部分的发送功率没有达到最大发送功率,从而导致有剩余的发送功率。因此,本申请实施例提出了实现方式二,该实现方式中,第一数据信道部分中的RE和第二数据信道部分中的RE可以按照不同的发送功率发送数据。具体如下所示:

实现方式二、

第二数据信道部分的发送功率根据最大发送功率P

也就是说,在实现方式二中,第二数据信道部分可以独自享用所有功率,即相对于第一数据信道部分与控制信道做功率分配而言,第二数据信道部分可以不做功率分配,而直接以最大发送功率发送数据。即第二数据信道部分的发送功率可以在最大发送功率和链路预算中确定。

因此,在本申请的一些实施例中,第二数据信道部分的发送功率可满足如下公式:

P

其中,P

具体的,第二数据信道部分的发送功率可满足如下公式:

P

对于实现方式二,若V2X的链路预算比较高,即min函数中第二部分比较大时,数据信道的发送功率受限,数据信道所有RE会基于两种发送功率发送。该方案可以使得第一终端设备充分利用可用功率,使得数据信道受功率分配影响较小。特别是数据信道带宽M比较小,但是需要较远的通信距离的场景,第二数据信道部分可以用比较合适的发送功率进行发送,提升控制信道的可检测概率。

可理解,与该实施例一对应的第一数据信道部分的发送功率所满足的公式可参考第一数据信道部分的发送功率中的示例,即参考公式(21)、公式(24)和公式(25)中的一项或多项。以及对应的控制信道的发送功率所满足的公式可参考控制信道的发送功率中的示例,即参考公式(9)、公式(12)和公式(13)中的一项或多项。

以上是在基站调度模式下示出的第二数据信道部分的发送功率所满足的公式。在竞争模式下,第二数据信道部分的发送功率可满足如下公式:

P

其中,P

具体的,第二数据信道部分的发送功率可满足如下公式:

P

对应的,与该实施例对应的第一数据信道部分的发送功率,可参考在竞争模式下,第一数据信道部分的发送功率的示例,如可参考公式(26)、公式(27)和公式(28)中的一项或多项。以及控制信道的发送功率可参考公式(14)、公式(15)和公式(16)中的一项或多项。

在本申请的一些实施例中,在数据信道中的数据承载的业务有不同的QoS需求的场景下,第二数据信道部分的发送功率可满足如下公式:

P

其中,P

具体的,第二数据信道部分的发送功率可满足如下公式:

P

对应的,与该实施例对应的第一数据信道部分的发送功率可参考公式(29)和/或公式(30)。与该实施例对应的控制信道的发送功率可参考公式(17)和/或公式(18)。

在本申请的一些实施例中,在竞争模式下,不同业务的QoS需求可能会不同,因此,第二数据信道部分的发送功率可满足如下公式:

P

具体的,第二数据信道部分的发送功率可满足如下公式:

P

其中,与该实施例对应的第一数据信道部分的发送功率所满足的公式可参考公式(31)和/或公式(32)。以及控制信道的发送功率所满足的公式可参考公式(19)和/或公式(20)。

可理解,以上各个实施例各有侧重,其中在一个实施例中未详尽描述的实现方式或参数,可参考其他实施例,这里不再一一详述。

以上是本申请提供的在不同场景下第一终端设备如何确定第一数据信道部分的发送功率、第二数据信道部分的发送功率以及控制信道的发送功率,包括第一终端设备计算各发送功率所满足的公式。以下将详细介绍以上公式中所出现的参考链路损耗PL。

其中,参考链路损耗PL可根据服务小区内的上下行传输损耗或链路传输损耗确定,链路传输损耗包括侧行链路传输损耗。

具体的,PL可满足如下公式:

PL=min{PL

其中,PL

在具体实现中,NR-V2X不仅可支持单播业务还可支持多播或组播业务,因此,对于不同的场景,PL

在NR-V2X单播业务中,如一个第一终端设备向第二终端设备发送数据的场景下,链路传输损耗PL

也就是说,PL可为NR-V2X链路本身的传输损耗和Uu口传输损耗(即服务小区内的上下行传输损耗)的最小值。

在NR-V2X多播或组播业务中,如一个第一终端设备向第一终端设备集合发送数据的场景下,链路传输损耗PL

其中,第一终端设备集合可理解为多播或组播集合中的终端设备的集合,且第一终端设备集合中包括第二终端设备。

由此,PL可满足如下公式:

其中,PL

该实施例中,可表示在多播或组播业务的发送功率不影响Uu口业务的前提下,选择多播或组播集合中最大的传输损耗作为侧行链路传输损耗,从而尽可能在一次传输中保证所有第一终端设备集合中的终端设备都能正确接收数据。

当多播或组播集合中终端设备的位置信息比较固定时,还可以只根据远端终端设备的传输损耗来确定链路传输损耗,由此减少反馈数量。因此,链路传输损耗还可为第一终端设备到第二终端设备集合中的终端设备的链路损耗中的最大值,第二终端设备集合属于第一终端设备集合,且第二终端设备集合中的终端设备的第一参数满足第一参数的阈值范围。

其中,第二终端设备集合可理解为多播或组播集合中的部分终端设备。第一参数为参考信号接收功率(reference signal receiving power,RSRP)、信号与干扰加噪声比(signal to interference plus noise ratio,SINR)、信噪比(signal-noise ratio,SNR)或信道质量指示(channel quality indicator,CQI)中的任意一项。

可选的,以RSRP为例来说明,PL可满足如下公式:

其中,β表示RSRP的阈值,RSRP

这种场景下,侧行链路传输系统可以按照链路本身的信道质量进行传输。考虑侧行链路业务,其大部分的通信场景都是与附近用户进行通信,因此可以有效降低侧行链路用户的发送功率,降低用户间干扰,提升系统总吞吐量。

可理解,在基站调度模式下,本申请实施例提供了两种实现方式来确定第二数据信道部分的发送功率,如公式(33)和公式(35)。然而,在具体实现中,第一终端设备可能无法自主确定通过哪个公式来确定第二数据信道部分的发送功率,因此,参见图7,图7是本申请实施例提供的另一种功率控制方法的流程示意图。该方法可应用于图3a至图3g所示的终端设备。如图7所示,该功率控制方法可包括:

701、网络设备向第一终端设备发送指示信息,上述第一终端设备接收来自上述网络设备的上述指示信息。

其中,该指示信息可用于指示第二数据信道部分的发送功率。具体的,该指示信息可用于指示第二数据信道部分的发送功率所满足的公式。

702、上述第一终端设备确定第一数据信道部分的发送功率,以及根据上述指示信息确定第二数据信道部分的发送功率所满足的公式。

其中,第一终端设备所确定的第二数据信道部分的发送功率所满足的公式为公式(33)或公式(35)。在第一终端设备确定第二数据信道部分的发送功率所满足的公式为公式(33)的情况下,该第一终端设备便可根据公式(33)和公式(34)中的一项或多项,来确定第二数据信道部分的发送功率。而在第一终端设备确定第二数据信道部分的发送功率所满足的公式为公式(35)的情况下,该第一终端设备便可根据公式(35)和公式(36)中的一项或多项,来确定第二数据信道部分的发送功率。

703、上述第一终端设备以上述第一数据信道部分的发送功率向第二终端设备发送上述第一数据信道部分中的数据;以及以上述第二数据信道部分的发送功率向上述第二终端设备发送上述第二数据信道部分中的数据。

实施本申请实施例,可使得第一终端设备及时有效的得知第二数据信道部分的发送功率所满足的公式,提高第一终端设备确定第二数据信道部分的发送功率的效率。

可理解,图7中未详尽描述的实施方式,可对应参考以上各个实施方式,这里不再一一详述。

以上是本申请中第一终端设备如何确定控制信道的发送功率、第一数据信道部分的发送功率以及第二数据信道部分的发送功率的方法,以下将详细介绍本申请实施例提供的功率控制装置,该装置可用于执行本申请实施例所描述的方法,该装置可以是终端设备(如第一终端设备),或者是终端设备中实现上述功能的部件,或者是芯片。

参见图8,图8是本申请实施例提供的一种功率控制装置的结构示意图,该功率控制装置可用于执行本申请实施例所描述的方法,如图8所示,该功率控制装置包括:

处理单元801,用于确定第一数据信道部分的发送功率和第二数据信道部分的发送功率;其中,上述第一数据信道部分为与控制信道有时域重叠且无频域重叠的数据信道部分,上述第二数据信道部分为与上述控制信道有频域重叠且无时域重叠的数据信道部分;

发送单元802,用于以上述第一数据信道部分的发送功率向第二终端设备发送上述第一数据信道部分中的数据;以及以上述第二数据信道部分的发送功率向上述第二终端设备发送上述第二数据信道部分中的数据。

在一种可能的实现方式中,在上述控制信道的带宽为N,数据信道的带宽为M的情况下,上述第一数据信道部分的带宽为M-N,其中,上述M大于上述N;上述第一数据信道部分的发送功率根据最大发送功率、上述第一数据信道部分的带宽M-N以及上述控制信道的带宽N确定。

在一种可能的实现方式中,上述第一数据信道部分的发送功率满足如下公式:

P

其中,上述P

在一种可能的实现方式中,上述第二数据信道部分的发送功率与上述第一数据信道部分的发送功率的比值,和上述第二数据信道部分的带宽与上述第一数据信道部分的带宽的比值,成正相关。

在一种可能的实现方式中,上述第二数据信道部分的发送功率满足如下公式:

P

其中,上述P

在一种可能的实现方式中,上述第二数据信道部分的发送功率根据上述最大发送功率以及上述第二数据信道部分的链路预算确定,上述第二数据信道部分的链路预算根据上述第二数据信道部分的带宽M确定。

在一种可能的实现方式中,上述第二数据信道部分的发送功率满足如下公式:

P

其中,上述P

在一种可能的实现方式中,上述参考链路损耗PL根据服务小区内的上下行传输损耗或链路传输损耗确定,上述链路传输损耗包括侧行链路传输损耗;上述链路传输损耗为上述第一终端设备到上述第二终端设备的链路损耗;或者,上述链路传输损耗为上述第一终端设备到第一终端设备集合中的终端设备的链路损耗中的最大值;或者,上述链路传输损耗为上述第一终端设备到第二终端设备集合中的终端设备的链路损耗中的最大值,上述第二终端设备集合属于上述第一终端设备集合,且上述第二终端设备集合中的终端设备的第一参数满足上述第一参数的阈值范围。

在一种可能的实现方式中,上述第一参数为参考信号接收功率RSRP、信号与干扰加噪声比SINR、信噪比SNR或信道质量指示CQI中的任意一项。

在一种可能的实现方式中,如图9所示,上述装置还包括:

接收单元803,用于接收来自网络设备的指示信息,上述指示信息用于指示上述第二数据信道部分的发送功率;

上述处理单元801,具体用于根据上述指示信息确定上述第二数据信道部分的发送功率满足的公式为P

在一种可能的实现方式中,发送单元802和接收单元803可能集成于一个器件中,如该发送单元802和接收单元803可能为收发器。或者,发送单元802和接收单元803也可能分离为不同的器件,本申请对于发送单元802和接收单元803的具体方式不作限定。

在一种可能的实现方式中,上述第一数据信道部分的发送功率满足如下公式:

P

其中,上述P

在一种可能的实现方式中,上述第二数据信道部分的发送功率满足如下公式:

P

其中,上述P

在一种可能的实现方式中,上述P

在一种可能的实现方式中,上述第一数据信道部分的发送功率满足如下公式:

P

其中,上述P

在一种可能的实现方式中,上述第二数据信道部分的发送功率满足如下公式:

P

其中,上述P

本申请实施例中,通过区分第一数据信道部分和第二数据信道部分,可对不同的数据信道部分进行不同的功率控制,如可通过不同的发送功率分别发送第一数据信道部分中的数据以及第二数据信道部分中的数据,避免了在所有情况下都通过相同的发送功率来发送数据,而导致资源浪费的情况如避免了基于同一种方式确定数据信道的发送功率时第一数据信道部分或第二数据信道部分的发送功率过高,而实际不需要过高的发送功率就可完成对数据的发送的情况;从而通过将数据信道分为两部分,分别确定两部分的发送功率,不仅能够满足不同数据信道部分的功率要求,还可避免在所有情况下都通过相同的发送功率发送数据,而导致第一数据信道部分或第二数据信道部分的发送功率过高,而造成对其他终端设备的干扰,进而降低了对其他终端设备的干扰,提高了系统性能。

需要理解的是,当上述功率控制装置是终端设备或终端设备中实现上述功能的部件时,处理单元801可以是一个或多个处理器,发送单元802可以是发送器,接收单元803可以是接收器,或者发送单元802和接收单元803集成于一个器件,例如收发器。当上述功率控制装置是芯片时,处理单元801可以是一个或多个处理器,发送单元802可以是输出接口,接收单元803可以是输入接口,或者发送单元802和接收单元803集成于一个单元,例如输入输出接口。

图10为本申请实施例提供的一种终端设备1000的结构示意图。该终端设备可执行如图4和7所示出的方法中的第一终端设备的操作,或者,该终端设备也可执行如图8和图9所示的第一终端设备的操作。

为了便于说明,图10仅示出了终端设备的主要部件。如图10所示,终端设备1000包括处理器、存储器、射频链路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端设备进行控制,执行软件程序,处理软件程序的数据,例如用于支持终端设备执行图4和图7所描述的流程。存储器主要用于存储软件程序和数据。射频链路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。终端设备1000还可以包括输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。

当终端设备开机后,处理器可以读取存储单元中的软件程序,解释并执行软件程序的,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频链路,射频链路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频链路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。

本领域技术人员可以理解,为了便于说明,图10仅示出了一个存储器和处理器。在实际的终端设备中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限制。

作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器(centralprocessing unit,CPU),基带处理器主要用于对通信协议以及通信数据进行处理,CPU主要用于对整个终端设备进行控制,执行软件程序,处理软件程序的数据。可选的,该处理器还可以是网络处理器(network processor,NP)或者CPU和NP的组合。处理器还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integratedcircuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。存储器可以包括易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM);存储器也可以包括非易失性存储器(non-volatilememory),例如快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);存储器还可以包括上述种类的存储器的组合。

示例性的,在申请实施例中,可以将具有收发功能的天线和射频链路视为终端设备1000的收发单元1001,将具有处理功能的处理器视为终端设备1000的处理单元1002。

如图10所示,终端设备1000可以包括收发单元1001和处理单元1002。收发单元也可以称为收发器、收发机、收发装置等。可选的,可以将收发单元1001中用于实现接收功能的器件视为接收单元,将收发单元1001中用于实现发送功能的器件视为发送单元,即收发单元1001包括接收单元和发送单元。示例性的,接收单元也可以称为接收机、接收器、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。

在一些实施例中,收发单元1001、处理单元1002可能集成为一个器件,也可以分离为不同的器件,此外,处理器与存储器也可以集成为一个器件,或分立为不同器件。例如,在一个实施例中,收发单元1001可用于执行图4所示的步骤402所示的方法。又如,在一个实施例中,收发单元1001还可用于执行图7所示的步骤701和步骤703所示的方法。

又如,在一个实施例中,处理单元1002可用于执行控制收发单元1001执行图4所示的步骤402所示的方法,以及该处理单元1002还可用于控制收发单元1001执行图7所示的步骤701和步骤703所示的方法。

又如,在一个实施例中,处理单元1002还可用于执行图4所示的步骤401所示的方法,以及图7所示的步骤702所示的方法。

又如,在一个实施例中,收发单元1001还可用于执行发送单元802和接收单元803所示的方法。又如,在一个实施例中,处理单元1002还可用于执行处理单元801所示的方法。

可理解的是,本申请实施例中的终端设备的实现方式,具体可参考前述各个实施例,这里不再详述。

本申请实施例还提供了一种计算机可读存储介质。上述方法实施例中的全部或者部分流程可以由计算机程序来指令相关的硬件完成,该程序可存储于上述计算机存储介质中,该程序在执行时,可包括如上述各方法实施例的流程。计算机可读存储介质可以是前述任一实施例的功率控制装置(包括数据发送端和/或数据接收端)的内部存储单元,例如功率控制装置的硬盘或内存。上述计算机可读存储介质也可以是上述功率控制装置的外部存储设备,例如上述功率控制装置上配备的插接式硬盘,智能存储卡(smart media card,SMC),安全数字(secure digital,SD)卡,闪存卡(flash card)等。进一步地,上述计算机可读存储介质还可以既包括上述功率控制装置的内部存储单元也包括外部存储设备。上述计算机可读存储介质用于存储上述计算机程序以及上述功率控制装置所需的其他程序和数据。上述计算机可读存储介质还可以用于暂时地存储已经输出或者将要输出的数据。

在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者通过所述计算机可读存储介质进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。

本申请实施例方法中的步骤可以根据实际需要进行顺序调整、合并和删减。

本申请实施例装置中的模块可以根据实际需要进行合并、划分和删减。

以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

相关技术
  • 功率输出控制方法及装置、功率回馈控制方法及装置
  • 功率转换装置、功率转换装置用控制装置及功率转换装置的控制方法
技术分类

06120113172959