掌桥专利:专业的专利平台
掌桥专利
首页

一种应用于MIMO下行链路系统中模拟时变运动的信道模型

文献发布时间:2023-06-19 13:29:16


一种应用于MIMO下行链路系统中模拟时变运动的信道模型

技术领域

本发明涉及通信领域的信道建模,实现对多输入多输出(Multiple-InputMultiple-Output,MIMO)下行链路系统中时变运动进行建模和模拟,为研究MIMO技术提供模型支撑。

背景技术

在通信和检测的过程中,由于时变运动的频繁发生,通信质量通常会降低。特别是在城市的复杂环境中,MIMO信道传递函数的设计对建模和仿真其至关重要的作用。针对这一复杂问题,有学者以第三代移动通信合作计划(The 3rd Generation PartnershipProject,3GPP)中的3D MIMO模型和WINNER(Wireless World Initiative New Radio)仿真平台为基础,开展3D MIMO信道模型与仿真研究;还有学者基于相关性矩阵,通过调节信道的参数,实现对MIMO信道的仿真,然而缺乏考虑选择其它天线阵列结构时MIMO信道相关性的问题。2019年有学者针对MIMO无线信道仿真器中相关衰落模拟需求,提出一种基于mesh网络的高速数据交互方法,为大规模MIMO无线信道模拟器的系统集成研制提供技术基础,提供一定的实用参考价值。目前大多数的研究模型都很复杂,缺乏城市场景的具体传播过程和衰落等情况的考虑,不利用快速建立仿真模型,也无法反映MIMO信道中时变运动的完整特征。所以需要针对不同的场景和信道链路建立不同的适用研究方法,便于分析和解决实际的信道传播问题。

发明内容

发明目的

本发明提供了一种应用于MIMO下行链路系统中模拟时变运动的信道模型,公开了建模和模拟MIMO下行链路系统中时变运动的方法。

本发明需要保护的技术方案为:

一种应用于MIMO下行链路系统中模拟时变运动的信道模型,其特征是,设备分别为移动台(Mobile Station,MS)和基站(Base Station,BS),MIMO信道下行链路发端天线u发射信号、收端天线s接收信号的信道传输函数为:

考虑到3GPP中径的特征,即空间分为N条径,每条径由M条子径组成,在角度方面子径以径为中心扩展,子径之间的相对功率相等,均为径功率的1/M;在此基础上,公式(9)中各个参数注解如下:

P

σ

θ

θ

λ 信号波长

d

d

Φ

V MS的移动速度矢量

θ

有益效果

1.针对通信系统和雷达系统通常面临由时变运动引起的问题,以及现有模型复杂且适用范围不足的缺点,本发明根据无线信道的特点、传输方式和衰落情况,基于3GPP的MIMO下行链路的基本建模原理,推导出了基于射线的下行链路MIMO信道的传输函数,帮助快速和有效建立信道模型和实现仿真,更为实用,应用范围更广泛。

2.本发明根据射线跟踪法建立对应的仿真模型,并根据实际考虑市区宏小区、郊区宏小区用户、市区微小区对应的参数,能够完整反映反映MIMO信道中时变运动过程。在基于相关相关矩阵法建立对应的仿真模型中,通过仿真结果验证了当前MIMO信道传输的特点,以及模型的有效性。

附图说明

图1具体实施过程示意图

图2基站和移动台角度参数

图3调制方式与误码率

图4天线配置与误码率

图5空分复用不同信道带宽的误码率

图6EPA5Hz与EVA5Hz误码率比较

图7EVA5Hz与EVA70Hz误码率比较

图8ETU70Hz与ETU300Hz误码率比较

具体实施方式

本发明模型充分考虑了受独立衰落条件影响的时变运动和传输数据流的影响。利用空间分集MIMO衰落信道模型得到下行MIMO射线不同移动速度的计算公式。利用空间分集MIMO衰落信道模型和3GPP技术,得到了下行MIMO射线不同移动速度的计算公式。推导出了基于射线法的下行链路MIMO信道的传输函数。模拟了低复杂度和强相关性的MIMO空间。

本实施方式中,使用ADS(Advanced Design System)软件来选择传播环境、天线配置和调制模式,使用MATLAB系统级模型清楚地描述MIMO的重要特征。

方案过程见附图1。

首先,基于3GPP 25.996的SCM模型和实际场景,选择适合的信道结构和参数。

第二,基于本发明推导的下行链路公式h

第三,参考3GPP TR 25.996的市区宏小区、郊区宏小区用户、市区微小区等的用户参数,进行信道仿真,得到接收端的下行链路误码率。

最后,根据不同配置、参数等设置,来进行误码率和信噪比的分析,得到实际场景的仿真情况。

详述如下:

S1基于3GPP 25.996的SCM模型和实际场景,选择适合的信道结构和参数

基于射线的信道模型通常所指的就是3GPP组织指定的空间信道模型(SpatialChannel Model,SCM)。与传统的基于相关性的信道模型相比,其更加适用于链路级仿真,允许我们实现系统级评估。根据3GPP 25.996协议,利用SCM模型按照蜂窝网络的小区特征,把传播环境分成几种场景:郊区宏小区、市区宏小区、市区微小区直射径(Line of Sight,LOS)特征、远场散射条件和城区峡谷等特殊的无线传播环境。我们便是利用3GPP 25.996的信道结构、参数,基于射线的MIMO无线信道模型,推导MIMO下行链路传递函数。

SCM及建模中的参数如图2所示,设备分别为移动台(Mobile Station,MS)和基站(Base Station,BS)。

其中,AoD为离开角,AoA为到达角。下面具体介绍这些角度参数:

Ω

θ

δ

Δ

θ

θ

Ω

θ

δ

Δ

θ

θ

V MS的移动速度矢量

θ

在此信道建模中假设:

(1)上下行具有对称性:AoD、AoA在上下行具有相同值。

(2)不同MS之间的阴影衰落是不相关的。实际上,当两个MS之间距离很近时这个假设是不成立的。

(3)这个空间信道模型适应于任意类型的天线配置,但是为了比较算法,假设天线为均匀线性阵列,间距为0.5、4和10个波长。

(4)为了比较不同的天线配置情况,单天线和多天线的发射功率相同。

S2基于本发明推导下行链路公式h

假设发射信号经由发端线阵中的第1个天线发射出天线口时的信号可表示为:

其中,

f

因此引起的t时刻的相移为:

‖V‖cos(θ

此时,接收端第1个天线收到的信号为:

如果该散射簇由很多个散射体构成,那么到达收端天线1的信号由这些信号累加而成,即:

其中,M表示散射体的数目,Φ

同理,如果发端第u个天线发出信号、收端第s个天线接收信号,假设发端线阵中第u个天线与参考天线(天线1)的距离为du(对于参考天线来说,du=0),收端第s个天线与参考天线(天线1)的距离为ds(对于参考天线来说,ds=0)

在天线和散射簇的距离远远大于天线之间距离的情况下,可认为两个天线接收信号的角度相等,这样在两个天线接收信号之间存在波程差,利用相位波前公式,即可通过波程差得到相位差,即发端第u个天线发出信号相对于参考天线的相位差为:(2π/λ)d

因此,发端天线u发射信号、收端天线s接收信号时的传输函数为:

考虑到3GPP中径的特征,即空间分为N条径,每条径由M条子径组成,在角度方面子径以径为中心扩展,子径之间的相对功率相等,均为径功率的1/M。假设第n条径的相对功率大小为P

公式(9)即信道传输模型。

S3、S4参考3GPP TR 25.996的市区宏小区、郊区宏小区用户、市区微小区等的用户参数,进行信道仿真,得到接收端的下行链路误码率。同时,根据不同配置、参数等设置,来进行误码率和信噪比的分析,得到实际场景的仿真情况。

基于公式(9)的传输函数公式,便可进行SCM的搭建和仿真,如图3-图8所示,得到了不同传输情况下下行链路误码率与信噪比的关系。要想生成最后的信道系数,必须首先确定计算信道公式中用到的信道参数。市区宏小区、郊区宏小区用户、市区微小区用户参数生成步骤见3GPP TR 25.996V10.0.0。由于射线跟踪法的仿真验证是针对链路级仿真,可以用作算法的不同实现方法之间的性能比较。

相关技术
  • 一种应用于MIMO下行链路系统中模拟时变运动的信道模型
  • 一种迭代的MIMO-OFDM系统中快时变信道估计方法
技术分类

06120113689188