掌桥专利:专业的专利平台
掌桥专利
首页

一种磁谐振三相无线充电线圈自动化仿真方法

文献发布时间:2023-06-19 16:11:11



技术领域

本发明涉及无线充电技术领域,具体涉及一种磁谐振三相无线充电线圈自动化仿真方法。

背景技术

磁谐振无线充电技术作为电能传输技术的一个新的发展方向,因其具有较高的传输效率和较远的传输距离而广受关注。作为磁谐振无线充电系统的核心部件的收发线圈,其性能直接影响无线充电的稳定性及传输效率等性能,其设计也是磁谐振无线充电系统设计的难点。出于成本与加工便利性的需求考虑,磁谐振无线充电收发线圈目前多采用平面印刷线圈,这种线圈主要通过电磁仿真软件完成设计。

其仿真过程包括如下步骤:

步骤1、建立线圈CAD模型;

步骤2、线圈材料属性、激励端口、求解频率等求解参数的设置;

步骤3、运行求解;

步骤4、导出自感、互感等所需结果。

其中,步骤1是实现平面印刷线圈仿真过程必不可少的核心步骤之一。截止目前,线圈CAD模型的建立仍然由设计人员通过多次手动建立不同的线圈CAD模型,费时费力,亦影响无线充电线圈设计自动化的实现。

发明内容

本发明的目的在于:提供一种磁谐振三相无线充电线圈自动化仿真方法,以解决线圈设计过程中设计人员手动建立线圈CAD模型效率低下的问题。

为实现上述目的,本发明采用如下技术方案:

一种磁谐振三相无线充电线圈,该线圈从内到外依次由边长逐渐增大的多个类正方形组成,这些类正方形中心点重合;每个类正方形代表一匝子线圈,围成子线圈的起始点和终止点之间具有间隙;各匝子线圈起始点和终止点之间间隙相等,相邻两线圈的起始点与起始点之间、终止点与终止点之间均通过首尾连接线连接后实现闭合;将最靠近中心点的子线圈作为第一匝子线圈,最外层子线圈作为最后一匝子线圈。

上述三相无线充电线圈自动化仿真方法,包括以下步骤:

步骤1、根据实际需求确定三相无线充电线圈参数和各子线圈电流方向;线圈参数包括:子线圈个数、最靠近中心点的线圈边长、最外层线圈边长、相邻两个子线圈位置之间的间隔以及子线圈线宽;

对子线圈个数和子线圈电流方向进行三相编码,将得到的三相编码作为参数使用:子线圈个数对应三相编码长度;无线充电线圈的第一匝至最后一匝子线圈依次对应三相编码的第一位至最后一位;子线圈电流方向为顺时针采用编码符号-1表示,逆时针采用编码符号1表示,没有子线圈的地方则采用编码符号0表示;

步骤2、获取第一匝线圈的走线所涉及到的起始点、顶点和终止点的坐标:

2.1、根据三相编码第一位上的编码符号确定第一匝子线圈电流方向;

2.2、以所在平面任意一点作为三相无线充电线圈的中心点,根据步骤2.1确定的电流方向结合第一匝子线圈边长计算出第一匝子线圈四个顶点的坐标;子线圈为非闭合结构,其起始点和终止点之间设有间隙;所以除顶点外还需获取起始点和终止点的坐标;设第一匝子线圈起始点与电流流经的第一个顶点重合,通过起始点的坐标和间隙大小计算出终止点的坐标;

2.3、将步骤2.2得到的五个点坐标按照步骤2.1确定的电流方向依次存储;

步骤3、由内向外依次获取余下各匝子线圈的走线所涉及到的起始点、顶点和终止点的坐标:

3.1、根据当前子线圈对应的三相编码确定当前子线圈的电流方向;

3.2、结合步骤3.1确定的电流方向,利用当前子线圈的边长、相邻两子线圈位置之间的间距以及步骤2确定的中心点计算出当前子线圈的四个顶点坐标;利用步骤2得到的第一匝子线圈终止点的坐标计算出当前子线圈的起始点和终止点的坐标;

3.3、根据第一匝子线圈和当前子线圈对应的三相编码判断各点的储存顺序,并按照判断结果依次完成对步骤3.2得到的点的坐标储存;储存顺序确定的规则如下:

若最靠近中心点的子线圈和当前子线圈对应的三相编码为-1时,则确定当前子线圈电流方向为顺时针;

若最靠近中心点的子线圈和当前子线圈对应的三相编码为1时,则确定当前子线圈电流方向为逆时针;

若最靠近中心点的子线圈对应的三相编码为1且当前子线圈对应的三相编码为-1,则确定当前子线圈电流方向为顺时针;

若最靠近中心点的子线圈对应的三相编码为1且当前子线圈对应的三相编码为1,则确定当前子线圈电流方向为顺时针;

若当前子线圈对应的三相编码为0,则说明当前位置子线圈不存在,无需储存坐标;

3.4、重复步骤3.1-3.3直至完成最后一匝子线圈所涉及到的走线点储存;

步骤4、利用步骤2和步骤3获得的顶点坐标及线宽,采用Python或其他脚本语言,控制电磁仿真软件按照存储坐标的先后顺序绘制线圈走线,在遍历所有子线圈的点坐标之后,采用首尾连接线将相邻两线圈的起始点与起始点之间、终止点与终止点连接构成闭环;即可得到线圈走线的CAD模型;

步骤5、根据步骤4所得CAD模型设置材料属性、放置激励端口,设置求解频率与求解精度;然后进行运行仿真,待仿真运行结束后导出所需结果。

本发明提供的一种磁谐振三相无线充电线圈自动化仿真方法,根据实际需求的线圈参数进行三相编码,并将该编码作为生成CAD模型的参数,利用三相编码由内到外依次确定每个子线圈走线所涉及到的点坐标,然后根据确定的这些点坐标通过Python或其他脚本语言控制电磁仿真软件自动地生成线圈CAD模型,并根据该模型设置三相无线充电线圈材料属性、激励端口、求解频率等参数,最后自动运行仿真及导出所需结果。本发明通过采用三相编码实现任意平面方形结构三相无线充电线圈CAD模型的建立,避免了繁杂的手动CAD建模,从而实现了无线充电线圈仿真的全过程自动化,具有效率高,精度高等优点。

附图说明

图1为本发明所需设计的三相无线充电线圈结构示意图;

图2为所需设计的三相无线充电线圈俯视图下的坐标系及电流方向;

图3为俯视状态下的单匝正方形线圈中起始点与终止点间隔示意图;

图4为实施例建立的线圈CAD模型示意图,其中a为线圈CAD模型示意图整体结构示意图,b为首尾连线部分局部放大图;

图5为本发明的三相无线充电线自动化仿真流程图;

附图标记:

2、首尾连接线;3、激励端口;4、线圈终止点;5、线圈起始点。

具体实施方式

本发明采用ANSYS公司的HFSS电磁仿真软件(HighFrequencySimulationSoftware)作为自动化仿真实现平台,使用Python作为编程语言控制HFSS实现整个自动化仿真流程。具体的操作步骤如下:

在所有步骤开始之前,先定义变量:

a:输入参数,线圈三相编码;

d:长度为

d

d

z0:长度为0的一维数组,用于储存每一匝正方形线圈点z轴坐标;

在三相无线充电线圈CAD模型建立过程中,三相无线充电线圈模型放置在xoy平面内,以坐标原点作为正方形线圈的中心点,走线顺序由内而外,通过绘制折线然后将折线截面设置为线而实现的。HFSS中绘制折线的操作为“CreatPolyline”,因此只需要确定构成方形线圈折线的点坐标即可确定线圈结构,因此,操作十分简便。

下面结合附图和实施例进行详细说明。如图1、图2所示,本实施例需要仿真的磁谐振三相无线充电线圈,包括从内到外边长逐渐增大的

步骤1、根据实际需求确定三相无线充电线圈参数和各子线圈电流方向;参数包括:子线圈个数

利用子线圈个数和子线圈电流方向按照进行三相编码,并将得到的三相编码作为参数使用;子线圈个数

步骤2、在实际操作中,构成子线圈所需要的点分为三类,即起始点、终止点和顶点。本发明假设第一匝子线圈的三相编码是非“0”的。由于第一匝子线圈中构起始点与电流流经的第一个顶点重合,使得实际需要确定的点坐标为正方形的4个顶点和一个终止点;第二匝至最后一匝线圈各需要六个点坐标,分别为一个起始点,四个顶点和一个终止点。

步骤2.1、获取第一匝子线圈的起始点、终止点以及4个顶点坐标。

步骤2.2.1据三相编码第一位上的编码符号确定第一匝匝子线圈电流方向;

步骤2.1.2、以所在平面任坐标原点作为三相无线充电线圈的中心点,利用第一匝子线圈边长计算出第一匝正方形线圈四个顶点的x和y坐标的绝对值:

其中,

子线圈为非闭合结构,其起始点和终止点之间设有间隙,所以除顶点外还需获取起始点和终止点的坐标;设最内匝子线圈起始点与电流流经的第一个顶点重合,通过起始点的坐标和间隙大小计算出终止点的坐标。

若第一匝子线圈电流方向为顺时针,则第一匝终止点的x坐标为

若第一匝子线圈对应的三相编码为“-1”,说明其电流方向为顺时针方向,则按照顺时针方向顺序分别储存第一匝的五个点的x和y坐标到d

其中‘

步骤2.2:获取第2匝至第

如果第

其中

若第一匝子线圈对应的三相编码为“-1”,即电流方向为顺时针方向,则按照顺时针方向顺序分别储存六个点的x和y坐标到两个数组d

其中

若第一匝为顺时针且第

若第一匝为逆时针且第

其中

若第一匝为逆时针且第

步骤3、在遍历所有

步骤4、通过Python控制HFSS进行仿真参数设置。Python控制HFSS进行仿真参数设置的具体指令代码可通过记录HFSS操作步骤,并导出为Python格式得到。将整个线圈走线设置为合适的金属边界条件,并设置合适的激励。根据线圈的工作频率设置求解频率,并且设置求解精度与迭代步数,至此完成仿真参数的设置。

步骤6、通过Python控制HFSS运行仿真,仿真结束后导出所需结果。

下面给出具体的实施例。

首先输入线圈参数:线圈三相编码a=[-1,0,1,0,0,0,-1,0,0,0,1,0,1],线宽2mm,线圈最内匝边长

以上所述,仅为本发明的具体实施方式,本说明书中所公开的任一特征,除非特别叙述,均可被其他等效或具有类似目的的替代特征加以替换;所公开的所有特征、或所有方法或过程中的步骤,除了互相排斥的特征和/或步骤以外,均可以任何方式组合;本领域的技术人员根据本发明技术方案的技术特征所做出的任何非本质的添加、替换,均属于本发明的保护范围。

相关技术
  • 一种磁谐振三相无线充电线圈自动化仿真方法
  • 磁耦合谐振式无线能量传输线圈仿真分析方法
技术分类

06120114731875