掌桥专利:专业的专利平台
掌桥专利
首页

一种水下无线光通信的压缩感知信道估计方法

文献发布时间:2023-06-19 19:30:30


一种水下无线光通信的压缩感知信道估计方法

技术领域

本发明涉及水下无线光通信技术,特别是涉及一种水下无线光通信的压缩感知信道估计方法。

背景技术

水下无线光通信(Underwater Wireless Optical Communication,UWOC)相比于传统水下通信方式,在带宽、时延以及安全性能方面都有更好的表现,是最具前景的水下通信方式之一。正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)信号具有在时间色散信道上高速传输的优势,因此其适合应用在水下高速无线通信系统中,但其前提是获得较为准确的信道估计结果。传统的信道估计方法受到水中物质吸收散射的影响,往往不能应用于UWOC中,因此需要针对水下光链路环境设计符合要求的信道估计算法。

OFDM将频域划分为若干个子信道,将高速串行的数据流变成多个低速并行的数据流,进而加载到各个子信道传输,而在接收端通过子载波的正交性来对各个子载波数据进行恢复,但受到无线光通信器件的影响,传输的OFDM信号需要是非负实数,因此在光正交频分复用(Optical-OFDM,O-OFDM)技术中常需采用强度调制直接检测(IntensityModulated/Direct Detection,IM/DD)。

在OFDM调制方式中,常使用基于导频的信道估计方法,主要包括最小二乘(LeastSquares,LS)算法和最小均方误差(Minimum Mean Square Error,MMSE)算法。MMSE算法的实现需要提前获得信道的状态信息(Channel State Information,CSI),同时其求解过程中存在矩阵求逆操作,因此虽然该方法的估计精度较高但难以实际使用;LS算法求解较为简单,同时只需要获得收发两端导频位置处的信息,但是该方法忽略了噪声的影响,因此其性能表现一般,但该方法经常作为其它信道估计算法的基础,Edfors等人提出了基于LS信道估计的离散傅里叶变换(Discrete Fourier Transform,DFT)信道估计技术,从时域降低了噪声的影响,同时基于该技术,后续一些研究通过改进去噪阈值来提升算法性能。

除传统方案外,基于压缩感知(Compressed Sensing,CS)的信道估计算法也被研究,Taubock等人在2008年提出了将压缩感知应用在信道估计方面的构想,针对O-OFDM系统,研究人员根据系统特性以及CS前提条件,以观测矩阵列互相关数平方总和为评估指标来优化导频的位置分配,提高了O-OFDM中CS信道估计的性能的同时降低了CS算法的实现难度;此外还有一些优化导频位置的算法,例如并行随机搜索方案、顺序随机搜索方案、反向迭代缩减方案等,这些方法大多通过循环搜索、迭代的方式构造出最优的导频图案。在上述工作中,对压缩感知算法的优化方向主要集中于通过多次迭代运算来实现导频位置的改进,虽然能取得性能优化效果但复杂度很高。

需要说明的是,在上述背景技术部分公开的信息仅用于对本申请的背景的理解,因此可以包括不构成对本领域普通技术人员已知的现有技术的信息。

发明内容

本发明克服传统压缩感知信道估计方案中最优导频位置求解复杂,且导频位置优化算法不能直接在无线光通信领域使用的缺陷,提供一种水下无线光通信的压缩感知信道估计方法,提高信道估计性能。

为实现上述目的,本发明采用以下技术方案:

一种水下无线光通信的压缩感知信道估计方法,包括如下步骤:

S1、利用等间隔导频插入的压缩感知CS算法进行光OFDM信号的信道估计,得到信道的时域估计结果;

S2、使用可变的噪声阈值门限,对等间隔导频插入方式下CS算法的时域估计结果进行去噪,其中,根据不同信噪比(Signal to Noise Ratio,SNR)分段设置不同的噪声阈值门限对CS估计结果进行过滤;

S3、将过滤后的信道冲激响应作为最终信道估计的结果,以在各个信噪比SNR下提高信道估计的性能。

进一步地:

步骤S1中,对于接收到的采用等间隔的导频插入方式的OFDM信号,利用CS算法、观测矩阵以及正交匹配追踪(Orthogonal Matching Pursuit,OMP)算法得到信道的时域估计结果。

步骤S1中,生成O-OFDM信号并等间隔插入导频,OFDM信号满足传输非负实数的要求,采用直流偏置光正交频分复用DCO-OFDM,调制方式采用16QAM,输入到IFFT变换器中的频域信号满足Hermitian对称性质

步骤S1中,导频插入采用梳状导频的插入方式在部分子载波上等间隔插入导频信号,估计时沿频率轴估计信道。

步骤S1中,调制并等间隔插入导频后,并行传输的信号经过快速傅里叶逆变换IFFT后得到时域信号x(t),向时域信号插入循环前缀CP;向时域信号加入直流偏置

y(t)=x

其中x

采用如下的水下无线光通信信道模型:

光子受到海水吸收所损失的能量表示为a(λ),受到海水散射所损失的能量表示为b(λ),总损失系数c(λ)表示为c(λ)=a(λ)+b(λ),其中λ为光源波长;a(λ)、b(λ)和c(λ)的值随水质和λ变化,散射引起光子方向的变化通过散射相函数SPF和β(θ,λ)来描述,其中θ为散射角,θ与SPF的关系为:

采用蒙特卡洛数值仿真的方法获取水下信道冲激响应,其基本规则为:通过程序模拟大量光子的发射,其中每个光子具有的属性包括位置、传播时间、传输方向以及光子所携带的能量权重,通过改变光子的上述属性来模拟光子在传输过程中所受到的吸收和散射作用;接收器统计光子的各个属性变化并进行分析,以此得到水下信道的时间衰落特性。

步骤S1中,通过如下方法进行压缩感知CS算法信道估计重构:

对本身具有稀疏性或者在某一个变换域上具有稀疏性特征的信号,通过CS算法在稀疏域上重构出该信号:

x=βt(3)

其中x表示原信号,β为将稀疏信号转换为原信号的变换矩阵,称为稀疏基,t为原信号在稀疏基上的系数;

通过CS算法构造观测矩阵以将原信号投影到观测空间:

y=αx=αβt=At(4)

其中y是观测空间的观测值,α是观测矩阵,A=αβ为传感矩阵,在观测值y和观测矩阵α或传感矩阵A的基础上,求解上述方程组以得到原信号;

将导频处的接收数据作为观测值,利用导频处的发送数据和傅里叶变换矩阵构造观测矩阵,利用重构算法对信道冲激响应系数进行求解;

对接收到的信号进行做N点FFT变换,得到信号的频域矩阵表达式:

Y=XH+W(5)

其中Y、X、H、W分别为y(t)、x

Y

其中下角标P表示各个信号分量在导频位置处的取值,利用信道时域冲激响应h得到:

Y

其中F

选择CP的长度作为时域CIR的有效长度,即:

L

由(8)式可知h是维度为L

Y

其中G=X

采用交匹配追踪OMP算法对目标信号进行恢复,其优化的目标是使恢复信号和准确信号之间的平方误差达到最小,即:

其中

步骤S2,得到信道时域响应

对β

按照如下的表达式对

其中

还包括:通过快速傅里叶逆变换FFT将时域估计结果变换到频域,得到频域估计结果。

一种计算机可读存储介质,存储有计算机程序,所述计算机程序由处理器运行时,实现所述的水下无线光通信的压缩感知信道估计方法。

本发明具有如下有益效果:

本发明提出了一种改进导频放置方式的适用于水下无线光通信的压缩感知信道估计方法,使用等间隔导频插入方法,从时域降噪的角度对CS算法的性能进行提升。本发明基于时域降噪的等间隔导频放置方式的压缩感知信道估计算法,直接使用等间隔导频插入方式,通过CS算法直接得到时域信道估计结果,并在时域根据信噪比情况设置不同的噪声门限进行时域降噪。

本发明实施例可基于O-OFDM调制方式克服CS信道估计算法应用于UWOC时存在的最优导频位置求解复杂度高的问题,提高信道估计性能。首先在发送OFDM信号时直接采用等间隔的导频插入方式,在接收端根据CS算法流程,利用观测矩阵以及正交匹配追踪OMP算法直接得到信道的时域估计结果,随后采用可变的噪声阈值门限,对等间隔导频插入方式下CS算法的时域估计结果进行去噪,根据不同的SNR分段设置不同的噪声阈值门限对CS估计结果进行过滤,将过滤后的信道冲激响应作为最终信道估计的结果,最终实现在各个SNR下提高信道估计的性能。通过本发明进行时域去噪,在NMSE上有明显的性能提高,特别是在SNR较低的情况下,该方法的提升效果更加明显,这也解决了传统压缩感知信道估计优化方法在低信噪比时性能不佳的问题。另外从复杂度上看,所提出的优化方法仍采用等间隔的导频插入方式,这就避免了传统导频位置优化过程中所涉及的复杂的迭代运算,同时时域去噪流程复杂度与DFT算法相同,但本发明的方法的信道估计性能优于传统DFT算法。综上所述,本发明提出的基于时域去噪的等间隔导频压缩感知信道估计算法具有优良的综合性能。

综上,本发明提出的压缩感知信道估计方法可以在使用等间隔导频插入方式的同时通过时域去噪提高信道估计性能,是一种在水下无线光通信信道估计领域具有很好的应用前景的方案。

附图说明

图1为本发明实施例的流程图。

图2为本发明实施例的压缩感知信道估计流程。

图3为本发明实施例的水下无线光信道冲激响应建模结果。

图4为本发明实施例的各个SNR下对应不同阈值系数仿真结果。

图5为本发明实施例与传统方法的不同信道估计算法的性能对比。

具体实施方式

以下对本发明的实施方式做详细说明。应该强调的是,下述说明仅仅是示例性的,而不是为了限制本发明的范围及其应用。

需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者间接在该另一个元件上。当一个元件被称为是“连接于”另一个元件,它可以是直接连接到另一个元件或间接连接至该另一个元件上。另外,连接既可以是用于固定作用也可以是用于耦合或连通作用。

需要理解的是,术语“长度”、“宽度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。

此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多该特征。在本发明实施例的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。

参阅图1,本发明实施例提供一种水下无线光通信的压缩感知信道估计方法,包括如下步骤:

S1、利用等间隔导频插入的压缩感知CS算法进行光OFDM信号的信道估计,得到信道的时域估计结果;

S2、使用可变的噪声阈值门限,对等间隔导频插入方式下CS算法的时域估计结果进行去噪,其中,根据不同信噪比(Signal to Noise Ratio,SNR)分段设置不同的噪声阈值门限对CS估计结果进行过滤;

S3、将过滤后的信道冲激响应作为最终信道估计的结果,以在各个信噪比SNR下提高信道估计的性能。

本发明实施例基于时域降噪的等间隔导频放置方式的压缩感知信道估计算法,直接使用等间隔导频插入方式,通过CS算法直接得到时域信道估计结果,并在时域根据信噪比情况设置不同的噪声门限进行时域降噪。本发明实施例提出的压缩感知信道估计方法可以在使用等间隔导频插入方式的同时通过时域去噪提高信道估计性能,是一种在水下无线光通信信道估计领域具有很好的应用前景的方案。

以下进一步描述本发明具体实施例,算法流程如图2所示。

1.生成O-OFDM信号并等间隔插入导频

在发送端对OFDM信号加以改进,使其满足传输非负实数的要求,本发明采用直流偏置光正交频分复用(DCO-OFDM),调制方式采用16QAM,输入到IFFT变换器中的频域信号满足Hermitian对称性质

调制并等间隔插入导频后,并行传输的信号经过快速傅里叶逆变换(InverseFast Fourier Transform,IFFT)后得到时域信号x(t),为了克服子载波间干扰和符号间干扰,向时域信号插入循环前缀(Cyclic Prefix,CP)。同时向时域信号加入直流偏置

y(t)=x

其中x

2.水下无线光通信信道建模

光子在水下传播时将会受到海水的吸收和散射,并将伴随一定的光子能量的损失,其中吸收所损失的能量可以表示为a(λ),散射所损失的能量可以表示为b(λ),因此总损失系数c(λ)可以表示为c(λ)=a(λ)+b(λ),其中λ为光源波长。总损失系数的值随海水水质及光源波长变化,本发明中取λ=532nm的港口水域,此时a=0.366m

SPF值可由已有的函数表达式或海水的实测值中获取,本发明中采用文献[11]中的实测值。得到数值后,本发明采用文献[12]中的蒙特卡洛数值仿真(Monte CarloNumerical Simulation,MCNS)的方法获取水下信道冲激响应(Channel ImpulseResponse,CIR),该方法的基本流程为:通过程序模拟大量光子的发射,其中每个光子都具有位置、传播时间、传输方向、权重(光子所携带的能量)等属性,通过改变光子的上述属性来模拟光子在传输过程中所受到的吸收和散射作用。在接收端,接收器将会统计光子的各个属性变化并进行分析,以此得到水下信道的时间衰落特性。本发明的仿真环境设置为港口水域,收发两端的链路距离为12m,使用的光源波长为532nm,接收机孔径为1m,接收视场角(Field OfView,FOV)为20°,仿真共发射10

3.压缩感知算法信道估计重构

压缩感知可以看作不受奈奎斯特抽样定理约束的采样方法,用少数的采样点即可恢复出原信号,该算法应用满足一定的前提条件。首先,满足待恢复信号的稀疏性,CS算法只能恢复稀疏信号,因此只有当信号本身具有稀疏性或者在某一个变换域上具有稀疏性的特征时,CS算法才能在稀疏域上重构出该信号,即表示为:

x=βt(3)

其中x表示原信号,β为将稀疏信号转换为原信号的变换矩阵,称为稀疏基,t为原信号在稀疏基上的系数。其次,CS算法构造观测矩阵以将原信号投影到观测空间,即表示为:

y=αx=αβt=At(4)

其中y是观测空间的观测值,α是观测矩阵,A=αβ被称为传感矩阵,因此实际上压缩感知的实质就是在已知观测值y和观测矩阵α(当原信号满足稀疏性)或传感矩阵A(当原信号在β变换域上满足稀疏性)的基础上,求解上述方程组以得到原信号。

信道估计是对信道系数的求解,可以转换为利用压缩感知算法解决的问题。将导频处的接收数据作为观测值,利用导频处的发送数据和傅里叶变换矩阵构造观测矩阵,即可利用重构算法对信道冲激响应系数进行求解。对接收到的信号进行做N点FFT变换,即对(1)式做N点FFT变换,可以得到信号的频域矩阵表达式:

Y=XH+W(5)

其中Y、X、H、W分别为y(t)、x

Y

其中下角标P表示各个信号分量在导频位置处的取值,利用信道时域冲激响应h可以将上式改写为:

Y

其中F

L

由(8)式可知h是维度为L

Y

其中G=X

其中

4.计算噪声阈值门限并进行时域去噪

CS算法直接根据观测数据和观测矩阵重构出信道冲激响应,而接收到观测数据是受信道噪声干扰后的数据,所以CS信道估计算法的一部分误差来源于信道的噪声干扰,因此本发明考虑设置噪声的阈值门限,在时域对CS信道估计结果

中有用信道响应分量幅值远大于噪声分量,同时有用信道响应分量数目较少,因此本发明选择CS估计后的时域信道冲激响应功率中值作为基础阈值β

首先得到信道时域响应

为了达到更好的去噪效果,对β

在得到(13)式的结果后,按照如下的表达式对

其中

综上所述,上述算法的主要流程如下:

(1)首先利用等间隔导频插入的CS算法进行信道估计,得到信道估计的时域值

(2)通过公式(11)和公式(12)计算得到基础阈值β

(3)通过公式(13)计算得到噪声阈值门限β

(4)通过公式(14)得到本章提出算法的时域估计值。

(5)如需要频域估计结果,则通过FFT将时域估计结果变换到频域。

性能分析

实施例:本发明的性能测试基于DCO-OFDM系统,采用16QAM映射并插入梳状导频;OFDM系统子载波数N=512,循环前缀长度L

其中

本发明提出的优化算法因为进行了时域去噪,因此在NMSE上有明显的性能提高,特别是在SNR较低的情况下,该算法的提升效果更加明显,这也解决了传统压缩感知信道估计优化算法在低信噪比时性能不佳的问题。另外从复杂度上看,所提出的优化算法仍采用等间隔的导频插入方式,这就避免了传统导频位置优化过程中所涉及的复杂的迭代运算,同时时域去噪流程复杂度与DFT算法相同,但该算法的信道估计性能优于传统DFT算法。综上所述,本发明提出的基于时域去噪的等间隔导频压缩感知信道估计算法具有优良的综合性能。

本领域技术人员应理解,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。

本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。

这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。

这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。

本发明的背景部分可以包含关于本发明的问题或环境的背景信息,而不一定是描述现有技术。因此,在背景技术部分中包含的内容并不是申请人对现有技术的承认。

以上内容是结合具体/优选的实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,其还可以对这些已描述的实施方式做出若干替代或变型,而这些替代或变型方式都应当视为属于本发明的保护范围。在本说明书的描述中,参考术语“一种实施例”、“一些实施例”、“优选实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。尽管已经详细描述了本发明的实施例及其优点,但应当理解,在不脱离专利申请的保护范围的情况下,可以在本文中进行各种改变、替换和变更。

相关技术
  • 一种水下无线光通信的信道估计方法
  • 一种基于多任务贝叶斯压缩感知的水下信道估计方法
技术分类

06120115933858