掌桥专利:专业的专利平台
掌桥专利
首页

基于多特征融合LSTM网络的锂电池RUL估计方法

文献发布时间:2023-06-19 19:30:30


基于多特征融合LSTM网络的锂电池RUL估计方法

技术领域

本发明涉及储能电池剩余寿命预测技术领域,特别涉及一种基于注意力机制算法的多特征融合LSTM网络的锂电池RUL估计方法。

背景技术

社会迅速发展的今天,能源的需求不断增长,同时对于能源存储的要求也越来越高。锂电池因自身储能方面的优势被广泛应用各领域的储能设备中。但锂电池在充放电循环中受高温、老化、使用不按规格等因素影响,电池逐渐老化,从而引发储能设备故障,带来了巨大的人力财力损失。因此如何准确的判断锂电池的剩余寿命,发挥储能电池的最佳性能,成为了当前国内外研究的热点。由于锂电池的充放电循环周期较长,影响电池寿命的因素较多,因此传统的方法存在考虑特征因素不足、精度不高等问题。

发明内容

本发明是为了解决上述现有技术存在的不足之处,提出一种基于注意力机制算法的多特征融合LSTM网络的锂电池RUL估计方法,以期能充分考虑多个特征对电池剩余寿命的影响,提高电池剩余寿命预测精度并具有较大的适用范围,从而能提高储能电池相关应用的安全性、可靠性,并能提升工业生产效率,进而能对工业生产以及电池储能相关行业有更好的辅助作用。

本发明为达到上述发明目的,采用如下技术方案:

本发明一种基于多特征融合LSTM网络的锂电池RUL估计方法的特点在于,包括以下步骤:

步骤S1、获取室内环境下电池在K次放电过程中的电压、电流、温度以及放电结束时的电池容量并构成电池放电数据集;将所述电池充放电数据集中第k次放电过程第i时刻的电压序列记为

步骤S2、建立基于卷积神经网络的多特征融合网络,包括:高维特征降维模块、特征融合模块和重加权模块;

步骤S2.1、所述高维特征降维模块是基于一维卷积神经网络,并依次包括:第一卷积块、第二卷积块、第三卷积块、第四特征计算块;其中,所述第四特征计算块由一个平均池化层和全连接层构成;

将第k次放电过程中的电压序列

步骤S2.2、所述特征融合模块将所述的特征向量V′

步骤S2.3、所述重加权模块包括一个全连接层和一个softmax层;

将所述第k次放电过程中的融合特征向量V

将重加权向量R

步骤S3、构建基于局部和全局特征联合的LSTM网络,包括:长短期记忆网络LSTM、局部注意力模块、全局注意力模块和局部全局特征融合模块;

步骤S3.1、所述长短期记忆网络LSTM,包括:E个记忆细胞,用于对多特征融合矩阵D进行上下文相关知识的训练学习;

设置滑动窗口的长度为E,并对多特征融合矩阵D进行滑窗处理,得到M个不同滑动窗口下的多特征融合序列;

将第m个滑动窗口下的多特征融合序列输入所述长短期记忆网络LSTM中进行处理,从而由E个记忆细胞输出第m个滑动窗口中的隐藏层输出向量集合

步骤S3.2、所述局部注意力模块,包括:局部注意力计算层和局部注意力融合层;

将所述第m个滑动窗口中第j个记忆细胞输出的隐藏层输出向量

式(1)中,ε表示常数;

所述的局部注意力融合层利用式(2)得到第m个滑动窗口中的局部特征向量

/>

步骤S3.3、所述全局注意力模块利用式(3)对所述多特征融合矩阵阵D进行计算,得到第m个滑动窗口中的全局特征向量

式(3)中,α

步骤S3.4、所述局部全局特征融合模块将所述局部特征向量

将预测向量

步骤S4、根据所述预测向量P,利用式(4)建立均方损失函数L:

式(4)中,

步骤S5、利用Adam优化器对所述多特征融合网络和LSTM网络进行训练,并计算所述均方损失函数以更新网络参数,直到均方损失函数L收敛为止,从而得到训练后的网络模型实现对锂电池RUL的预测。

本发明一种电子设备,包括存储器以及处理器的特点在于,所述存储器用于存储支持处理器执行所述的锂电池RUL估计方法的程序,所述处理器被配置为用于执行所述存储器中存储的程序。

本发明一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序的特点在于,所述计算机程序被处理器运行时执行所述的锂电池RUL估计方法的步骤。

与现有技术相比,本发明的有益效果在于:

1、本发明充分考虑了影响电池剩余寿命的多特征因素,并使用特征融合算法将多个特征序列作为数据输入,从而有效解决了现有方法中忽略充放电过程中的电流、电压、温度等因素导致的结果精度不高的难题,并解决了因电池充放电多特征之间数据维度不同,无法一起训练的难题,最终得以高效、精准地提取多特征输入,充分考虑了影响电池寿命的多个因素,从而提高了工业电池利用效率,改善了电池RUL预测方法。

2、本发明通过加入局部全局特征联合模块,计算多特征时间序列中不同的记忆细胞输出对预测结果的影响因子,并与多个记忆细胞数据加权求和,解决了以往方法忽略多个记忆细胞输出对结果的影响,同时考虑到整体时间序列趋势,使得模型预测精确度提升。

3、本发明使用LSTM网络进行电池剩余寿命预测,其对时间序列有很好的表达能力,考虑到目前公开的数据集中电池剩余寿命相关数据较少,使用LSTM网络不容易出现欠拟合问题,从而能较好地应对数据较为欠缺的情况。

4、本发明考虑电池放电过程中的电流、电压、温度等辅助特征,结合电池在充放电循环中的容量变化,形成多特征融合的数据输入;同时加入注意力机制,有效关注输入序列中重要的影响因素,其使得时间序列模型可以关注到更多影响到预测结果的相关特征,从而既可以让模型预测的结果更为精确,又可以提高模型的鲁棒性。

附图说明

图1是本发明的模型结构图;

图2是现有技术中LSTM基本单元的结构示意图;

图3是本发明注意力机制算法的具体模型图;

图4是本发明滑动窗口算法划分后的数据结构图。

具体实施方式

本实施例中,一种基于多特征融合LSTM网络的锂电池RUL估计方法,是为了充分利用电池充放电中的多特征时间序列信息,将多特征融合算法融入模型中,同时考虑到模型时间序列的局部以及全局特征之间的相关联系,用以保证模型的精确性。具体的说,如图1所示,该估计方法包括如下步骤:

步骤S1、获取实验室环境下的电池充放电数据集以及自然环境下的数据集集:

获取室内环境下电池在K次放电过程中的电压、电流、温度以及放电结束时的电池容量并构成电池放电数据集MMI、Oulu-CASIA,实验所用数据具体参数如表1所示;将电池充放电数据集中第k次放电过程第i时刻的电压序列记为

此时数据格式显示如下:

V={v

I={i

T={t

C={c

其中,v

表1 NASA实验数据集信息

步骤S2、建立基于卷积神经网络的多特征融合网络,包括:高维特征降维模块、特征融合模块和重加权模块;提取不同特征数据中的特征和数据特征融合;实现高维数据降维、特征融合以及多特征重加权;

步骤S2.1、高维特征降维模块是基于一维卷积神经网络,并依次包括:第一卷积块、第二卷积块、第三卷积块、第四特征计算块;其中,第四特征计算块由一个平均池化层和全连接层构成;

第一卷积块、第二卷积块、第三卷积块的卷积核皆为1*3的卷积核,第四特征计算块由一个平均池化层窗口大小为4。和全连接层构成,其中全连接层有2层隐藏层,神经元个数分别为128个和256个,输出层大小为3,即用三个特征值表示时间序列;

将第k次放电过程中的电压序列

此时,电压、电流、温度的维度从n维降到了3维,电池容量为1维,可以进行向量拼接实现特征融合。否则,不经过特征降维融合得到的特征向量计算量过大且低维特征占比较小,可能被忽视。

步骤S2.2、特征融合模块将的特征向量V′

其中,由于数据数值差距多大,计算得到的特征难以训练。而数据归一化使得没有可比性的数据变得具有可比性,同时又保持相比较的数据之间的相对关系。

步骤S2.3、重加权模块包括一个全连接层和一个softmax层;

将第k次放电过程中的融合特征向量V

将重加权向量R

步骤S3、构建基于局部和全局特征联合的LSTM网络,包括:长短期记忆网络LSTM、局部注意力模块、全局注意力模块和局部全局特征融合模块,用于提取时序之间的局部特征以及数据整体趋势的全局特征,并将局部去全局特征融合计算得到下一时刻预测值;

步骤S3.1、长短期记忆网络LSTM,包括:E=4个记忆细胞,用于对多特征融合矩阵D进行上下文相关知识的训练学习;

设置滑动窗口的长度为E=4,并对多特征融合矩阵D进行滑窗处理,得到M个不同滑动窗口下的多特征融合序列;

具体来说,实际训练中对于输入数据利用到的滑动窗口技术如图2所示。

将第m个滑动窗口下的多特征融合序列输入长短期记忆网络LSTM中进行处理,从而由E个记忆细胞输出第m个滑动窗口中的隐藏层输出向量集合

具体地,本实施例中所用到的LSTM网络细胞如图3所示,具体数学公式如式(5)-式(10)所示。

f

i

C

O

h

式(5)-式(10)中:x

步骤S3.2、局部注意力模块,包括:局部注意力计算层和局部注意力融合层,具体如图4所示;局部注意力的加入,可以让模型学习到时间序列的前后联系,这大大提高模型学习序列的局部趋势,提高了模型的精确度。

将第m个滑动窗口中第j个记忆细胞输出的隐藏层输出向量

式(1)中,ε表示常数,ε使用非常小的值,防止分母计算为0;

的局部注意力融合层利用式(2)得到第m个滑动窗口中的局部特征向量

式(2)中×代表注意力权重A

步骤S3.3、全局注意力模块利用式(3)对多特征融合矩阵阵D进行计算,得到第m个滑动窗口中的全局特征向量

式(3)中,α

具体来说,全局注意力模块的加入可以充分利用上下文信息,让模型可以依靠全局的信息趋势辅助预测下一时刻值。提高模型的精确度

步骤S3.4、局部全局特征融合模块将局部特征向量

将预测向量

步骤S4、构建均方损失函数,并优化模型参数,最终将数据输入到全连接层网络中,得到最终的下一时刻预测结果。

步骤S4.1、根据预测向量P,利用式(4)建立均方损失函数L:

式(4)中,

具体的,电池RUL预测和电池性能参数直接相关,模型得到的预测向量可以经过具体公式计算得到电池RUL。

步骤S4.2、基于电池放电数据集,利用Adam优化器对所述多特征融合网络和LSTM网络进行训练,并计算所述均方损失函数以更新网络参数,直到均方损失函数L收敛为止,从而将模型训练结束的模型参数作为基于注意力机制算法的多特征融合LSTM网络的参数,并利用训练后的网络模型进行锂电池RUL预测,得到预测结果数据;

本实施例中,一种电子设备,包括存储器以及处理器,该存储器用于存储支持处理器执行该锂电池RUL估计方法的程序,处理器被配置为用于执行存储器中存储的程序。

本实施例中,一种计算机可读存储介质,是在计算机可读存储介质上存储有计算机程序,该计算机程序被处理器运行时执行该锂电池RUL估计方法的程序方法的步骤。

综上所述,本方法可以高效、精确地获取多特征时间序列输入的局部以及全局特征,并且可以关注多个隐藏层之间的权重关系,显著提高了电池剩余寿命预测的准确度。

相关技术
  • 一种基于AST-LSTM神经网络的锂电池SOH估计与RUL预测方法
  • 一种基于AST-LSTM神经网络的锂电池SOH估计与RUL预测方法
技术分类

06120115934015