掌桥专利:专业的专利平台
掌桥专利
首页

插座连接器

文献发布时间:2024-01-17 01:13:28


插座连接器

技术领域

本文主题整体上涉及数据通信系统。

背景技术

电气互连件用于连接两个相对的电子设备。例如,可以在两个电路板或电路板与另一个电子设备或可插拔模块之间提供电互连件,以在它们之间传输数据和/或电力。一些已知的电互连使用双压缩插座连接器来在上接口和下接口处限定可分离的配合接口,用于部件的重复配合和解除配合。随着通信系统的数据速率的增加,传统的电互连不能满足系统对电性能的要求。

仍需要一种插座连接器,其能够以可靠的方式以比传统互连更高的数据速率运行。

发明内容

根据本发明,提供了一种插座连接器,包括具有上表面和下表面的基板。基板在上表面和下表面之间具有接地面。基板包括上表面和下表面之间的触头通道。插座连接器包括被接收在相应触头通道中的插座触头。每个插座触头包括触头主体、上配合元件和下配合元件。上配合元件相对于触头主体是可偏转的,并且延伸到上表面以与第一电气部件对接。下配合元件相对于触头主体是可偏转的,并且延伸到下表面以与第二电气部件对接。多个插座触头电连接到接地面。

附图说明

图1示出了根据示例性实施例的包括插座连接器的电子组件。

图2为根据示例性实施例的电子组件的剖视图,示出了连接在第一和第二电气部件之间的插座连接器。

图3为根据示例性实施例的电子组件的分解图。

图4为根据示例性实施例的插座连接器的一部分的俯视图。

图5为根据示例性实施例的插座触头的正面透视图。

图6为根据示例性实施例的插座触头的后透视图。

图7为根据示例性实施例的插座连接器的一部分的透视局部剖视图。

图8为根据示例性实施例的插座连接器的一部分的透视局部剖视图。

图9为根据示例性实施例的插座触头的后透视图。

图10为根据示例性实施例的插座连接器的一部分的横截面图,示出了图9所示的插座触头。

图11为根据示例性实施例的插座连接器的一部分的透视局部剖视图,示出了图9所示的插座触头。

图12为根据示例性实施例,包括接地面的插座连接器的回波损耗与不包括内部接地面的传统插座连接器的回波损耗的对比图。

图13为根据示例性实施例,包括接地面的插座连接器的插入损耗与不包括内部接地面的传统插座连接器的插入损耗的对比图。

图14所示为根据示例性实施例,包括接地面的插座连接器的近端串扰与不包括内部接地面的传统插座连接器的近端串扰的对比图。

图15为根据示例性实施例,包括接地面的插座连接器的远端串扰与不包括内部接地面的传统插座连接器的远端串扰的对比图。

图16示出了根据示例性实施例的电子组件的示例性实施例。

图17示出了根据示例性实施例的图16所示电子组件的一部分。

具体实施方式

图1所示为电子组件10,包括根据示例性实施例的插座连接器100。插座连接器100用于电连接第一电气部件12和第二电气部件14。在示例性实施例中,第一电气部件12包括第一电路板16,第二电气部件14包括第二电路板18。插座连接器100是第一电路板16和第二电路板18之间的插置件。插座连接器100电连接在第一电路板16和第二电路板18之间。在示例性实施例中,插座连接器100可在第一电路板16和第二电路板18之间压缩。插座连接器100包括双压缩接口,该双压缩接口可抵靠第一电路板16压缩并且可抵靠第二电路板18压缩。在各种实施例中,第一电路板16可以是电子部件的一部分,例如芯片、ASIC、处理器、存储器模块或其他部件。

插座连接器100包括保持多个插座触头104的基板102。在示例性实施例中,插座触头104是冲压成形的触头。基板102在上表面106和下表面108之间延伸。插座触头104被接收在相应的触头通道110中,以在上表面106和下表面108之间穿过基板102。在示例性实施例中,基板102是包括至少一个接地面120的分层结构。(多个)接地面120用于改善插座连接器100的电气性能。接地面120将插入损耗、回波损耗、近端串扰、远端串扰等中出现的谐振频率增加到超过目标频率,例如60GHz,以提高插座连接器100的电气性能。接地面120用于电共用插座触头104的子集,即接地插座触头,以及远离第一电气部件12和远离第二电气部件14的中间位置。接地面120可以大致在第一电气部件12和第二电气部件14之间居中,因此大致在第一和第二电气部件12、14的接地面之间居中。在示例性实施例中,接地面120是位于基板102的内部层处的内部接地面。此外,接地面120可以设置在上表面106和/或下表面108上。

图2为根据示例性实施例的电子组件10的剖视图,示出了连接在第一电气部件12和第二电气部件14之间的插座连接器100。图3是根据示例性实施例的电子组件10的分解图。在示例性实施例中,第一电气部件12包括第一电路板16,第二电气部件14包括第二电路板18。在组装期间,插座连接器100堆叠在第一电器部件12和第二电气部件14之间,以电连接第一电路板16和第二电路板18。

第一电路板16位于插座连接器100上方,在下文中可称为上电路板16。上电路板16包括上信号触头20和上接地触头22。上信号触头20由上电路板16的一个或多个电路限定,例如迹线、通孔、焊盘等。在示例性实施例中,上信号触头20包括在上电路板16的底表面处的信号触头垫24,该信号触头垫24被配置为电连接到插座连接器100的相应插座触头104。上接地触头22由上电路板16的一个或多个电路限定,例如迹线、通孔、焊盘等。在示例性实施例中,上接地触头22包括在上电路板16的底表面处的接地触头垫26,该接地触头垫26被配置为电连接到插座连接器100的相应插座触头104。在示例性实施例中,上电路板16包括电连接每个上接地触头22的上接地面28。在各种实施例中,上接地面28可以设置在上电路板16的底表面处。可选地,可以在上电路板16的不同层处提供多个上接地面28。

第二电路板18位于插座连接器100下方,以下可称为下电路板18。下电路板18包括下信号触头30和下接地触头32。下信号触头30由下电路板18的一个或多个电路限定,例如迹线、通孔、焊盘等。在示例性实施例中,下信号触头30包括在下电路板18的顶表面处的信号触头垫34,该信号触头垫34被配置为电连接到插座连接器100的相应插座触头104。下接地触头32由下电路板18的一个或多个电路限定,例如迹线、通孔、焊盘等。在示例性实施例中,下接地触头32包括位于下电路板18的顶表面处的接地触头垫36,该接地触头垫36被配置为电连接到插座连接器100的相应插座触头104。在示例性实施例中,下电路板18包括电连接每个下接地触头32的下接地面38。在各种实施例中,下接地面38可以设置在下电路板18的顶表面处。可选地,可以在下电路板18的不同层提供多个下接地面38。

插座连接器100包括基板102和插座触头104。在示例性实施例中,插座触头104是冲压成形的触头,被配置为缝合、按压或以其他方式装载到基板102的相应触头通道110中。插座触头104延伸到上表面106以与上电路板16连接,并且延伸到下表面108以与下电路板18连接。在示例性实施例中,插座触头104在上端和下端具有可分离的配合接口,以与上电路板16和下电路板18对接。插座触头104是可压缩的,使得当与上电路板16和下电路板18对接时,插座触头104的上端和下端偏转。这样,插座触头104被弹簧偏压抵靠上电路板16和下电路板18,以保持与上电路板16和下电路板18的电连接。

在示例性实施例中,基板102为分层结构,其接地面120位于上介电层122和下介电层124之间。可选地,上介电层122的高度可以近似等于下介电层124的高度,使得接地面120在上表面106和下表面108之间居中。在示例性实施例中,基板102的分层结构是具有一个冲压件和两个模制件的夹层结构,一个冲压件和两个模制件可以层压在一起或者使用环氧树脂或粘合剂固定在一起。在示例性实施例中,介电层122、124是模制层,例如由模制聚合物材料制成。介电层122、124可以是尼龙、LCP、PBT等。介电层122、124可以使用玻璃增强纤维,其可以处于随机取向。在示例性实施例中,接地面120包括金属板或金属膜126。金属板的厚度可以在大约2.0和6.0密耳之间。金属板可以由黄铜、青铜、CuNiSi、BeCu等制成。在各种实施例中,接地面120可以被冲压形成。在示例性实施例中,接地面120是平面的并且水平取向。接地面120可以平行于上表面106和/或下表面108延伸。在各种实施例中,接地面120层叠在介电层122、124之间。在示例性实施例中,可以在接地面120和介电层122、124之间使用粘合剂来形成基板102。在替代实施例中,接地面120可以通过其他手段或工艺固定到介电层122、124。

在示例性实施例中,插座触头104为冲压成型的触头。每个插座触头104包括触头主体130、从触头主体130的顶部延伸的上配合元件132和从触头主体130的底部延伸的下配合元件134。配合元件132、134可相对于触头主体130偏转。触头主体130被配置为缝合或以其他方式装载到基板102中。触头主体130可以固定到上介电层122和/或下介电层124。例如,倒钩或其他特征可以接合介电层122、124,以通过干涉配合将插座触头104保持在基板102中。上配合元件132延伸至上表面106以与第一电气部件12对接。上配合元件132包括上配合接口136,其被配置为接合上电路板16(例如,接合上电路板16的底部处的相应接触垫)。下配合元件134延伸到下表面108以与第二电气部件14对接。下配合元件134包括下配合接口138,其被配置为接合下电路板18(例如,接合下电路板18的顶部处的相应接触垫)。

在示例性实施例中,上配合元件132为上配合梁,下文称之为上配合梁132。在示例性实施例中,下配合元件134是下配合梁,并且在下文中可以称为下配合梁134。配合梁132、134可以是可偏转的弹性梁。然而,在替代实施例中可以使用其他类型的配合元件。例如,插座触头104可以是导电弹性柱,其具有限定上配合元件132的上部分和限定下配合元件134的下部分。

在示例性实施例中,插座触头104包括信号插座触头140和接地插座触头150。信号插座触头140被配置为电连接到上电路板16和下电路板18的相应信号触头20、30。接地插座触头150被配置为电连接到上电路板16和下电路板18的相应接地触头22、32。接地插座触头150为信号插座触头140提供电屏蔽。在各种实施例中,信号插座触头140成对布置。接地插座触头150围绕信号插座触头140的相应对。接地插座触头150电连接到接地面120。接地面120用于电共用接地插座触头150。

在示例性实施例中,每个接地插座触头150在插座连接器100的上接地面28、下接地面38和内部或中间接地面120处实现电气共用。插座连接器接地面120缩短了接地面之间的接地电气路径。例如,通过使接地面120在上接地面28和下接地面38之间居中,接地电气路径的长度可以被大约减半(例如,与利用不包括接地面的插座连接器的电子组件相比)。包括接地面120增强了电气性能。例如,接地面120将插入损耗、回波损耗、近端串扰、远端串扰等中出现的谐振频率增加到超过目标频率,例如60GHz,以提高插座连接器100的电性能。

图4为根据示例性实施例的插座连接器100的一部分的俯视图。图4示出了插座触头104的阵列,示出了多行多列的插座触头104。图4示出了围绕一对信号插座触头140的一圈接地插座触头150。例如,接地插座触头150位于该对信号插座触头140的前面、后面和两侧。接地插座触头150将每对信号插座触头140与每个其他对的信号插座触头140电绝缘。

插座触头104接收在相应的触头通道110中。触头通道110穿过上和下介电层122、124,并穿过接地面120(如图2和3所示)。在示例性实施例中,触头通道110包括接收相应信号插座触头140的信号触头通道142和接收相应接地插座触头150的接地触头通道152。在图示的实施例中,信号触头通道142在行和列中与接地触头通道152对准,以将信号插座触头140定位在具有接地插座触头150的行和列中。

在一个示例性实施例中,接地面120包括连接片154,连接片154延伸至接地触头通道152中,以与接地插座触头150对接。在示例性实施例中,信号触头通道142不包括这种连接片,从而将信号插座触头140与接地面120隔离。

图5为根据示例性实施例的插座式接触器104的正面透视图。图6是根据示例性实施例的插座触头104的后透视图。在各种实施例中,信号插座触头140和接地插座触头150是相同的,并且图5和图6所示的插座触头104是信号插座触头140和接地插座触头150的示例。然而,在替代实施例中,信号插座触头140和/或接地插座触头150可以包括不同的部件或特征。

插座触头104为冲压成型触头,由金属板或坯材料冲压而成,然后形成预定形状。插座触头104包括触头主体130和从触头主体130延伸的上配合梁132和下配合梁134。触头主体130可以沿着插座触头104大致居中。例如,上配合梁132和下配合梁134可以具有相似的尺寸和/或形状。配合梁132、134从触头主体130悬臂伸出,并且相对于主触头主体130可偏转。

触头主体130包括顶部160、底部162和相对的侧面164、166。在示例性实施例中,触头主体130包括从侧面164、166延伸的倒钩168。倒钩168用于将插座触头104固定在基板102中(如图4所示)。在所示实施例中,倒钩168是圆化突起。在替代实施例中,倒钩168可以具有其他形状,例如配置成刺入或切入基板102的介电材料的三角形。

每个配合梁132、134包括臂170和从臂170延伸的指部172。指部172限定了被配置为与相应的电路板配合的配合接口。臂170可偏转。在各种实施例中,臂170的内部分174通常与触头主体130共面,并且臂170的外部分176与触头主体130不共面,例如在向前的方向上成角度。指部172从臂170的外部分176延伸。在替代实施例中,配合梁132、134可以具有其他形状。

在示例性实施例中,触头主体130包括连接片180。连接片180被配置为电连接到接地面120(如图4所示)。例如,连接片180可以与接地面120的连接片154(例如,参见图4)对接。在示例性实施例中,连接片180直接接合接地面,例如在连接片154处。在各种实施例中,连接片180是可偏转的。例如,连接片180可以从触头主体130冲压而成,并且相对于触头主体130向外成角度。例如,连接片180可以向后成角度以与连接片154接合。在各种实施例中,连接片180仅形成在接地插座触头150上,而不包括在信号插座触头140上。然而,在替代实施例中,信号和接地插座触头140、150都包括连接片180,但是信号插座触头140上的连接片180不与接地面120的一部分对接(例如,接地面120在信号插座触头140处不包括任何连接片154)。

图7为根据一个示例性实施例的插座连接器100的一部分透视截面图。图8是根据示例性实施例的插座连接器100的一部分的透视局部剖视图。图7和8示出了布置在基板102的相应触头通道110中的多个插座触头104。图7和8示出了基板102内部的接地面120。接地面120被配置为电连接到相应的接地插座触头150。

接地面120位于上介电层122和下介电层124之间。在示例性实施例中,接地面120包括接收插座触头104的开口190。开口190由围绕开口190的边缘192限定,例如在四个侧面上。开口190可以在接地面120的制造过程中通过冲压工艺形成。然而,开口190可以通过其他工艺形成,例如切割、蚀刻或其他工艺。开口190可以是大致矩形的;然而,在替代实施例中,开口190可以具有其他形状。开口190的尺寸和形状可以类似于触头通道110。开口190与触头通道110对准。

在示例性实施例中,接地面120包括连接片154。在各种实施例中,连接片154由接地面120冲压形成。连接片154延伸到接收接地插座触头150的开口190中。例如,连接片154从边缘192中的一个延伸到开口190中,以与接地插座触头150对接。在示例性实施例中,连接片154与接地插座触头150的连接片180对接。在图示的实施例中,连接片154从接地面122向下弯曲,沿着触头通道110的后部延伸。连接片154暴露在触头通道110内,以与接地插座触头150对接。在示例性实施例中,接地插座触头150的连接片180是可偏转的,并且被配置为抵靠连接片154被弹簧偏压,以确保在接地插座触头150和接地面120之间保持电连接。在各种实施例中,当上配合梁132和下配合梁134被压缩时,触头主体130向后弯曲以将连接片180压向连接片154。在示例性实施例中,接地面120位于上表面106和下表面108之间,使得连接片154在上表面106和下表面108之间大致居中。

图9为根据示例性实施例的插座式接触器104的后透视图。插座触头104包括沿着触头主体130的连接片180。在图示的实施例中,连接片180是从触头主体130向后延伸的隆起、凹陷或突起,而不是如图5和6所示的可偏转的片。

图10为根据示例性实施例的插座连接器100的一部分的横截面图,示出了图9所示的插座触头104。图11是根据示例性实施例的插座连接器100的一部分的透视局部剖视图,示出了图9所示的插座触头104。接地插座触头150被配置为电连接到接地面120。接地插座触头150的连接片180与接地面120的连接片154对接。在各种实施例中,连接片154可以被向前偏压抵靠连接片180,以保持接地插座触头150和接地面120之间的电连接。

图12为包括接地面120的插座连接器100的回波损耗200与不包括内部接地面的传统插座连接器的回波损耗202的对比图。结果示出了包括接地面120的插座连接器100中回波损耗电性能的改善。例如,传统插座连接器的回波损耗202在大约50GHz处具有骤降204,而包括接地面120的插座连接器100的回波损耗200在大约65GHz处具有骤降206。这样,包括接地面120的插座连接器100的电性能得到改善,并且可以比传统插座连接器更有效地以目标频率操作,例如60GHz。

图13为包括接地面120的插座连接器100的插入损耗210与不包括内部接地面的传统插座连接器的插入损耗212的对比图。结果示出了包括接地面120的插座连接器100的插入损耗电性能的改善。例如,传统插座连接器的插入损耗212在大约50GHz处具有骤降214,而包括接地面120的插座连接器100的插入损耗210在大约65GHz处具有骤降216。这样,包括接地面120的插座连接器100的电性能得到改善,并且可以比传统插座连接器更有效地以目标频率操作,例如60GHz。

图14为包括接地面120的插座连接器100的近端串扰220与不包括内部接地面的传统插座连接器的近端串扰222的对比图。结果示出了包括接地面120的插座连接器100的近端串扰电性能的改善。例如,传统插座连接器的近端串扰222在大约50GHz处具有峰值224,而包括接地面120的插座连接器100的近端串扰220在大约70GHz处具有峰值226。这样,包括接地面120的插座连接器100的电性能得到改善,并且可以比传统插座连接器更有效地以目标频率操作,例如60GHz。

图15为包括接地面120的插座连接器100的远端串扰230与不包括内部接地面的传统插座连接器的远端串扰232的对比图。结果示出了包括接地面120的插座连接器100的远端串扰电性能的改善。例如,传统插座连接器的远端串扰232在大约50GHz处具有峰值234,而包括接地面120的插座连接器100的远端串扰230在大约65GHz处具有峰值236。这样,包括接地面120的插座连接器100的电性能得到改善,并且可以比传统插座连接器更有效地以目标频率操作,例如60GHz。

图16示出了电子组件10的示例性实施例。图17示出了图16所示的电子组件10的一部分。电子组件10包括联接到主机电路板52的电子模块50,例如用于电子模块50和主机电路板52之间的数据和/或功率传输。可插拔模块60联接到电子模块50,例如用于可插拔模块60和电子模块50之间的数据和/或电力传输。图17示出了准备联接到电子模块50的可插拔模块60之一。

在示例性实施例中,多个插座连接器100连接至电子模块50的模块基板54。电子模块50包括联接到模块基板54的电子封装56。插座连接器100布置在电子封装56周围,例如在电子封装56的所有四个侧面上,以将多个可插拔模块60电连接到电子封装56。例如,模块基板54包括电路、迹线、过孔、焊盘或其他导体,以将插座连接器100电连接到电子封装56。电子封装56可以是中央处理单元(CPU)、微处理器、存储模块、集成电路、芯片、网络开关等。可选地,多个电子设备或其他类型的部件可以安装到模块基板54。电子封装56可以直接焊接到模块基板54上的触头。替代地,电子封装56可以通过插入器或插座连接器联接到模块基板54。

在组装过程中,可插拔模块60插入相应的插座连接器100中,以将可插拔模块60电连接至电子封装56。在各种实施例中,可插拔模块60可以是高速电缆连接器。在其他各种实施例中,可插拔模块60可以是光纤收发器。可选地,高速电缆连接器和光纤收发器都可以通过相应的插座连接器100联接到模块基板54。可插拔模块60可以包括电路板62,电路板62具有触头垫(未示出),触头垫被配置为经由可分离的配合接口与插座连接器100配合。电路板62可以由壳体64保持。电缆66或光纤68可以从壳体64延伸到另一设备或部件。单独的设备,例如可插拔模块保持器或散热器(未示出),可以用于向下按压和保持可插拔模块60,以将可插拔模块电连接到插座连接器100。散热器可以联接到可插拔模块60的顶部,以消散来自可插拔模块60的热量。

在所示实施例中,电子封装56为专用集成电路(ASIC)。插座连接器100安装到模块基板54,例如在顶表面处,以允许可插拔模块60直接连接到模块基板54,用于电连接到电子封装56。在示例性实施例中,电子封装56通过模块基板54电连接到主电路板52。

在示例性实施例中,插座连接器100包括保持基板102的插座壳体112。插座壳体112包括围绕基板102的插座框架114。基板102相对于插座框架114保持插座触头104。例如,基板102可以保持成阵列布置在一起的插座触头104,例如25×25阵列、100×100阵列或其他尺寸。在示例性实施例中,插座触头104布置成具有预定图案的触头阵列,例如成行和列。插座框架114包括形成插座开口118的框架构件116,插座开口118接收可插拔模块60。框架构件116将可插拔模块60定位在插座开口118中。插座框架114被配置为联接到模块基板54。插座框架114可以作为抗过应力承载构件操作,其停止或限制插座触头104的压缩。

在示例性实施例中,插座触头104为冲压成型触头。插座触头104与可插拔模块60形成可压缩、可分离的接口。例如,可插拔模块60具有配合接口,该配合接口具有接合插座触头104的多个接触垫。插座触头104与模块基板54形成可压缩、可分离的接口。例如,模块基板54具有配合接口,该配合接口具有接合插座触头104的多个接触垫。

技术分类

06120116065991