掌桥专利:专业的专利平台
掌桥专利
首页

一种基于RSALGCN的城市轨道交通短时客流预测方法

文献发布时间:2024-04-18 19:59:31


一种基于RSALGCN的城市轨道交通短时客流预测方法

技术领域

本发明涉及轨道交通运输客流分析与预测技术领域,涉及一种基于RSALGCN的城市轨道交通短时客流预测方法。

背景技术

短时客流预测(STPFF)可以提供实时交通信息,是城市轨道交通(URT)运营管理中亟待解决的问题。运营商可以控制客流量或做出合理的调度决策以避免交通拥堵,或调整列车时刻表以在高峰时段容纳更多乘客。乘客可以基于预测结果提前安排行程。

然而,对URT的STPFF受到许多因素的影响,是一个具有挑战性的任务。在研究早期,STPFF的模型范围是基于统计的模型,如历史平均、自回归综合移动平均ARIMA和卡尔曼滤波等。然而这些模型已经不能满足当下的“实时”要求,并且也不能达到更高的精度要求。近年来,基于深度学习的模型被引入用于进行STPFF,如反向传播神经网络BPNNs、随机森林学习、贝叶斯网络、门控递归单元GRU和支持向量机SVM模型、适用于获取客流数据时间属性的深度学习的方法长短时记忆神经网络LSTM,以及混合SVM-LSTM等混合模型。这类模型的优点表现出更好的预测精度,但是它们局限于只能捕获时间相关性,没有考虑URT客流的空间相关性。

由于轨道交通客流在时间维度上是相互关联的,而不同站点客流上又具有时空相关性,并且轨道交通网络具有典型的拓扑结构,客流还受到外部因素的影响,如天气条件和空气质量等。

因此,需要一种考虑轨道系统拓扑结构、客流时空关系和外部特征的短时客流预测方法,以此来提高预测模型的精确度和轨道交通的通行效率。

发明内容

基于现有背景,为了克服上述现有技术的缺点,本发明的目的在于:提出一种RSALGCN(Residual-Split-Attention-LSTM GCN,改进残差网络-分离注意力机制-长短期记忆-图卷积)的短时客流预测方法。该方法结合了改进残差网络(Improved residualnetwork)、分离注意力机制(Split-Attention)和长短期记忆(LSTM)、图卷积(GCN)来分析客流流入和流出的关系。综合考虑了城市轨道交通客流的时间相关性和空间相关性,以及天气状况、空气质量、特殊事件等外部因素对客流变化的影响,以此来提高预测精度。

本发明具体采用如下技术方案:

一种基于RSALGCN的城市轨道交通短时客流预测方法,包括以下步骤:

S1:基于历史起讫点OD矩阵包含的出行行为构建拓扑图;

S2:引入GCN学习多模式下客流的空间相关性;

S3:引入时间注意力机制,学习多模式下客流的时间相关性;

S4:引入外部特征提取,学习外部因素对客流的影响;

S5:选用均方误差作为损失函数,使用均方根误差、平均绝对误差和加权平均绝对百分比误差为评价指标来评估模型性能。

优选地,在步骤S1中,根据所有站点之间的OD关系为度量,建立知识图G=(V,E,A),其中,V为表示地铁车站的顶点,V=V

所述多模式为三种客流模式:最近、每日和每周模式,构成特征矩阵

其中,f(·)为提出的深度学习体系结构中需要学习的映射函数。

优选地,在步骤S2中,利用GCN模型获取三种客流模式下客流的空间拓扑信息

其中,A是基于预定义物理拓扑的邻接矩阵;

优选地,在步骤S3中,首先将分离注意力机制和LSTM相结合,提取流入和流出客流之间的相关性;然后,将输入特征分成几个组,提取和聚合每个群体的独特特征,以整合全局信息;最后,使用LSTM捕捉客流的时间动态,将两个GCN块堆叠在一起,提高隐藏特征的提取能力。

优选地,在步骤S4中,(1)考虑天气状况、空气质量、特殊事件三种外部因素,将分类变量进行独立编码,经过编码预处理后的外部因素特征矩阵用X

(2)预处理的输入数据被展平,并随后通过添加到完全连接的层以获得加权指示符,然后将外部因素特征矩阵输入到LSTM层中,进行训练和特征提取,再将输出数据输入到特征融合部分;

(3)特征融合

将两个支路输出的数据进行加权特征融合

其中O

优选地,在步骤S5中,选择均方误差MSE作为损失函数

选择均方根误(RMSE、平均绝对误差MAE和加权平均绝对百分比误差WMAPE为评价指标来评估模型性能,如下所示:

式中,N为客流样本数,X

与现有技术相比,本发明有如下三个优点:

1、优越性:本发明采用GCN网络对城市轨道交通客流的空间特性进行特征提取。与传统深度学习模型相比,GCN可以捕获整个网络中的空间和拓扑相关性。

2、精确性:本发明除了考虑URT中的空间相关性和其拓扑关系,还使用所提出的改进残差网络、分裂注意力机制和LSTM提取客流的时间相关性,并对天气状况、空气质量、特殊事件等外部因素进行量化,获取由于外部因素改变对客流流量的影响,从而提高预测精度。

3、稳定性:本发明提出了一种基于RSALGCN的组合模型的城市轨道交通短视客流预测方法。与其它单一模型或传统组合深度学习模型相比,RSALGCN模型表现出更强的稳定性,即使在删除构成RSALGCN架构的某一个分支时,也能实现很高的预测精度。

附图说明

本发明将通过例子并参照附图的方式说明,其中:

图1为RSALGCN的预测模型图;

图2为改进的残差块图;

图3为GCN堆叠图。

具体实施方式

一种基于RSALGCN的城市轨道交通短时客流预测方法,如图1所示。历史客流数据聚合为三种模式,经过由空间特征提取模块和时间特征提取模块组成的GCN块处理后,与外部因素提取模块处理后得到的外部因素特征矩阵数据进行加权特征融合,最终得到预测客流量。具体内容如下:

S1:根据所有站点之间的OD关系为度量,建立知识图G=(V,E,A)。其中,V为表示地铁车站的顶点,V=V

利用历史数据来预测城市轨道交通网络的进站客流量,按不同时间间隔(如10分钟、15分钟和30分钟)进行汇总。出行数据包含了状态(即进站或出站)、采集时间、地铁线路、地铁站等信息。从数据源中提取乘客出行特征(如出行时间矩阵、OD矩阵等),来计算进出每个车站的乘客人数。

历史的客流流入和流出数据分别聚合为三种模式:最近,每日和每周模式,构成特征矩阵

其中p表示三种乘客模式的总体,包括最近的、每天的和每周的模式。m表示过去用于预测的几个时间步长。

S2:在空间特征提取模块中利用GCN模型获取各模式下客流的空间信息,GCN函数如式(3)所示:

其中A是基于预定义物理拓扑的邻接矩阵;

有两个图分支分别处理流入数据和流出数据,将它们的输出合并作为改进残差块的输入,残差结构可以增加神经网络层数,防止深度神经网络的梯度消失,从而提取出GCN无法提取的更深层的远程依赖关系。如图2所示,输入(I)将经过一系列处理:BN表示用于数据归一化的批量归一化,ReLU是激活函数,Conv表示卷积层。然后,提取的特征将被平坦化并发送到前馈网络用于全连接。

S3:在时间特征提取模块中,将分裂注意力机制和LSTM相结合,提取流入和流出客流之间的相关性。分离注意力机制用来调整不同模式下客流的重要性。输入特征被分成几个组,然后提取和聚合每个群体的独特特征,以整合全局信息,从而提高模型的性能。客流数据具有典型的时间序列特征,用LSTM来捕捉客流的时间动态,LSTM单元的核心组成包括一个输入门i

i

f

o

h

其中,W和b分别表示权重矩阵和偏差,⊙为元素积运算,σ(·)为激活函数。

S4:具体包括:

(1)考虑天气状况、空气质量、特殊事件三种外部因素,将分类变量进行独热编码。经过编码预处理后的外部因素特征矩阵用X

其中w表示用于天气状况、空气质量、特殊事件数据的指标。

(2)预处理的输入数据被展平,并随后被添加到完全连接的层以获得加权指示符。然后将外部因素特征矩阵输入到LSTM层中,进行训练和特征提取,再将输出数据输入到特征融合部分。

S5:如图3所示,将两个GCN块堆叠在一起,充分利用相邻站之间的拓扑信息,提高隐藏特征的提取能力。第一个GCN层将捕获相邻的站点间和自循环的影响,在将另一个GCN层叠加后,考虑附近站与远处站之间的空间相关性,将综合非相邻站点间的影响进行预测。假设在网络中,某一个站点是两条地铁线路的换乘站,则捕获第1层GCN中相邻站点的影响,捕获第2层GCN中非相邻站点的影响。

由于两个支路输出的数据形状相同,因此易于实现加权特征融合,如式(11)所示:

其中O

输出被展平后送到全连通层,全连通层由全连通操作和神经元失活操作组成,进行降维,捕捉高维特征与预测结果之间的非线性关系。最后,将全连通层的输出重塑为目标形状,得到预测客流量。

S6:具体包括:选择均方误差(MSE)作为损失函数,即预测数据与实际数据的平均平方差。如式(12)所示:

选择均方根误差(RMSE)、平均绝对误差(MAE)和加权平均绝对百分比误差(WMAPE)为评价指标来评估模型性能,如式(13)~(15)所示:

式中,N为客流样本数,X

采用真实世界中的地铁站数据集。数据提取自连续T周的AFC数据,使用前T-1周的数据用来训练模型,最后一周的数据用来测试模型。AFC数据主要包括卡号(TICKET_ID)、出行日期(TXN_DATA)、刷卡时间(TXN_TIME)、车站id(STATION_ID)、线路id(LINE)、卡号类型(KHTYPE)。这些AFC记录每隔10分钟汇总一次,分别形成客流流入数据和客流流出数据。

本说明书中未作详细描述的内容属于本领域专业技术人员公知的现有技术。

尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

相关技术
  • 一种催化反应精馏合成丁酮醇的方法和装置
  • 一种双光源光催化反应装置
  • 一种共沸催化反应合成三聚甲醛的装置和方法
  • 一种显示面板贴膜治具、半自动贴膜装置和半自动贴膜机
  • 一种臭氧催化氧化陶瓷膜催化剂、其制备方法、陶瓷膜催化反应器及废水处理工艺
  • 一种膜催化反应装置
技术分类

06120116517067