掌桥专利:专业的专利平台
掌桥专利
首页

用于设备管理网络的建模分析方法和网络模型更新方法

文献发布时间:2023-06-19 11:16:08


用于设备管理网络的建模分析方法和网络模型更新方法

技术领域

本公开的实施例涉及一种用于设备管理网络的建模分析方法、工作范围分析方法、网络模型更新方法、用户终端和网络服务器。

背景技术

随着信息技术的快速发展,通过仿真建模的方法模拟现有社会各类系统的运行规律,已成为提高管理效率的一个重要手段。在现实生活运行的设备管理网络中,无论是设备之间的物理连接,还是设备之间的逻辑连接,都反映了设备的运行的一种规律。由此,通过对系统中各种设备的分析,可以完成相应网络模型的自动建模和基于网络模型的分析。

发明内容

本公开至少一个实施例提供一种用于设备管理网络的建模分析方法,应用于用户终端,所述方法包括:通过所述用户终端采集物理节点的位置信息、类型信息和状态信息,其中,所述采集是通过用户输入、所述用户终端的定位功能或者通过所述用户终端拍照并自动识别所述物理节点的位置信息、类型信息和状态信息;基于所述物理节点的位置信息和类型信息,按照第一预定规则自动构建物理层模型,以将所述物理节点自动连成线路,以电子地图为背景,在相应位置上自动显示所述物理节点以及所述物理节点之间的线路;基于所述物理节点的类型信息和状态信息,按照第二预定规则自动构建逻辑层模型,以便构建网络模型。

例如,在本公开至少一个实施例提供的建模分析方法中,基于所述物理节点的位置信息和类型信息按照第一预定规则自动构建物理层模型,包括:当通过所述用户终端改变所述物理节点的位置信息和/或类型信息时,基于所述改变后的信息,以所述电子地图为背景,自动断开原有线路中不符合所述第一预定规则的线路,并且按照所述第一预定规则,在所述改变后的物理节点及其相邻物理节点之间自动连成线路。

例如,本公开至少一个实施例提供的建模分析方法中,基于所述物理节点的位置信息和类型信息按照第一预定规则自动构建物理层模型,包括:在所述用户终端保持移动的同时,响应于采集到所述物理节点的位置信息和类型信息,实时显示所述物理节点以及其与相邻物理节点之间自动生成的线路。

例如,本公开至少一个实施例提供的建模分析方法还包括:采集附加节点的位置信息,获取所述附加节点的类型信息和状态信息;基于所述附加节点的位置信息、类型信息和状态信息,构建附加层模型以用于扩展所述网络模型;以所述电子地图为背景,在相应位置上自动显示所述附加节点的类型信息和状态信息。

例如,在本公开至少一个实施例提供的建模分析方法中,基于所述物理节点的类型信息和状态信息,按照所述第二预定规则,自动构建所述逻辑层模型,包括:基于所述物理节点的类型信息和状态信息,确定在所述电子地图上显示的物理节点中满足第一预定条件的物理节点,作为逻辑节点;识别所述逻辑节点的类型和状态,按照所述第二预定规则,自动建立各个逻辑节点之间的拓扑关系。

例如,在本公开至少一个实施例提供的建模分析方法中,所述物理层模型和所述逻辑层模型的构建是同步执行的。

例如,本公开至少一个实施例提供的建模分析方法还包括:根据所述逻辑层模型中逻辑节点之间的拓扑关系,在所述电子地图上自动显示所述设备管理网络中的信号或流体的走向。

例如,在本公开至少一个实施例提供的建模分析方法中,在所述电子地图上显示所述设备管理网络中的信号或流体的走向,包括:在电子地图上,利用带箭头的线路来显示所述设备管理网络中的信号或流体的走向。

例如,在本公开至少一个实施例提供的建模分析方法中,所述设备管理网络是电网管理网络,所述设备管理网络中的信号或流体的走向是所述电网管理网络中的供电方向。

例如,本公开至少一个实施例提供的建模分析方法还包括:响应于场景界面中的分析功能被触发,显示仿真分析结果。

例如,在本公开至少一个实施例提供的建模分析方法中,响应于场景界面中的分析功能被触发,显示仿真分析结果,包括:响应于场景界面中的分析功能被触发,通过控制线路的颜色变化,显示仿真分析结果。

例如,在本公开至少一个实施例提供的建模分析方法中,所述响应于场景界面中的分析功能被触发,显示仿真分析结果是由所述用户终端实时在线自动执行的。

例如,在本公开至少一个实施例提供的建模分析方法中,所述用户终端采集物理节点的位置信息、类型信息和状态信息是通过移动互联网实时在线执行的。

本公开至少一个实施例还提供一种根据上述建模分析方法,所述设备管理网络是电网管理网络,所述方法包括:通过用户终端采集电网设备的位置信息、类型信息和状态信息,其中,所述采集包括通过所述用户输入、所述用户终端的定位功能或者通过所述用户终端拍照并自动识别所述电网设备的位置信息、类型信息和状态信息;基于所述电网设备的位置信息和类型信息,按照第一预定规则,自动构建物理层模型,以将所述电网设备自动连成线路,并以电子地图为背景,在相应位置上自动显示所述电网设备以及所述电网设备之间的线路;基于所述电网设备的类型信息和状态信息,按照第二预定规则,自动构建逻辑层模型,以便构建网络模型;响应于场景界面中的停电分析功能被触发,显示停电分析结果。

本公开至少一个实施例还提供一种用于设备管理网络的建模分析方法,应用于仿真分析服务器,所述方法包括:接收物理节点的位置信息、类型信息和状态信息;基于所述物理节点的位置信息和类型信息,按照第一预定规则自动构建物理层模型,以将所述物理节点自动连成线路,所述物理层模型用于以电子地图为背景,在相应位置上自动显示所述物理节点以及所述物理节点之间的线路;基于所述物理节点的类型信息和状态信息,按照第二预定规则自动构建逻辑层模型,以便构建网络模型;响应于接收到请求数据,生成仿真分析结果。

例如,本公开至少一个实施例提供的建模分析方法,还包括:从用户终端接收所述物理节点的位置信息、类型信息和状态信息,以用于在所述仿真分析服务器端构建所述网络模型;将所述仿真分析结果发送至所述用户终端。

例如,在本公开至少一个实施例提供的建模分析方法中,从用户终端接收所述物理节点的位置信息、类型信息和状态信息,包括:通过移动互联网从用户终端接收所述物理节点的位置信息、类型信息和状态信息;以及将所述仿真分析结果发送至所述用户终端,包括:通过所述移动互联网将所述仿真分析结果发送至所述用户终端。

本公开至少一个实施例还提供一种根据上述建模分析方法的工作范围分析方法,包括:基于由所述物理节点和所述线路组成的网络模型,分析所述网络模型中与所述物理节点对应的工作线路;自动连接所述工作线路的各个末端节点,并且按照第三预定规则,在电子地图上形成与所述物理节点对应的闭合区域,所述闭合区域为所述物理节点对应的工作范围。

例如,本公开至少一个实施例提供的工作范围分析方法,还包括:向与所述物理节点对应的工作范围内的用户发送信息,所述信息至少包括图片和文字。

例如,本公开至少一个实施例提供的工作范围分析方法中,向与所述物理节点对应的工作范围内的用户发送信息,包括响应于所述物理节点发生故障,向与所述物理节点对应的工作范围内的用户发送信息,其中,所述信息包括故障线路名称、故障范围和预估故障处理时间。

本公开至少一个实施例还提供一种网络模型更新方法,包括:将电子地图划分成多个区域;在网络更新过程中,从多个用户终端接收到对于同一区域的不同内容的节点信息时,分别为所述多个用户终端中的每一个生成对应的网络模型,形成多个网络模型;基于第二预定条件,从所述多个网络模型中选择一个网络模型,以图层的方式保存,作为对应当前时刻的提交图层;当所保存的提交图层的数量达到阈值,或者距第一提交图层预定时间后,基于第三预定条件,从多个提交图层中选择一个提交图层,作为时间图层,以用于网络模型的更新。

例如,本公开至少一个实施例提供的网络模型更新方法中,所述第二预定条件和所述第三预定条件包括以下中的至少一项:所述网络模型中包括物理节点的数量最多;所述网络模型中包括的地图区域面积最大;所述网络模型中包括的地图线路最长;所述网络模型中包括的物理节点的类型最多。

例如,本公开至少一个实施例提供的网络模型更新方法中,所述网络模型包括道路网络模型。

本公开至少一个实施例还提供一种用户终端,包括存储器和处理器,其中,所述存储器中存储指令,所述处理器执行所述指令时,使所述用户终端执行上述的方法。

本公开至少一个实施例还提供一种网络服务器,包括存储器和处理器,其中,所述存储器中存储指令,所述处理器执行所述指令时,使所述网络服务器执行上述的方法。

附图说明

为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。

图1为本公开至少一个实施例提供的一种系统仿真示意图;

图2为本公开至少一个实施例提供的一种设备管理系统的架构图;

图3为本公开至少一个实施例提供一种用于设备管理网络的建模分析方法的流程图;

图4为本公开至少一个实施例提供的一种电网物理层模型的示意图;

图5为本公开至少一种实施例提供的一种建模分析方法中对应步骤S103的流程图;

图6示出了本公开至少一个实施例提供的一种电网逻辑层模型的示意图;

图7为本公开至少一个实施例提供的一种电网附加层模型的示意图;

图8A示出了本公开至少一个实施例提供的一种系统结构分层示意图;

图8B示出了本公开至少一个实施例提供的一种仿真系统模型示意图;

图8C示出了本公开至少一个实施例提供的一种电网系统图;

图9A为本公开至少一个实施例提供的一种双电源供电示意图;

图9B为本公开至少一个实施例提供的一种双电源供电转换示意图;

图10为本公开至少一个实施例提供的电网故障定位示意图;

图11为本公开至少一个实施例提供的供电范围分析图。

具体实施方式

为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。

除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”、“一”或者“该”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。

通常,用于设备管理网络的建模方法往往局限于网络中设备的本身,网络模型的建立局限于直接构成网络的设备,而未能将对网络产生重大影响的关联因素作为网络的一个组成部分加以考虑。此外,有限种类设备组成的网络模型只是现有生活中网络物理组成在信息世界中的代表,不能通过模型的分析来改善物理世界的网络。图1示出一种系统仿真示意图,可以看出:一是物理世界到信息世界的单向映射导致模型本身只是现有设备种类的反映,给模型的分析带来较大的局限性,二是无法通过信息世界中仿真模型的变化来分析、提升物理世界中的真实网络,虚拟的信息模型只是物理世界的单向映射,不能通过虚拟模型的变化提升物理世界的真实网络,对二者的互动产生较大的困难。

本公开至少一个实施例提供了一种用于设备管理网络的建模分析方法,应用于用户终端,包括:采集物理节点的位置信息、类型信息和状态信息,该采集是通过用户输入、用户终端的定位功能或者通过用户终端拍照并自动识别物理节点的位置信息、类型信息和状态信息;基于物理节点的位置信息和类型信息,按照第一预定规则自动构建物理层模型,以将物理节点自动连成线路,以电子地图为背景,在相应位置上自动显示物理节点以及物理节点之间的线路;基于物理节点的类型信息和状态信息,按照第二预定规则自动构建逻辑层模型,以便构建网络模型。本公开的至少一个实施例还提供了一种根据上述建模分析方法的工作范围分析方法、网络模型更新方法、用户终端和网络服务器。

本公开的至少一个实施例提供一种用于设备管理网络的建模分析方法,基于用户终端获取的设备信息,根据预定连接规则,自动构建网络模型以进行快速分析,使得用户可以实时、快速、自动地查看网络图和网络分析结果,以便基于网络模型的快速分析来提升物理世界的真实网络。

下面通过几个示例或实施例对根据本公开的至少一个实施例提供的建模分析方法进行非限制性的说明,如下面所描述的,在不相互抵触的情况下这些具体示例或实施例中不同特征可以相互组合,从而得到新的示例或实施例,这些新的示例或实施例也都属于本公开保护的范围。

图2为本公开至少一个实施例提供的一种设备管理系统的架构图。例如,在本公开至少一个实施例中,参见图2,用户终端201与仿真分析服务器202信号连接,仿真分析服务器202与管理终端203信号连接。用户终端201通过仿真分析服务器202与管理终端203进行关联和通信。根据本公开至少一个实施例,管理终端203和用户终端201可以有多个,分别与仿真分析服务器202信号连接,组成设备管理系统。

例如,用户终端201、仿真分析服务器202和管理终端203之间可以通过有线或无线网络进行通信。有线网络例如是有线局域网、广域网、有线电话通信网。无线网络例如是无线局域网、移动互联网(例如2G/3G/4G/5G)、WiFi等。需要说明的是,本公开的实施例对它们之间的具体通信方式不作限制。

例如,在本公开的至少一个实施例中,用户终端201可以是移动电话终端、平板电脑等具有无线定位功能的移动设备。例如,用户终端201可以使用移动基站定位、WiFi定位、GPS定位等定位方法来采集位置信息,本公开的实施例对此不作限制。例如,在本公开的实施例中,管理终端203可以是电脑,也可以是一体机等,本公开的实施例对此不作限制。例如,仿真分析服务器202可以是某一设备管理网络,例如可以被部署在某些电脑上、一体机或者用户终端上等。当然,仿真分析服务器202可以是一种云服务器,也可以是本地服务器,本公开的实施例对此不作限制。例如,仿真分析服务器202可以与一个或多个用户终端201对接,在用户终端201上采集得到的数据可以发送至仿真分析服务器202,以存储或处理。

需要说明的是,在本公开的至少一个实施例中,设备管理网络可以包括,例如,电网管理系统、水管网管理系统、燃气管网系统等公共设施管理系统,当然,也可以包括有线电视网、通讯网等其他类似的设备管理网络,本公开的实施例对此不作具体限制。例如,在本公开的实施例中,在物理世界中的设备管理网络对应于信息世界中的仿真网络,即网络模型,并且,在设备管理网络的各种设备对应于网络模型中的各种节点。例如,在一个示例中,以电网管理网络为例,电网模型中的节点可以表示电网中的开关、变压器、电杆、电信基站设备等,例如,在另一个示例中,以水管网管理系统为例,水管网模型中的节点可以表示水管网中的阀门、水泵站和水处理厂等,又例如,在另一个示例中,以燃气管网管理系统为例,燃气管网模型中的节点可以表示门站、气阀门、补偿器、储气设备等,本公开的实施例对此不作具体限制,可以根据实际情况进行设置。

下面结合附图,详细说明本公开至少一个实施例提供的一种用于设备管理网络的建模分析方法。

图3为本公开至少一个实施例提供一种用于设备管理网络的建模分析方法的流程图。例如,本公开至少一个实施例提供一种用于设备管理网络的建模分析方法10,应用于用户终端,该方法包括以下步骤S101-S103,如图3所示。

需要说明的是,在本公开的实施例中,步骤S101-步骤S103可以顺序执行,也可以按调整后的其他次序执行,步骤S101-步骤S103中的部分或全部操作还可以并行执行,例如,步骤S102和步骤S103可以同步执行,本公开的实施例对各个步骤的执行顺序不作限制,可以根据实际情况调整。例如,在本公开的示例中,步骤S101-步骤S103可以在单独的用户终端中执行,例如,用户终端可以通过移动互联网自动联网,并且由用户终端实时在线执行的上述步骤S101-步骤S103。例如,部分操作也可以在仿真分析服务器上(例如,在云服务器上)实现,本公开的实施例对此不做限制。例如,在一些示例中,实施本公开至少一个实施例提供的用于设备管理网络的建模分析方法10可以选择地执行步骤S101-S103中的部分步骤,也可以执行除了步骤S101-S103以外的一些附加步骤,本公开的实施例对此不做具体限制。

步骤S101:通过用户终端采集物理节点的位置信息、类型信息和状态信息,该采集是通过用户输入、用户终端的定位功能或者通过用户终端拍照并自动识别物理节点的位置信息、类型信息和状态信息。

例如,为了方便网络图(例如,电网图、水管网图、燃气管网图等)的显示,将实际生活中的每一类设备作为一种物理节点。物理节点作为网络物理系统组成的基本单元,是显示生活中各类物理设备在仿真网络模型中的反映,通过基础的物理连接规则,参与网络图形的显示。例如,在一个示例中,操作人员携带着具有无线定位功能的移动设备(例如手机),沿着预定线路(例如某一区域的街道)进行物理节点的信息采集。例如,在一个示例中,物理节点的信息包括位置信息、类型信息、状态信息、图像信息等,本公开的实施例对此不作限制。

例如,在本公开至少一个实施例中,以电网建模为示例,可以包括变电站、环网柜、公共变压器、开关、电杆等各种类型的物理节点。例如,操作人员在街道边的某一设备(例如环网柜)处通过定位用户终端(例如,手机)获取用户终端的定位信息以作为该物理节点的位置信息。例如,操作人员(或者用户)可以在用户终端上选择或者输入该设备的位置和类型,例如在用户终端上选择“变压器”等设备类型,例如在用户终端上输入该设备所处位置的经度和纬度等位置信息。又例如,操作人员还可以在用户终端上选择或者输入该设备的状态,例如选择“连通”或者“断开”。例如,操作人员还可以在用户终端上选择或者输入该设备的编号和名称等,例如“1号开关”。例如,操作人员还可以通过用户终端拍摄该设备及其周边环境的照片等,从而可以基于所拍摄的设备图像自动识别设备类型、识别设备所处的位置等。如此,用户终端可以采集到物理节点的位置信息、状态信息、类型信息、图片信息等,本公开的实施例对此不作具体限制。

步骤S102:基于物理节点的位置信息和类型信息,按照第一预定规则,自动构建物理层模型以将物理节点自动连成线路,以电子地图为背景,在相应位置上自动显示物理节点以及物理节点之间的线路。

例如,在一个示例中,对于要建模的设备管理网络,首先列出该网络所涉及的设备类型,将各种设备定义为各种物理节点,并且定义各种类型的物理节点之间的连接规则,即第一预定规则。例如,以电网模型为示例,第一预定规则可以包括电杆节点自动连接距其最近的另一个电杆节点,例如,第一预定规则还可以包括开关节点自动连接距其最近的变压器节点。需要说明的是,在本公开的实施例中,第一预定规则可以是基于经验、实际需求等来设置,本公开的实施例对此不作具体限制。

例如,在一个示例中,对于物理层模型,定义物理设备的类型和连接规则后,基于获取的设备信息,可以形成以电子地图为背景,直观显示各种物理设备的类型和分布的图形,这是网络图快速显示的基础。例如,在一个示例中,建立物理层模型可以按照第一预定规则,将接收到的点设备自动连成线路。例如,在一个示例中,建立网络时,通过两点确定一条直线的原理,只采集两端的节点,然后按照预定的连接规则,自动画出两点间的连接线路。在这种情况下,第一个点是确定的节点,当采集到第二个节点时,通过预定的连接规则(例如,第一预定规则)进行判断,它应该和哪一个节点连接,这是快速建立网络模型的基础,也是网络图快速显示的基础。

例如,在一个示例中,以电子地图为背景,在相应位置上自动显示物理节点以及物理节点之间的线路。例如,电子地图可以是本地存储的,也可以是从网络上下载的,本公开的实施例对此不作限制。

图4示出了本公开至少一种实施例提供的一种电网物理层模型示意图。

例如,在本公开至少一个实施例中,以电网建模为示例,为方便电网的快速显示,将现实生活中的每一类电网设备都作为一种对应的物理节点。例如,在一个示例中,如图4所示,物理层模型中包括电杆、变电站、开关和变压器4类设备,需要说明的是,本公开的实施例对电网设备的类型不作限制。例如,在一个示例中,变电站作为电源向电网供电、电杆起到支撑作用、电杆之间的电线构成了电网的物理线路、开关在线路中起到分段的控制作用、变压器是最终的用电设备、开关和变压器都安装在电杆上。

例如,在一个示例中,为方便电网图的快速建立,还可以如下定义第一预定规则,即:线路的组成从电源(变电站)开始,第二个设备的序号为第一个设备序号加1。例如,从第1号电杆开始增加设备,如果增加的下一个设备是电杆,则自动命名为2号电杆、3号电杆等,以此类推。如果1号电杆后增加的下一个设备是开关,则可以人工(例如,通过选择或者输入)命名为1号开关,继续增加的设备中若发现下一个开关,则自动命名为2号开关,以此类推。通过这样的方式,随着电杆的不断增加,作为基本物理单元的电杆自动完成与上一个序号电杆的连接。例如,作为安装在电杆上的开关,也自动完成序号的增加。通过这样的方式,可以快速完成以电子地图为背景的电网图显示,如图4所示。

例如,在一个示例中,每一种类型的物理节点的编号的递增方向可以指示设备管理网络中的信号或流体的走向。例如,在一个示例中,设备管理网络是电网管理网络,设备管理网络中的信号或流体的走向可以是电网管理网络中的供电方向。例如,在另一个示例中,设备管理网络是水管网管理网络,设备管理网络中的信号或流体的走向则可以是供水方向。又例如,在另一个示例中,设备管理网络是燃气管网管理网络,设备管理网络中的信号或流体的走向则可以是供气方向。需要说明的是,本公开的实施例对此不作具体限制。

例如,在如图4所示的电网物理层模型中,以电杆为例,电杆的编号的递增方向可以指示电网的供电方向。例如,在一个示例中,可以定义供电的方向是从电杆编号的小数字流向大数字。这样的话,通过识别电杆上面的编号,可以显示电流的流向,即供电方向。例如,供电方向可以是从1号电杆到2号电杆到3号电杆等,以此类推。又例如,供电方向可以从1号开关到2号开关到3号开关等,以此类推。当然,在调整电网运行方式的情况下,供电方向也可以是从6号电杆到5号电杆到4号电杆等,本公开的示例对此不作具体限制,可以根据实际情况来设置。

例如,在本公开至少一个实施例中,对于物理层模型,基于用户终端(例如,手机)采集到的设备节点(即,物理节点)信息,并基于预定的连接规则(例如,第一预定规则)而将采集到的各个物理节点之间自动连成线路,快速构建网络图,无需人工作图。

步骤S103:基于物理节点的类型信息和状态信息,按照第二预定规则自动构建逻辑层模型,以便构建网络模型。

例如,在一个示例中,对于逻辑层模型,基于物理节点的不同类型和运行状态(例如,连通或断开),可以按照第二预定规则,将接收到的点设备自动连成逻辑网络,以确定网络中相邻设备间的拓扑关系,即逻辑层模型的拓扑结构,这是网络图分析的基础。例如,在一个示例中,以电网建模为示例,第二预定规则可以包括:变电站节点自动连接距其最近的开关节点,开关节点自动连接距其最近的变压器节点等。需要说明的是,第二预定规则可以是基于经验、实际需求等来设置,本公开的实施例对第二预定规则的具体内容不作限制。

例如,在一个示例中,可以将逻辑层与物理层作为一层。在这种情况下,所有的物理节点都是逻辑节点,在执行网络查找分析时的检索工作量太大。

图5为本公开至少一种实施例提供的一种建模分析方法中对应于步骤S103的流程图。例如,在一个示例中,如图5所示,为了提高网络的检索分析效率,步骤S103可以包括以下步骤:

步骤S131:基于物理节点的类型信息和状态信息,确定物理节点中满足第一预定条件的物理节点,作为逻辑节点;

步骤S132:基于逻辑节点的类型信息和状态信息,按照第二预定规则,自动构建逻辑层模型。

例如,在一个示例中,第一预定条件可以是参与网络模型的逻辑判断,即参与网络模型的状态分析。这样,可以大幅降低网络模型涉及的物理设备的数量,提高检索效率。后文中所提到的逻辑层主要指这种简化后的逻辑节点组成的逻辑层。需要说明的是,本公开的实施例对第一预定条件的具体内容不作限制,可以根据实际需求来设置。

例如,在本公开至少一个实施例中,以电网建模为示例,如果将物理层的电网设备都作为逻辑节点,那么它们都将参与网络的分析,检索量会很大。为提高网络的检索效率,将电网系统中参与逻辑判断(状态判断)的设备和线路终端的用电设备作为逻辑节点。

图6示出了本公开至少一个实施例提供的一种电网逻辑层模型的示意图。例如,在本公开至少一个实施例中,以电网建模为示例,逻辑节点包括变电站、开关和变压器3类设备。例如,如图6所示,变电站向开关供电,开关向变压器供电。只承担支撑作用的电杆不参与系统的网络分析,因此不属于逻辑节点对应的设备。

例如,在一个示例中,可以如下定义第二预定规则:将变电站作为原始的电源点,开关的电源来自变电站或上一级开关,变压器的电源来自开关。按照这样的第二预定规则,首先在物理层的电子地图上定义作为电源点的变电站位置,随着开关的出现,自动搜索最近的变电站或开关,结合其所在电杆的编号,判断其上级电源并进行逻辑关系的连接。例如,随着变压器的出现,自动搜索最近的开关并分析出合适的电源点进行逻辑关系的连接。通过这样的方式,可以快速完成电网逻辑层的建立,如图6所示。

例如,在本公开至少一个实施例中,步骤S102和步骤S103可以是同步执行的,即物理层模型和逻辑层模型可以是同时构建,以便快速构建网络模型,快速显示具有分析功能的网络图。

因此,本公开至少一个实施例提供的用于设备管理网络的建模分析方法10可以利用移动用户终端进行数据采集,根据预定的连接规则,对设备的物理显示和逻辑关系进行一次性的自动处理,后续规则的变化会自动改变逻辑关系的连接,使得用户可以实时、快速、自动地查看网络图和网络分析结果,以便基于网络模型的快速分析来提升物理世界的真实网络。此外,通过从物理节点中选择逻辑节点,大大减少了检索工作量,提供网络的检索效率。

例如,在本公开至少一个实施例中,基于物理节点的位置信息和类型信息按照第一预定规则自动构建物理层模型,可以包括当通过用户终端改变(或更新)物理节点的位置信息和/或类型信息时,基于改变(或更新)后的信息,以电子地图为背景,自动断开原有线路中不符合第一预定规则的线路,并且按照第一预定规则,在改变后的物理节点及其相邻物理节点之间自动连成线路。

例如,本公开至少一个示例中,假设已有电网模型包括1号节点、2号节点和3号节点,并且1号节点线路连接2号节点,2号节点线路连接3号节点。例如,在一个示例中,在前述1号、2号、3号节点都是电杆的情况下,当用户通过例如手机终端移动2号电杆节点时,即改变2号电杆节点的位置信息时,自动断开移动前2号电杆节点与1号和3号节点之间的连线,并基于改变后的节点信息,按照第一预定规则,自动连接移动后的2号电杆节点与1号和3号电杆节点之间的连线。需要说明的是,在基于改变后的节点信息,按照第一预定规则,若2号电杆节点依然是与1号电杆节点和3号电杆节点连接,由于模型的快速更新,用户可能在手机界面上看到1号节点与2号节点之间的连线以及2号节点与3号节点之间的连线随着2号节点移动而移动。

例如,在一个示例中,在前述1号、2号、3号节点都是电杆的情况下,当用户通过例如手机终端在2号和3号电杆节点之间增加一个新的4电杆节点时,自动断开2号和3号节点之间的连线,并且基于改变后的节点信息,按照第一预定规则,自动线路连接2号、3号和4号电杆节点。若2号和3号节点之间的原有线路与更新后的2号、3号和4号电杆节点之间的线路重合,由于模型的快速更新,用户可能在手机界面上看到在2号和3号之间的线路上新增4号节点。

例如,在另一个示例中,在1号、2号、3号节点都是电杆的情况下,当用户通过例如手机终端删除2号电杆节点时,则自动断开2号电杆节点与1号和3号电杆节点之间的连线,若在基于改变后的节点信息,按照第一预定规则,1号电杆节点是自动与3号电杆节点连线,由于模型的快速更新,用户可能在手机界面上看到2号节点在电子地图上消失的同时,1号节点与3号节点自动连成线路。

又例如,在一个示例中,在1号节点是变电站、2号节点是开关、3号节点是变压器的情况下,在用户通过手机终端删除2号开关节点时,若按照第一预定规则,1号节点无法与3号节点直接连线,则用户可能在手机界面上看到2号节点在电子地图上消失的同时,2号节点与1号节点和3号节点的连线也自动断开。

因此,根据本公开的实施例提供的上述建模分析方法10,当物理节点信息发生变化时,例如,某一物理节点被移动、删除、新增等,物理层模型会自动发生变化,即,基于变化后的物理节点信息自动连线,如此,不会浪费大量人力资源去手动修改线路,也不会出现无法连接的情况。

例如,在本公开至少一个实施例中,对于步骤S102,基于物理节点的位置信息和类型信息按照第一预定规则自动构建物理层模型还可以包括:在用户终端保持移动的同时,响应于采集到物理节点的位置信息和类型信息,实时显示物理节点以及其与相邻物理节点之间自动生成的线路。

例如,在本公开至少一个实施例中,当用户持用户终端(例如手机)沿着路线边走边采集周围节点信息时,响应于采集到节点信息,用户终端上会自动实时地在电子地图上显示所采集到的物理节点,以及该物理节点与相邻物理节点之间的线路。如此,用户可以实时、快速、自动地在用户终端上查看网络图。

为了扩展现有的网络模型,且不破坏原有物理层模型和逻辑层模型,本公开至少一个实施例还提供一种用于设备管理网络的建模分析方法20。例如,该建模分析方法20,除了上述步骤S101-S103以外,还包括以下步骤:

步骤S201:采集附加节点的位置信息,获取附加节点的类型信息和状态信息;

步骤S202:基于附加节点的位置信息、类型信息和状态信息,构建附加层模型以用于扩展网络模型;

步骤S203:以电子地图为背景,在相应位置上自动显示附加节点的类型信息和状态信息。

例如,在本公开至少一个实施例中,附加节点对应于随着系统功能的扩展而出现的对系统分析产生重大影响的附加设备,例如,附加设备可以是某一种附属状态的基本组成部分。随着系统功能的增加,这类附属状态可以有很多种,每种状态可以有许多个组成单元,附加设备是在网络模型建成后相继诞生的,可以作为新的物理单元进行显示,但不影响原有网络的物理连接,也可以作为新的逻辑单元参与分析,但不影响原有网络的逻辑连接。附加节点是以物理或逻辑网络附加状态的角色出现,对网络的分析带来更多的影响。对于附加层模型中的附加节点,包括附加设备的物理状态或逻辑连接状态,或者二者都有。附加设备可以是具有物理状态的设备直接增加到物理层模型的设备类型中,进行图形的显示,由于是后来附加到图形中的,所以不破坏原有设备的连接方式,不影响原有物理网络的显示。附加设备也可以是具有逻辑连接状态的设备。设备之间的连接关系可以是有连接规则的,也可以是没有连接规则的,可以参与网络的分析,丰富系统分析的内容。附加层模型是网络模型不断扩展功能的基础,也是网络高级分析的基础。

图7为本公开至少一个实施例提供的一种电网附加层模型的示意图。

例如,在本公开至少一个实施例中,以电网建模为示例,如图7所示,电网系统中的附加设备可以是附加在电杆或电线上的电网监测设备,也可以是向具有接收功能的电杆发送灯光或图像的设备,例如图像监测设备、灯光监测设备等,本公开的实施例对此不作限制。例如,附加设备可以不是电网模型中物理层的基本组成单元,电网的组成不依赖其存在,也可以不是电网模型中逻辑层的基本组成部分,网络的基本分析可以不需要其支持。附加设备按照功能的不同,可以根据直接安装在电线或电杆上的设备监测电流的大小,也可以通过周围的光源来间接的判断是否停电,还可以通过分析周围火灾的图像,提供停电故障的预警等。随着未来系统功能的扩展,还可以扩展出更多的附加信息来源,本公开的实施例对此不作限制。例如,附加设备可以是物理设备,如电网监测设备,可以在物理网络的组成中进行显示,还可以参与逻辑层的网络分析。又例如,附加设备还可以是灯光、图像之类非物理的设备信息,只能参与逻辑层的网络分析。由于附加设备是在基本的物理层模型和逻辑层模型建成后相继诞生的,对原有的物理层、逻辑层的连接不构成影响,但对电网的高级分析发挥巨大的作用。

例如,在附加层的设备类型中,电网监测设备是安装在电线杆或线路上,它通过提供信息的方式,实时监测电网是否有电,并参与分析电网的供电状态,所以它既有物理状态或逻辑连接状态。但它的安装位置可以显示在电网图中,可以作为所在线路或设备属性的一部分,使线路或设备参与逻辑的分析,如图7所示。

图8A示出了本公开至少一个实施例提供的一种系统结构分层示意图,图8B示出了本公开至少一个实施例提供的一种仿真系统模型示意图,图8C示出了本公开至少一个实施例提供的一种电网系统图。

例如,如图8A和8B所示,在本公开至少一个实施例中,以上物理层、逻辑层、附加层三层模型的叠加,可以构成网络模型的完整结构。例如,在一个示例中,基于获取的各种物理设备的位置信息、类型信息和状态信息等,对不同类型的设备进行不同的处理,快速完成仿真网络模型的构建,例如,如图8B所示的仿真网络模型。

例如,在一个示例中,以电网建模为示例,如图8C所示,在网络模型建立时,可以按照预定的物理和逻辑连接规则,自动的同步完成电网物理层和逻辑层模型的组建,根据后续增加的各类监测设备,进行附属层的添加。例如,物理层模型使电网图正常显示,逻辑层模型使电网图具备分析功能,附加层模型使电网图可以自动、快速地进行分析判断,三者的共同作用,构成了可以实时显示电网现状的网络模型,并且可以快速、自动的给出故障的分析结果,例如停电分析结果等。

例如,在本公开至少一个实施例中,以电网建模为示例,如图8C所示,从作为变电站的电源开始,按编号的顺序采集电杆和设备,根据设备的不同类型,同步完成物理层和逻辑层网络的建立。然后,根据电杆和电线上监测设备的位置,将设备显示在物理层的电网图上。同时,将监测设备作为所在电线和电杆的属性加入到附加层中,通过电网状态信息(有电或停电)的显示,使不具备逻辑分析功能的电线和电杆加入到逻辑分析中,成为电网高级分析的一部分,从而完成了实时显示电网现状网络模型的建立。

例如,在本公开至少一个实施例中,上述建模分析方法还可以包括根据逻辑层模型中逻辑节点之间的拓扑关系,在电子地图上自动显示设备管理网络中的信号或流体的走向。

例如,在一个示例中,在电子地图上显示设备管理网络中的信号或流体的走向,包括:在电子地图上,利用带箭头的线路来显示设备管理网络中的信号或流体的走向。当然也可以利用其他的方式(例如,仿真分析结果等)来显示信号或流体的走向,本公开的实施例对此不作限制。

例如,在本公开至少一个实施例中,设备管理网络可以是电网管理网络,则设备管理网络中的信号或流体的走向是该电网管理网络中的供电方向,当然,本公开的实施例对此不作限制。

例如,在本公开至少一个实施例中,上述建模分析方法还可以包括:响应于场景界面中的分析功能按钮被触发,显示相应的仿真分析结果。

例如,在本公开至少一个实施例中,基于步骤S102和步骤S103中建立的网络模型具有网络分析功能。例如,在一个示例中,在用户终端显示的场景界面中存在分析功能按钮,当用户触发某一分析功能按钮时,响应于场景界面中的分析功能按钮被触发,用户终端会显示相应的仿真分析结果。例如,以电网建模为示例,当用户在用户终端上触发停电分析按钮时,用户终端会自动显示相应的停电分析结果。

例如,在本公开至少一个实施例中,响应于场景界面中的分析功能被触发,通过控制线路的颜色变化,显示仿真分析结果。例如,在一个示例中,某一电网线路中的开关断开而导致停电,响应于场景界面中的停电分析功能被触发,通过改变该开关控制的线路的颜色,来告知用户该线路停电。当然,也可以通过其他方式来告知用户该线路停电,例如向特定区域的用户发送消息等,本公开的实施例对此不作具体限制。

例如,在本公开至少一个实施例中,上述操作,响应于场景界面中的分析功能被触发,显示仿真分析结果可以是由用户终端实时在线自动执行的,例如通过移动互联网等,本公开的实施例对此不作限制。

例如,在本公开至少一个实施例中,上述操作,用户终端采集物理节点的位置信息、类型信息和状态信息可以是通过移动互联网实时在线执行的,用户终端也可以通过其他方式自动联网,本公开的实施例对此不作限制。

例如,在本公开至少一个实施例中,用户终端在执行数据采集操作(例如,上述步骤S101或步骤S201)后,可以通过移动互联网(例如,5G、4G等)等将所获取的节点信息(例如,物理节点或/和附加节点的位置信息、类型信息和状态信息等)发送至仿真分析服务器,以用于在仿真分析服务器端构建网络模型,然后也可以通过移动互联网接收来自仿真分析服务器的仿真分析结果,以用于显示。当然,本公开的实施例对用户终端和仿真分析服务器之间的具体通信方式不作限制。在仿真分析服务器端的具体操作在下文详细描述。

例如,在本公开至少一个实施例中,用户终端(例如,手机)可以通过移动互联网自动联网,并且上述建模分析方法10和20可以是由用户终端实时在线自动执行的,本公开的实施例对此不作限制。

本公开至少一个实施例提供的建模分析方法通过分类分层的方式,结合预定的规则(例如,第一预定规则、第二预定规则等),快速完成网络模型的建立,通过附加层的叠加,可以在不影响原有网络结构的情况下,给网络的无限扩展预留了空间。例如,本公开至少一个实施例提供的上述建模分析方法10和20包括但不限于如下优点:

第一:现有网络模型的建立需要的人工参与较多,经常在采集完设备的位置和属性信息后,需要人工建立逻辑关系的连接,随着逻辑关系的变化(例如,电网设备从父子关系变成连接关系),设备的逻辑连接需要人工手动处理。

图9A为本公开至少一个实施例提供的一种双电源供电示意图,图9B为本公开至少一个实施例提供的一种双电源供电转换示意图。例如,如图9A所示,在双电源供电的情况下,通常情况下,右侧变电站处于虚线的断开状态,电源来自左侧的变电站,则左侧变电站通过逐级开关向变压器供电,设备之间可以以一种从父到子的逻辑关系表示供电的方向。例如,如图9B所示,当左侧变电站处于虚线断开状态,网络电源来自右侧的变电站,图中开关的供电方向发生了变化。这种情况下,原有的父子关系是错误的,必须将模型中设备间的父子关系改为连接关系。对于这种情况,本公开至少一个实施例提供的建模分析方法10和20只需更改模型的连接规则的设置,无需做大的调整,即可自动完成逻辑关系的快速调整。

第二:现有网络模型的扩展性受限。随着新种类设备的加入,必须修改原有模型结构。本公开至少一个实施例提供的建模分析方法20通过第三层附加层的建立,给网络模型的无限扩展提供了契机,而且新设备的加入不破坏现有物理层的显示和逻辑层连接的结构,对现有模型不造成大的影响,是一种附加的效应。

第三:简化了逻辑设备的数量,大幅提高了检索分析的效率。通过对逻辑层和附加层设备的定义,可随时自动调整参与网络分析的设备数量,不仅大幅提高检索分析的效率,而且方便了网络分析模型的变化。

以上介绍了根据本公开实施例的在用户终端执行的建模分析方法,下面进一步介绍根据本公开实施例的在管理端执行的建模分析方法。该方法与前述实施例中的方法对应,为了说明书的简洁,以下仅作简要描述,具体可以参见前述实施例中的建模分析方法。

例如,本公开至少一个实施例提供的一种用于设备管理网络的建模分析方法,应用于管理终端,包括以下操作S301-S303:

步骤S301:获取物理节点的位置信息、类型信息和状态信息。

例如,在本公开至少一个实施例中,管理终端获取物理节点的信息可以是通过操作人员向管理终端手动录入节点信息,也可以是读取本地保存的节点信息,或者从互联网上下载节点信息,还可以是通过扫描图片以自动识别节点信息等,本公开的实施例对管理终端获取节点信息的方式不作具体限制。

步骤S302:基于物理节点的位置信息和类型信息,按照第一预定规则自动构建物理层模型,以将物理节点自动连成线路,以电子地图为背景,在相应位置上自动显示物理节点以及物理节点之间的线路。

步骤S303:基于物理节点的类型信息和状态信息,按照第二预定规则,自动构建逻辑层模型,以便构建网络模型。

例如,在本公开至少一个实施例中,步骤S302和步骤S303的操作分别与上述步骤S102和步骤S103相似,关于这些操作的说明可以参考上文中关于步骤S102-步骤S103的相关描述,此处不再赘述。

例如,在本公开至少一个实施例中,对应于用户终端执行的上述步骤S201-S202,管理终端也可以获取附加节点的位置信息、类型信息和状态信息;然后基于附加节点的位置信息、类型信息和状态信息,构建附加层模型以用于扩展网络模型;然后,以电子地图为背景,在相应位置上自动显示附加节点的类型信息和状态信息。

在本公开的实施例中,管理终端除了可以执行与用户终端的上述建模分析方法类似的操作以外,还可以具有管理功能。例如,当用户终端采集到节点信息,生成相应的网络图和网络分析结果后,操作人员可以进行实地审核后,通过管理终端确认信息有效或无效。例如,在一个示例中,操作人员可以通过管理终端维护系统数据,管理用户账户、授予用户权限,确定版本更新等,本公开的实施例对此不作具体限制。

例如,在本公开至少一个实施例中,与用户终端类似,管理终端在获取节点信息后,可以通过移动互联网、无线局域网等将所获取的节点信息(例如,物理节点或/和附加节点的位置信息、类型信息和状态信息等)发送至仿真分析服务器,以用于在仿真分析服务器端构建网络模型,然后通过移动互联网、无线局域网等接收来自仿真分析服务器的仿真分析结果,以用于显示。当然,本公开的实施例对管理终端和仿真分析服务器之间的具体通信方式不作限制。

例如,在本公开至少一个实施例中,与用户终端类似,管理终端可以通过移动互联网自动联网,并且上述建模分析方法10和20可以是由管理终端实时在线自动执行的,本公开的实施例对此不作限制。

以上介绍了根据本公开实施例的在管理终端执行的建模分析方法,下面进一步介绍根据本公开实施例的在仿真分析服务器执行的建模分析方法。该方法与前述实施例中的方法对应,为了说明书的简洁,以下仅作简要描述,具体可以参见前述实施例中的建模分析方法。

例如,本公开至少一个实施例提供的一种用于设备管理网络的建模分析方法,应用于仿真分析服务器,该建模分析方法包括以下操作:

步骤S401:接收物理节点的位置信息、类型信息和状态信息。

例如,在一个示例中,仿真分析服务器可以通过移动互联网、无线局域网等从用户终端接收到物理节点的位置信息、类型信息和状态信息,还可以包括其他信息,例如图像信息等,本公开的实施例对此不作限制。例如,在一个示例中,仿真分析服务器可以通过移动互联网、无线局域网等从管理终端接收到物理节点的位置信息、类型信息和状态信息等。

步骤S402:基于物理节点的位置信息和类型信息,按照第一预定规则,自动构建物理层模型,以将物理节点自动连成线路,该物理层模型用于以电子地图为背景,在相应位置上自动显示物理节点以及物理节点之间的线路。

步骤S403:基于物理节点的类型信息和状态信息,按照第二预定规则,自动构建逻辑层模型,以便构建网络模型,

步骤S404:响应于接收到请求数据,生成仿真分析结果。

步骤S402和S403与上述步骤S102和S103类似,关于此操作的说明可以参考上文中关于步骤S102和步骤S103的相关描述,此处不再赘述。

例如,对于步骤S404,在一个示例中,响应于仿真分析服务器接收到来自用户终端或管理终端的请求数据(例如,停电分析、电源跟踪等),生成仿真分析结果,并将仿真分析结果发送至用户终端或管理终端,以供用户查看。

例如,在本公开至少一个实施例中,仿真分析服务器可以从用户终端接收物理节点的位置信息、类型信息和状态信息,以用于在仿真分析服务器端构建网络模型,并将在仿真分析服务器端生成的仿真分析结果发送至用户终端。

例如,在本公开至少一个实施例中,从用户终端接收物理节点的位置信息、类型信息和状态信息可以包括:通过移动互联网从用户终端接收物理节点的位置信息、类型信息和状态信息。例如,将仿真分析结果发送至用户终端可以包括:通过移动互联网将仿真分析结果发送至用户终端。需要说明的是,本公开的实施例对用户终端和仿真分析服务器之间的通信方式不作具体限制。

例如,在本公开的至少一个实施例中,应用于仿真分析服务器的建模分析方法建模分析方法还可以包括:响应于接收到附加节点的信息,基于附加节点的信息构建附加层模型,该附加层模型用于扩展网络模型。关于构建附加层模型操作的说明可以参考上文中关于步骤S202的相关描述,此处不再赘述

例如,本公开至少一个实施例还提供了一种应用于电网管理系统的建模分析方法。该方法包括:

步骤S601:通过用户终端采集电网设备的位置信息、类型信息和状态信息,该采集包括通过用户输入、用户终端的定位功能或者通过用户终端拍照并自动识别电网设备的位置信息、类型信息和状态信息。

步骤S602:基于电网设备的位置信息和类型信息,按照第一预定规则,自动构建物理层模型,以将电网设备自动连成线路,并以电子地图为背景,在相应位置上自动显示电网设备以及电网设备之间的线路。

步骤S603:基于电网设备的类型信息和状态信息,按照第二预定规则,自动构建逻辑层模型,以便构建网络模型。

步骤S604:响应于场景界面中的停电分析功能被触发,显示停电分析结果。

例如,在本公开至少一个实施例中,步骤S601-步骤S603的操作与上述步骤S101-步骤S103相似,关于这些操作的说明可以参考上文中关于步骤S101-步骤S103的相关描述,此处不再赘述。

例如,在一个示例中,利用上述建模分析方法进行电网建模后的电网图还可以具有故障定位、供电范围分析、停电信息发送等功能。

例如,在本公开至少一个实施例中,用户终端(例如,手机)可以通过移动互联网自动联网,并且上述应用于电网管理系统的建模分析方法可以是由用户终端实时在线自动执行的,本公开的实施例对此不作限制。

图10为本公开至少一个实施例提供的电网故障定位示意图。例如,在一个示例中,在采用上述建模分析方法,用户通过手机沿路线采集电网设备的信息后,基于采集到的电网设备信息,构建电网模型。例如,可以利用电源追踪功能,分析故障点的交汇处,即为故障电源点,如图10所示,接收到用户1和用户2发出停电信息后,其上级电源交汇处位于开关2,则开关2即为故障电源点。这种情况下,电网公司断开开关2后,从变电站到开关2之间的线路即可恢复正常供电。例如,在一个示例中,还可以基于附加设备(例如,电网监测设备、图像监测设备等)确定用户1和用户2位置所在线路停电,从而确认上级电源交汇处位于开关2,则开关2即为故障电源点。

例如,本公开至少一个实施例还提供了一种根据上述建模分析方法的工作范围分析方法,包括:基于由物理节点和线路组成的网络模型,分析网络模型中与物理节点对应的工作线路;自动连接该工作线路的各个末端节点,并且按照第三预定规则,在电子地图上形成与该物理节点对应的闭合区域,该闭合区域为该物理节点对应的工作范围。

例如,以电网管理系统为示例,通过上述建模分析方法构建电网模型(由物理节点和线路组成的网络模型)后,可以对电网模型中的某一电网设备(即,物理节点)进行工作范围的分析,即供电范围的分析。

图11为本公开至少一个实施例提供的供电范围分析图。例如,在一个示例中,如图11所示,在建立电网模型以后,对于供电范围分析功能,例如首先分析从电源点(例如,变电站)供电的线路,即工作线路,将各个末端的节点连接起来,即为该线路的供电范围。例如,距离最远端的节点即为线路的供电距离,系统可以自动完成各段线路长度的累加,即为线路的总长度。在实践中,末端节点的连接通常沿电子地图上的道路进行。例如,在两条线路中间的区域,可以通过预定的规则(例如,第三预定规则)进行划分。例如,第三预定规则可以定义为:连接分别处于不同工作线路上的相邻设备之间的中间点,形成的连线为区域边界,从而形成各条线路完整的供电区域。需要说明的是,第三预定规则可以基于经验、实际需求等来设置,本公开的实施例对第三预定规则的具体内容不作限制。

例如,在图11所示的示例中,通过两个变电站所属的工作线路分别形成了各自的供电区域。例如,首先分析两个变电站各自对应的工作线路,通过自动连接各自工作线路的末端节点,并按照第三预定规则,例如在两条线路中间部分,以设备的共同中线为边界,则可以形成两个工作线路独立的闭合区域,分别是两个变电站各自对应的供电范围。

例如,在本公开至少一个实施例中,响应于用户界面中的分析功能被触发,可以在客户端显示供电范围的分析结果。

该工作范围分析方法还包括:向与物理节点对应的工作范围内的用户发送信息,该信息至少包括图片和文字。例如,在一个示例中,当某地供电局计划下周对某一电网设备进行检修时,则可以提前向该电网设备对应的工作范围内的用户发送图文并茂的信息,例如,该信息包括但不限于待检修的设备名称、设备图像、受影响的区域图像、估计检修时间等。

例如,在本公开至少一个实施例中,当检测到某一物理节点(例如某一电网设备)发生故障时,可以向与该物理节点对应的工作范围内的用户发送故障信息。例如,该故障信息包括但不限于故障原因、故障范围(例如,对应故障范围的地图图像)和预估故障处理时间、故障线路名称等。

例如,在一个示例中,针对图10的停电状况,可将开关2供电范围内的电子地图,以微信等方式向该区域内的用户发送图文并茂的停电信息。例如,该停电信息可以包括故障的类型(例如,变电站、开关故障等)、停电线路、停电区域图像、预估停电时间等,以缓解用户的焦虑。

例如,在本公开的实施例中,向与物理节点对应的工作范围内的用户发送信息,可以包括向该工作范围内的个人用户或者企业用户等发送信息。例如,在一个示例中,可以通过移动互联网、无线局域网等向用户终端、管理终端等发送信息,例如用户终端、管理终端等可以将该信息显示在显示屏幕上,以供用户快速查看。例如,该信息至少包括图片和文字,例如可以以彩信、微信、邮件等方式发送至用户,本公开的实施例对此不作具体限制。

需要说明的是,上述设备工作范围分析方法可以适用于电网管理系统、水管网管理系统、燃气管网管理系统等,本公开的实施例对此不作具体限制。例如,在一个示例中,当检测到某一处的水管故障(例如水管爆裂等),通过上述设备工作范围分析方法,可以向该故障水管的供水范围内的用户,即停水的用户,发送图文并茂的停水信息,例如停水时间、停水原因和停水范围等。这样,可以解决目前电网、自来水、天然气等市政公司只能发布文字故障信息的现状。

例如,在本公开至少一个实施例中,用户终端(例如,手机)可以通过移动互联网自动联网,并且上述设备工作范围分析方法可以是由用户终端实时在线自动执行的,本公开的实施例对此不作限制。

例如,本公开的至少一个实施例还提供了一种网络模型更新方法,需要说明的是,该网络模型更新方法可以支持分布式的并发访问和网络图的合并。还需要说明的是,该网络模型更新方法可以适用于电网管理模型、水管网管理模型、燃气管网管理模型等,还可以适用于其他数据管理模型,例如道路网络模型(例如用于百度地图、谷歌地图等)、气象数据管理模型等,本公开的实施例对此不作具体限制。

例如,在本公开至少一个实施例中,该网络模型更新方法可以包括以下步骤S701-S704。

步骤S701:将电子地图划分成多个区域。

例如,在一个示例中,为了方便新区域的网络快速建模,按照网格或者行政边界等方式将电子地图划分成多个区域。

步骤S702:在网络更新过程中,从多个用户终端接收到对于同一区域的不同内容的节点信息时,分别为多个用户终端中的每一个生成对应的网络模型,形成多个网络模型。

例如,在一个示例中,多个注册用户可以同时进行同一区域(例如,同一条线路、同一个小区等)的数据采集,并且支持同时提交。例如,在一个示例中,每个注册用户提交的数据可以在仿真分析服务器形成以独立版本号命名的独立提交图层。

例如,在一个示例中,可以采用本公开的实施例提供的上述建模分析方法,基于每个用户终端提交的数据,为每一个用户终端生成对应的网络模型。需要说明的是,也可以采用其他常规的建模方法,以基于每个用户终端提交的数据,为每一个用户终端生成对应的网络模型,本公开的实施例对建模方法不作具体限制。

步骤S703:基于第二预定条件,从多个网络模型中选择一个网络模型,以图层的方式保存,作为对应当前时刻的提交图层。

例如,在一个示例中,第二预定条件可以包括以下内容中的至少一个:网络模型中包括的物理节点的数量最多(例如,包括的设备数量最多)、网络模型中包括的地图区域面积最大、网络模型中包括的地图线路最长、网络模型中包括的物理节点的类型最多等。例如,在一个示例中,第二预定可以为网络模型中包括的地图区域面积最大并且物理节点的数量最多。当然,第二预定条件可以根据实际需求来设置,本公开的实施例对此不作限制。

步骤S704:当所保存的提交图层的数量达到阈值,或者距第一提交图层预定时间后,基于第三预定条件,从多个提交图层中选择一个提交图层,作为时间图层,以用于网络模型的更新。

例如,在一个示例中,与第二预定条件类似,第三预定条件可以包括以下内容中的至少一个:网络模型中包括的物理节点的数量最多(例如,包括的设备数量最多)、网络模型中包括的地图区域面积最大、网络模型中包括的地图线路最长、网络模型中包括的物理节点的类型最多等。当然,第三预定条件可以根据实际需求来设置,本公开的实施例对此不作限制。

例如,以电网建模为示例,可以将时间图层版本在电网图上显示,并与现有图层版本通过不同颜色的显示方式进行比对。例如,将确定的时间图层版本作为正式的电网模型版本予以更新。例如,在一个示例中,任何注册用户均可以通过在电网图上标注或提交版本图层的方式,对现有电网数据的正确性进行评价,方便系统维护人员进行现场的核实。对核实有效的数据,系统管理员可在用户终端或者管理端进行部分设备的更新。

需要说明的是,提交图层的内容不限大小,可以是一段线路,也可以是部分设备,只要确认有效,即可转化为时间图层进行正式提交。

例如,在本公开至少一个实施例中,上述网络模型可以包括道路网络模型,本公开的实施例对此不作限制。

例如,在本公开至少一个实施例中,上述网络模型更新方法可以是在服务器端执行的。例如,在本公开至少一个实施例中,用户终端(例如,手机)可以通过移动互联网自动联网,并且上述网络模型更新方法可以是由用户终端实时在线自动执行的,本公开的实施例对此不作限制。

因此,本公开至少一个实施例提供的基于上述建模分析方法的网络模型更新方法,可以有效处理多人并发的数据采集问题,也提供了一种网络模型的更新方式。

例如,本公开至少一个实施例还提供了一种用户终端,包括存储器和处理器,该存储器中存储指令,该处理器执行指令时,使用户终端执行本公开的实施例提供的任一建模分析方法。

例如,本公开至少一个实施例还提供了一种网络服务器,包括存储器和处理器,该存储器中存储指令,该处理器执行指令时,使网络服务器执行本公开的实施例提供的建模分析方法、工作范围分析方法、网络模型更新方法中的任一种方法。

有以下几点需要说明:

(1)本公开实施例附图只涉及到本公开实施例涉及到的结构,其他结构可参考通常设计。

(2)在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合以得到新的实施例。

以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,本公开的保护范围应以所述权利要求的保护范围为准。

相关技术
  • 用于设备管理网络的建模分析方法和网络模型更新方法
  • 用于设备管理网络的建模分析方法和网络模型更新方法
技术分类

06120112859584