掌桥专利:专业的专利平台
掌桥专利
首页

混合电动车辆及其换档控制方法以及计算机可读记录介质

文献发布时间:2024-04-18 19:58:21


混合电动车辆及其换档控制方法以及计算机可读记录介质

技术领域

本公开涉及能够通过换挡期间的干预控制确保一致且精确的换挡感觉的混合电动车辆及其换挡控制方法。

背景技术

最近,随着对环境关注度的增加,具有电机作为动力源的环保型车辆正在增加。环保型车辆也被称为电气化车辆,并且其代表性示例可包括混合电动车辆(HEV)或者电动车辆(EV)。

具有由发动机和电机组成的两个动力源的混合电动车辆可取决于发动机和电机在利用两个动力源驱动的过程中如何协调地操作而提供最佳输出和扭矩。

具体地,在采用并行式(或变速器安装式电气设备(TMED)型)混合系统的混合电动车辆中,其中,电机和发动机离合器(EC)安装在发动机和变速器之间,发动机和电机的输出可以同时传输到驱动轴。

同时,当变速器执行换挡操作时,具体地,在换挡至更高级期间,车辆可执行干预控制以减小驱动源的扭矩和变速器的输入轴的动能,用于平稳换挡和离合器保护。

在干预控制期间,可能出现的问题在于,用于减轻换挡延迟感觉的耦接离合器的快速接合引起换挡冲击发生,并且用于减轻冲击的过度延长的换挡时间引起延迟感觉,或者引起对摩擦材料的热损坏。

当混合电动车辆对发动机执行干预控制时,因为由于发动机的特性可能缺乏一致性和精确性,所以在换档期间可能出现换档延迟或换档冲击的感觉。

上述内容仅旨在帮助理解本公开的背景,并不旨在意味着本公开落入本领域技术人员已知的现有技术的范围内。

发明内容

因此,考虑到现有技术中出现的上述问题做出了本公开,并且本公开的目的是提供采用多个电机的混合电动车辆,从而通过在变速期间使用于电机的干预控制量最大化并使用于发动机的干预控制量最小化来确保一致和精确的换挡感觉。

在本公开中实现的技术问题不限于上述技术问题,并且本公开所属领域的普通技术人员将从以下描述中清楚地理解未提及的其他技术问题。

为了实现上述目的,根据本公开的一方面,提供了一种混合电动车辆,包括:发动机;第一电机,直接连接至发动机;发动机离合器;第二电机,通过发动机离合器选择性地连接至第一电机;变速器,直接连接至第二电机;变速器控制器,被配置为确定变速器是否需要换挡;以及混合控制器,配置为当发动机离合器处于锁定状态时,将根据从变速器控制器接收的换档信号的目标扭矩减小量与第一电机的干预限制和第二电机的干预限制进行比较,以基于比较结果分别设置发动机、第一电机和第二电机的扭矩减小量,并基于设置的扭矩减小量输出分别用于控制发动机、第一电机和第二电机的扭矩的扭矩命令。

此外,根据本公开的另一方面,提供了一种控制包括发动机、第一电机、发动机离合器、第二电机和变速器的混合电动车辆的换挡的方法,该方法包括:当需要变速器换挡时计算目标扭矩减小量;确定发动机离合器是否处于锁定状态;当确定发动机离合器处于锁定状态时,通过将第一电机和第二电机指定为较高优先级控制电机和较低优先级控制电机来设置干预控制序列;基于目标扭矩减小量与较高优先级控制电机的干预限制的比较结果,设置较高优先级控制电机的扭矩减小量;以及当目标扭矩减小量超过较高优先级控制电机的干预限制时,设置所述较低优先级控制电机的扭矩减小量,其中第一电机直接连接至发动机,并且第二电机直接连接至变速器的输入轴。

根据本公开,通过在换挡期间最大化用于多个电机的干预控制量和最小化用于发动机的干预控制量可以确保一致和精确的换挡感觉。

本领域技术人员应当理解,可以利用本公开实现的效果不限于上述那些效果,并且根据以下详细描述将清晰地理解本公开的其他优点。

附图说明

图1示出了在根据本公开的示例的混合电动车辆中的传动系的配置的示例;

图2示出了根据本公开的示例的混合电动车辆中的控制系统的配置的示例;

图3是示出了根据本公开示例的混合电动车辆的换挡控制系统的示例性配置的框图;

图4是示出图3中示出的混合电动车辆的换挡控制方法的示例的流程图;以及

图5A、图5B、图5C、图6A、图6B和图6C是示出根据本公开的一个示例的示例性换挡干预控制过程的示图。

具体实施方式

在下文中,将参考附图详细描述本说明书中公开的实施方式,其中,对相同或类似的组件标注相同的附图标记,省略重复的说明。以下描述中使用的组件的后缀“模块”和“部分”仅考虑到构造规范的容易程度而给出或互换,其本身没有不同的含义或功能。此外,在描述本说明书中公开的实施方式时,当确定相关已知技术的详细描述可能使本说明书中公开的实施方式的要点模糊时,将省去其详细描述。此外,附图仅用于容易理解本说明书中公开的实施方式,使得本文所公开的技术精神不受附图的限制,因此附图应被理解为覆盖包括在本公开的精神和范围内的所有改变、等同物或替换。

应当理解,尽管本文中可使用术语“第一”、“第二”等来描述各种元件,但这些元件不应受这些术语限制。这些术语仅用于将一个元件与另一个元件区分开。

将理解,当元件被称为“连接”或“耦接”至另一元件时,其可直接连接或耦接至另一元件,或者其间可存在中间元件。相反,将理解,当元件被称为“直接连接”至另一元件时,不存在中间元件。

如本文所使用的,除非上下文另有明确指示,否则单数形式“一”、“一个”和“该”旨在也包括复数形式。

将进一步理解的是,当在本说明书中使用术语“包含(comprises)”和/或“包含(comprising)”或“包括(includes)”和/或“包括(including)”时,其指定特征、整体、步骤、操作、元件、组件或其组合的存在,但不排除一个或多个其他特征、整体、步骤、操作、元件、组件或其组合的存在或添加。

此外,包括在电机控制单元(MCU)、混合控制单元(HCU)等的名称中的单元或控制单元仅是在控制特定车辆功能的控制器的命名中广泛使用的术语,而并不表示通用功能单元。例如,相应的控制器可包括:通信设备,与其他控制器或传感器通信以控制其自身的功能;存储器,存储操作系统或逻辑命令和输入/输出信息;以及一个或多个处理器,执行控制其自身的功能所必需的判断、操作和确定。

在描述根据本公开的实施方式的混合电动车的轴控制系统配置和换档控制方法之前,将首先描述可应用于这些实施方式的混合电动车的结构和控制系统。

图1示出了在根据本公开的实施方式的混合电动车中的动力传动系的配置的示例。

参见图1,示出了采用并行式混合电动系统的混合电动车辆的动力传动系,在该并行式混合电动系统中,两个电机120和140以及发动机离合器130安装在内燃机(ICE)110与变速器150之间。这种并行式混合系统也称为变速器安装式电驱动(TMED)混合系统,因为电机140总是连接到变速器150的输入级。

这里,在两个电机120和140中,第一电机120布置在发动机110与发动机离合器130的一侧之间,并且发动机110的发动机轴和第一电机120的第一电机轴彼此直接连接,使得发动机轴和电机轴能够始终一起旋转。

第二电机140的第二电机轴的一侧可连接至发动机离合器130的另一侧,并且第二电机轴的另一侧可直接连接至变速器150的输入级。

第二电机140可具有比第一电机120更大的输出,因此,第二电机140可用作驱动电机。此外,当启动发动机110时,第一电机120可以用作用于起动发动机110的启动电机,当发动机110停止时,第一电机120可以通过发电回收发动机110的旋转能量,并且可以在发动机110的操作期间利用发动机110的动力执行发电。

当在启动具有如图1所示的动力传动系的混合电动车辆(例如,HEV准备)之后驾驶员踩踏加速器踏板时,在发动机离合器130断开的状态下使用电池的动力驱动第二电机140。因此,当第二电机140的动力通过变速器150和最终驱动(FD)160(即,EV模式)传输时,车轮被激活。当车辆逐渐加速从而需要更大的驱动力时,第一电机120可操作以起动发动机110。

当在启动发动机110之后发动机110和第二电机140之间的旋转速度差在预定范围内时,发动机离合器130接合在发动机110和第二电机140之间,使得发动机110和第二电机140将一起旋转(即,从EV模式切换至HEV模式)。因此,通过扭矩混合过程,第二电机140的输出减小并且发动机110的输出增加,从而满足驾驶员要求的扭矩。在HEV模式中,发动机110可满足大部分所需扭矩,并且发动机扭矩与所需扭矩之间的差可通过第一电机120和第二电机140中的至少一个来补偿。例如,当发动机110考虑到发动机110的效率而输出高于所需扭矩的扭矩时,第一电机120或第二电机140通过发动机扭矩过剩来产生动力,并且当发动机扭矩小于所需扭矩时,第一电机120和第二电机140中的至少一个可以输出不足的扭矩。

当如在车辆减速度等中预设的发动机关闭条件被满足时,发动机离合器130断开并且发动机110停止(即,从HEV模式切换到EV模式)。在减速期间,使用车轮的驱动力通过第二电机140对电池充电,这被称为制动能量再生或再生制动。

通常,变速器150可以是有级变速器或多片式离合器,例如双离合器变速器(DCT)。

图2示出了根据本公开的实施方式的混合电动车中的控制系统的配置的示例。

参考图2,在可应用本公开的实施方式的混合电动车辆中,内燃机110可由发动机控制器210控制,第一电机120和第二电机140可由电机控制器(MCU)220扭矩控制,并且发动机离合器130可由离合器控制器230控制。这里,发动机控制器210也称为发动机管理系统(EMS)。此外,变速器150由变速器控制器250控制。

电机控制器220可以基于电机角度、相电压、相电流以及每个电机120或140的所需扭矩利用脉冲宽度调制(PWM)控制信号控制栅极驱动单元。因此,栅极驱动单元可控制驱动电机120和140中的每一个的逆变器。

每个控制器可连接至作为其上部控制器的混合控制器(或混合控制单元(HCU))240,该混合控制器240控制包括模式切换过程的整个动力传动系,以将关于发动机离合器控制的信息和/或关于发动机停止控制的信息提供至混合控制器240或者根据控制信号执行操作,发动机离合器控制的信息和/或关于发动机停止控制的信息是在混合控制器240的控制下在驱动模式切换或变速期间所需要的。

例如,混合控制器240根据车辆行驶状态确定是否在EV-HEV模式或CD-CS模式之间执行切换(在PHEV的情况下)。为此,混合控制器可以确定发动机离合器130的分离(断开)时刻,并且在分离期间执行液压控制。此外,混合控制器240可以确定发动机离合器130的状态(锁定、滑动、断开等)并且控制停止发动机110的燃料喷射的时刻。此外,混合控制器可将用于控制第一电机120的扭矩的扭矩指令传输至用于发动机停止控制的电机控制器220,以控制发动机旋转能量回收。此外,混合控制器240可确定驱动源(发动机110、电机120和140)中的每个的状态,从而确定由各个驱动源(发动机110、电机120和电机140)共享的所需驱动力,并且将扭矩指令传输至控制器210和220以用于控制各个驱动源以满足所需扭矩。

当然,对本领域的技术人员显而易见的是,控制器之间的上述连接关系和各个控制器的功能/分类是示例性的,并且不受其名称的限制。例如,混合控制器240可以被实施为使得相应的功能在其他控制器中的任何一个中被替换和提供,或者相应的功能可以在其他控制器中的两个或更多个中分布和提供。

对于本领域的技术人员显而易见的是,上述图1和图2的配置仅是混合电动车辆的一个配置示例,并且可应用于实施方式的混合电动车辆不限于这种结构。

本公开的实施方式提出了一种混合电动车辆,其中,在变速器150换挡期间,使用多个电机120和140使电机的干预控制量最大化,并且使发动机110的干预控制量最小化,这可确保一致且精确的换挡感觉。在图3中示出了这种结构。

图3是示出了根据本公开的实施方式的混合电动车辆的换挡控制系统的示例性配置的框图。

参见图3,变速器控制器250可确定变速器150是否需要换挡,并且当需要换挡时,将换挡信号传输至混合控制器240。在这种情况下,换档信号可以是干预请求,但不限于此。混合控制器240可以包括干预扭矩计算器241和干预扭矩分配器243,干预扭矩计算器241从变速器控制器250接收换档信号并计算目标扭矩减小量,干预扭矩分配器243将计算的目标扭矩减小量分配给发动机110、第一电机120和第二电机140。

干预扭矩计算器241在从变速器控制器250接收到换档信号时,在干预控制的动作状态下,能够基于车速、加速器踏板传感器(APS)值、制动器踏板传感器(BPS)值等算出目标扭矩减小量。虽然在实施方式中,干预扭矩计算器241计算目标扭矩减小量,但是在另一个实施方式中,变速器控制器250可以确定目标扭矩减小量,然后将其传输到混合控制器240。在这种情况下,干预扭矩计算器241可以从混合控制器240中去除,并且干预扭矩分配器243可以从变速器控制器250中接收换档信号,并且根据换档信号分配目标扭矩减小量。

干预扭矩分配器243可以通过基于发动机离合器130是否处于锁定状态、第一电机120的干预限制和第二电机140的干预限制分别设置用于发动机110、第一电机120和第二电机140的扭矩减小量来分配计算的目标扭矩减小量。然后,干预扭矩分配器243可基于第一电机120的扭矩减小量向电机控制器220输出用于控制第一电机120的扭矩的扭矩命令,并基于第二电机140的扭矩减小量向电机控制器220输出用于控制第二电机140的扭矩的扭矩命令。类似地,干预扭矩分配器243可以基于发动机110的扭矩减小量向发动机控制器210输出用于控制发动机110的扭矩的扭矩命令。

第一电机120的干预限制是指第一电机120的当前输出扭矩与对应于可以使用第一电机120对电池最大程度充电的容量的反向扭矩之和,并且可以根据电池的充电状态(SOC)、电池的内部温度、第一电机120的内部温度以及第一电机120的规格来确定。类似地,第一电机120的干预限制意味着第二电机140的当前输出扭矩和对应于能够使用第二电机140对电池最大充电的容量的反向扭矩之和,并且能够根据电池的充电状态(SOC)、电池的内部温度、第二电机140的内部温度以及第二电机140的规格来确定。

在下文中,将详细描述干预扭矩分配器243分别设置发动机110、第一电机120和第二电机140的扭矩减小量以便分配目标扭矩减小量的操作方法。

首先,干预扭矩分配器243可以通过从离合器控制器230接收关于发动机离合器130的状态的信息来确定发动机离合器130是否处于锁定状态。

当发动机离合器130未处于锁定状态时,可能难以通过用于发动机110和第一电机120的干预控制来控制变速器150的输入扭矩,因此干预扭矩分配器243可以仅执行用于第二电机140的干预控制。更具体地,当目标扭矩减小量小于或等于第二电机140的干预限制时,干预扭矩分配器243可以将第二电机140的扭矩减小量设置为目标扭矩减小量,并且当目标扭矩减小量超过第二电机140的干预限制时,将第二电机140的扭矩减小量设置为第二电机140的干预限制。

当发动机离合器130处于锁定状态时,干预扭矩分配器243可以对所有的发动机110、第一电机120和第二电机140执行干预控制。在这种情况下,干预扭矩分配器243可基于将目标扭矩减小量与第一电机120的干预限制和/或第二电机140的干预限制进行比较的结果来设置发动机110、第一电机120和第二电机140中的每一个的扭矩减小量。另外,由于对发动机110的干预控制缺乏一致性和精密性,因此干预扭矩分配器243可首先对第一电机120和第二电机140执行干预控制,并且当目标扭矩减小量仍保持不变时,进一步对发动机110执行干预控制以补偿控制的不足。

当发动机离合器130处于锁定状态时,干预扭矩分配器243可以比较第一电机120的效率和第二电机140的效率,并且基于比较结果,通过将第一电机120和第二电机140指定为较高优先级的控制电机和较低优先级的控制电机来设置干预控制序列。更具体地,干预扭矩分配器243可基于第一电机120和第二电机140的输出扭矩和每分钟转数(RPM)根据目标操作点计算第一电机120和第二电机140的效率,其中,通过干预控制反映目标扭矩减小量。此外,干预扭矩分配器243可以将第一电机120和第二电机140中的具有较高效率的电机设置为较高优先级的控制电机,并且将具有较低效率的电机设置为较低优先级的控制电机。

干预扭矩分配器243可以比较目标扭矩减小量和较高优先级控制电机的干预限制,以设置较高优先级控制电机的扭矩减小量。更具体地,当目标扭矩减小量小于或等于较高优先级控制电机的干预限制值时,干预扭矩分配器243可将较高优先级控制电机的扭矩减小量设置为目标扭矩减小量,并将较低优先级控制电机和发动机110的相应扭矩减小量设置为“0”。相反,当目标扭矩减小量超过较高优先级控制电机的干预限制时,干预扭矩分配器243可将较高优先级控制电机的扭矩减小量设置为较高优先级控制电机的干预限制,并用较低优先级控制电机和/或发动机110的扭矩减小量补偿控制的不足(目标扭矩减小量和较高优先级控制电机的干预限制之间的差值)。

当目标扭矩减小量超过较高优先级控制电机的干预限制时,干预扭矩分配器243可将目标扭矩减小量与较高优先级控制电机的干预限制和较低优先级控制电机的干预限制之和进行比较,以设置较低优先级控制电机的扭矩减小量。更具体地,当目标扭矩减小量小于或等于较高优先级控制电机的干预限制和较低优先级控制电机的干预限制之和时,干预扭矩分配器243可以将较低优先级控制电机的扭矩减小量设置为目标扭矩减小量和较高优先级控制电机的扭矩减小量之差。在这种情况下,发动机的扭矩减小量可被设置为“0”。相反,当目标扭矩减小量超过优先控制电机的干预限制和较低优先控制电机的干预限制之和时,干预扭矩分配器243可以将较低优先控制电机的扭矩减小量设置为较低优先控制电机的干预限制,并且将控制中的不足(目标扭矩减小量与上优先控制电机的干预限制和较低优先控制电机的干预限制之和之间的差值)设置为发动机110的扭矩减小量。

如上所述,混合控制器240可以在变速期间使用多个电机以最大化用于电机的干预控制量并最小化用于发动机的干预控制量,从而确保一致且精确的换挡感觉。

图4为示出了图3中所示的混合电动车辆的换挡控制方法的示例的流程图。

参考图4,混合电动车辆的换挡控制方法可包括:计算目标扭矩减小量(S100);确定发动机离合器120是否处于锁定状态(S200);设置第二电机140的扭矩减小量(S300);设置干预控制序列(S400);设置较高优先级控制电机的扭矩减小量(S500);设置较低优先级控制电机的扭矩减小量(S600);以及设置发动机110的扭矩减小量(S700)。

图4中的“E”、“M1”和“M2”分别表示发动机110、第一电机120和第二电机140,并且“TTR”、“M1_限制”和“M2_限制”分别表示目标扭矩减小量、第一电机120的干预限制值和第二电机140的干预限制值。

在计算目标扭矩减小量TTR的步骤S100中,当存在根据从变速器控制器250接收的换档信号的干预请求时,混合控制器240可计算目标扭矩减小量TTR。更具体地,变速器控制器250可确定变速器150是否需要换挡,并且当需要变速器150的换挡时,请求混合控制器240的干预(S110)。当存在来自变速器控制器250的干预请求时,混合控制器240可以计算干预控制的激活状态下的目标扭矩减小量TTR(S120)。虽然在一种实施方式中混合控制器240通过从变速器控制器230接收的换档信号计算目标扭矩减小量,但是在另一种实施方式中,变速器控制器250可以确定目标扭矩减小量TTR,然后将目标扭矩减小量TTR传输至混合控制器240。

在确定发动机离合器120是否处于锁定状态的步骤S200中,通过从离合器控制器230接收关于发动机离合器130的状态的信息,可以确定发动机离合器130是否处于锁定状态。

在设置第二电机140的扭矩减小量的步骤S300中,当确定发动机离合器130未处于锁定状态时,混合控制器240可设置第二电机140的扭矩减小量。更具体地,当确定发动机离合器130未处于锁定状态时,混合控制器240可将目标扭矩减小量TTR与第二电机140的干预限制M2_限制进行比较(S310)。当目标扭矩减小量TTR等于或小于第二电机140的干预限制M2_限制时,混合控制器240可将第二电机140的扭矩减小量设置为目标扭矩减小量TTR(S320)。当目标扭矩减小量TTR超过第二电机140的干预限制M2_限制时,混合控制器240可以将第二电机140的扭矩减小量设置为第二电机140的干预限制M2_限制(S330)。

在设置干预控制序列的步骤S400中,当确定发动机离合器130处于锁定状态时,第一电机120的效率和第二电机140的效率可以彼此比较,并且可以通过将第一电机120和第二电机140指定为较高优先级控制电机和较低优先级控制电机来设置干预控制序列。更具体地,当第二电机140的效率等于或大于第一电机120的效率时,第二电机140可被设置为较高优先级控制电机,并且第一电机120可被设置为较低优先级控制电机。相反,当第二电机140的效率小于第一电机120的效率时,可将第一电机120设置为较高优先级控制电机,并且可将第二电机140设置为较低优先级控制电机。

在设置较高优先级控制电机的扭矩减小量的步骤S500中,基于将目标扭矩减小量TTR与较高优先级控制电机的干预限制相比较的结果,混合控制器240可设置较高优先级控制电机的扭矩减小量。更具体地,设置较高优先级控制电机的扭矩减小量的步骤S500可包括:将目标扭矩减小量与较高优先级控制电机的干预限制进行比较(S510、S540);当目标扭矩减小量TTR小于或等于较高优先级控制电机的干预限制时,将较高优先级控制电机的扭矩减小量设置为目标扭矩减小量TTR(S520,S550);以及当目标扭矩减小量TTR超过较高优先级控制电机的干预限制时,将较高优先级控制电机的扭矩减小量设置为较高优先级控制电机的干预限制(S530,S560)。S510、S520和S530与第二电机140被设置为较高优先级控制电机的情况相对应,S540、S550和S560与第一电机120被设置为较高优先级控制电机的情况相对应。

在设置较低优先级控制电机的扭矩减小量的步骤S600中,当目标扭矩减小量TTR超过较高优先级控制电机的干预限制时,可以设置较低优先级控制电机的扭矩减小量。更具体地,设置较低优先级控制电机的扭矩减小量的步骤S600可包括以下子步骤:当目标扭矩减小量超过较高优先级控制电机的干预限制时,将目标扭矩减小量与较高优先级控制电机和较低优先级控制电机的每个干预限制进行比较(S610、S640);当目标扭矩减小量TTR小于或等于较高优先级控制电机的干预限制值和较低优先级控制电机的干预限制值之和时,将较低优先级控制电机的扭矩减小量设置为扭矩减小量TTR和较高优先级控制电机的干预限制值之间的差值(S620、S650);以及当目标扭矩减小量TTR超过较高优先级控制电机的干预限制与较低优先级控制电机的干预限制之和时,将较低优先级控制电机的扭矩减小量设置为较低优先级控制电机的干预限制(S630、S660)。

S610、S620和S630对应于第二电机140被设置为较高优先级控制电机的情况,S640、S650和S660对应于第一电机120被设置为较高优先级控制电机的情况。

在设置发动机110的扭矩减小量的步骤S700中,当目标扭矩减小量TTR超过较高优先级控制电机的干预限制和较低优先级控制电机的干预限制之和时,发动机110的扭矩减小量可以被设置为通过从目标扭矩减小量TTR减去较高优先级控制电机的干预限制和较低优先级控制电机的干预限制之和而获得的值。S710对应于第二电机140被设置为较高优先级控制电机的情况,S720对应于第一电机120被设置为较高优先级控制电机的情况。

图5A、图5B、图5C、图6A、图6B和图6C是图示根据本公开的实施方式的示例性换挡干预控制过程的图。图5A、图5B和图5C示出了当第二电机140被设置为较高优先级控制电机时的示例性换挡干预控制处理,并且图6A、图6B和图6C示出了当第一电机140被设置为较高优先级控制电机时的示例性换挡干预控制处理。

在图5A、5B、5C、6A、6B和6C所示的过程中,当变速器控制器250控制从k级到k+1级的向较高级的换挡,从而请求混合控制器240进行干预时,混合控制器240通过干预控制减小输入到变速器150的扭矩,从而减小每分钟转数(RPM)。

图5A是仅对第二电机140执行干预控制操作的情况,图5B是对第一电机120和第二电机140执行干预控制操作的情况,图5C是对所有的发动机110、第一电机120和第二电机140执行干预控制操作的情况。

参见图5A、图5B和图5C,可以看出,混合控制器240根据目标扭矩减小量TTR按照指定的顺序对第二电机140、第一电机120和发动机110执行干预控制。

此外,参考图5C,当目标扭矩减小量TTR较大时,混合控制器240可分别将第二电机140的扭矩减小量和第一电机120的扭矩减小量设置为第二电机140的干预限制M2_限制和第一电机120的干预限制M1_限制,从而使发动机110的扭矩减小量最小化。

图6A是仅对第一电机120执行干预控制操作的情况,图6B是对第一电机120和第二电机140执行干预控制操作的情况,图6C是对所有的发动机110、第一电机120和第二电机140执行干预控制操作的情况。

参考图6A、图6B和图6C,可以看出,混合控制器240根据目标扭矩减小量TTR按照指定的顺序对第一电机120、第二电机140以及发动机110执行干预控制。

此外,参考图6C,当目标扭矩减小量TTR较大时,混合控制器240可分别将第一电机120的扭矩减小量和第二电机140的扭矩减小量设置为第一电机120的干预限制M1_限制和第二电机140的干预限制M2_限制,从而使发动机110的扭矩减小量最小化。

因此,混合控制器240使第一电机120和第二电机140的干预控制量最大化,并且使发动机110的干预控制量最小化,缺乏一致性和精密性,从而通过使换挡同步点恒定来确保一致和精确的换挡感觉。

在一些实施方式中,上面描述的本公开可以被实现为记录有程序的介质上的计算机可读代码。计算机可读介质包括存储可由计算机系统读取的数据的所有类型的记录设备。计算机可读介质的示例包括硬盘驱动器(HDD)、固态盘(SSD)、硅盘驱动器(SDD)、ROM、RAM、CD-ROM、磁带、软盘、光学数据存储设备等。因此,上面的详细描述不应被解释为在所有方面都是限制性的,而是示例性的。本公开的范围应由所附权利要求的合理解释确定,并且在本公开的等效范围内的所有修改包括在本公开的范围内。

相关技术
  • 车辆控制方法及包含车辆控制方法的计算机可读记录介质
  • 车辆控制方法、装置、车辆及计算机可读存储介质
  • 车辆换挡控制方法、车辆以及计算机可读存储介质
  • 车辆、车辆控制方法及计算机可读存储介质
  • 一种电动汽车控制方法、电动汽车及计算机可读存储介质
  • 车辆的控制装置、混合动力车、车辆的控制方法、用于使计算机执行车辆控制方法的程序以及记录有该程序的计算机可读记录介质
  • 车辆及其控制方法以及记录了用于使计算机执行车辆的控制方法的程序的计算机可读取的记录介质
技术分类

06120116481275