掌桥专利:专业的专利平台
掌桥专利
首页

正极活性材料组合物、正极极片、二次电池、电池模块、电池包和用电装置

文献发布时间:2024-04-18 19:58:30


正极活性材料组合物、正极极片、二次电池、电池模块、电池包和用电装置

本申请涉及电池技术领域,特别涉及一种正极活性材料组合物、正极极片、二次电池、电池模块、电池包、用电装置。

二次电池电池因具有能量密度大,使用寿命长和节能环保等优点,被广泛应用于新能源汽车、储能电站等不同领域。二次电池的正极极片主要包括集流体和含有正极活性物质的电极膜层。可以将正极活性物质与分散介质一起形成正极浆料,涂布在电极集流体上,形成正极极片。

正极活性物质通常以粉体的形式使用,由于正极材料粉体的比表面积较大、小颗粒较多,导致在正极浆料制备过程中粉体难以分散,浆料粘度大、固体含量难以提高,进而导致极片涂布时容易出现开裂、脱膜、重量不均匀、颗粒划痕或针孔等缺陷。

发明内容

本申请是鉴于上述课题而进行的,目的之一在于,提供一种包含正极活性材料和柔性分散剂的组合物,以改进正极浆料制备过程中,正极活性材料粉体的分散性差,浆料粘度大的问题。

为了达到上述目的,本申请提供了一种正极活性材料组合物,正极极片,二次电池,包含所述二次电池的电池模块,包含所述电池模块的电池包,以及包含所述二次电池、电池模块或电池包的用电装置。

本申请的第一方面提供了一种正极活性材料组合物,包括正极活性材料和分散剂,其中,所述正极活性材料包括内核及包覆所述内核的壳,

所述内核的化学式为Li

所述壳包括包覆所述内核的第一包覆层、包覆所述第一包覆层的第二包覆层以及包覆所述第二包覆层的第三包覆层,其中,

所述第一包覆层包括晶态焦磷酸盐Li

所述第二包覆层包括晶态磷酸盐XPO

所述第三包覆层为碳;

所述分散剂包括聚合物,并且所述聚合物包括:

式1表示的第一单体单元;

选自式2表示的单体单元和式3表示的单体单元组成的组中的至少一种的第二单体单元;以及

选自式4表示的单体单元和式5表示的单体单元组成的组中的至少一种的第三单体单元;

在一些实施方案中,基于所述聚合物的总质量,所述第一单体单元的质量百分含量为M1,M1为10%~55%,可选地为25%~55%。

在一些实施方案中,基于所述聚合物的总质量,所述第二单体单元的质量百分含量为M2,M2为40%~80%,可选地为50%~70%。

在一些实施方案中,基于所述聚合物的总质量,所述第三单体单元的质量百分含量为M3,M3为0%~10%,可选地为0.001%~2%。

在一些实施方案中,M3/(M2+M3)为0%~5%,可选地为0.001%~1%。

在一些实施方案中,所述聚合物为氢化丁腈橡胶。

在一些实施方案中,所述聚合物的重均分子量为5万~50万,可选地为15万~35万。

在一些实施方案中,基于所述正极活性材料的总质量,所述分散剂的质量百分含量为X1,X1为0.05%~1%,可选地为0.1%~0.5%。

在一些实施方案中,所述正极活性材料组合物还包括浸润剂,所述浸润剂的表面张力为20mN/m~40mN/m,并且所述浸润剂的分子结构包括如下官能团中的至少一种:-CN、-NH

在一些实施方案中,所述浸润剂包括选自小分子有机溶剂、低分子量聚合物中的一种或多种,

所述小分子有机溶剂包括选自醇胺类化合物、醇类化合物、腈类化合物中的一种或多种,可选地,所述醇胺类化合物的碳原子数为1~16,可选地为2~6;

所述低分子量聚合物包括选自马来酸酐-苯乙烯共聚物、聚乙烯基吡咯烷酮、聚硅氧烷、中的一种或多种,可选地,所述低分子量聚合物的重均分子量在6000以下,可选地为3000~6000。

在一些实施方案中,基于所述正极活性材料的总质量,所述浸润剂的质量百分含量为X2,X2为0.05%~2%,可选地为0.2%~0.8%。

在一些实施方案中,X1/X2为0.05~20,可选地为0.1~1,进一步地为0.3~0.8。

在一些实施方案中,所述第一包覆层中的晶态焦磷酸盐的晶面间距范围为0.293- 0.470nm,晶向(111)的夹角范围为18.00°-32.00°;所述第二包覆层中的晶态磷酸盐的晶面间距范围为0.244-0.425nm,晶向(111)的夹角范围为20.00°-37.00°。

在一些实施方案中,在所述内核中,y与1-y的比值为1:10至1:1,可选为1:4至1:1。

在一些实施方案中,在所述内核中,z与1-z的比值为1:9至1:999,可选为1:499至1:249。

在一些实施方案中,所述第三包覆层的碳为SP2形态碳与SP3形态碳的混合物,可选地,所述SP2形态碳与SP3形态碳的摩尔比为在0.1-10范围内的任意数值,可选为在2.0-3.0范围内的任意数值。

在一些实施方案中,所述第一包覆层的包覆量为大于0且小于或等于6重量%,可选为大于0且小于或等于5.5重量%,更可选为大于0且小于或等于2重量%,基于所述内核的重量计;和/或

所述第二包覆层的包覆量为大于0且小于或等于6重量%,可选为大于0且小于或等于5.5重量%,更可选为2-4重量%,基于所述内核的重量计。

在一些实施方案中,所述第三包覆层的包覆量为大于0且小于或等于6重量%,可选为大于0且小于或等于5.5重量%,更可选为大于0且小于或等于2重量%,基于所述内核的重量计。

在一些实施方案中,所述第一包覆层的厚度为1-10nm。

在一些实施方案中,所述第二包覆层的厚度为2-15nm。

在一些实施方案中,所述第三包覆层的厚度为2-25nm。

在一些实施方案中,基于正极活性材料的重量计,锰元素含量在10重量%-35重量%范围内,可选在15重量%-30重量%范围内,更可选在17重量%-20重量%范围内,磷元素的含量在12重量%-25重量%范围内,可选在15重量%-20重量%范围内,锰元素和磷元素的重量比范围为0.90-1.25,可选为0.95-1.20。

在一些实施方案中,所述具有核-壳结构的正极活性材料在完全脱嵌锂前后的晶格变化率为4%以下,可选为3.8%以下,更可选为2.0-3.8%。

在一些实施方案中,所述具有核-壳结构的正极活性材料的Li/Mn反位缺陷浓度为4%以下,可选为2.2%以下,更可选为1.5-2.2%。

在一些实施方案中,所述具有核-壳结构的正极活性材料在3T下的压实密度为2.2g/cm

在一些实施方案中,所述具有核-壳结构的正极活性材料的表面氧价态为-1.90以下,可选地为-1.90至-1.98。

本申请的第二方面提供了一种正极浆料,包括本申请的第一方面的正极活性材料组合物;可选地还包括溶剂、正极导电剂、正极粘结剂中的一种或多种。

在一些实施方案中,所述溶剂包括N-甲基吡咯烷酮(NMP)。

在一些实施方案中,所述正极粘结剂包括选自聚偏氟乙烯(PVDF)、聚四氟乙烯(PTFE)、偏氟乙烯-四氟乙烯-丙烯三元共聚物、偏氟乙烯-六氟丙烯-四氟乙烯三元共聚物、四氟乙烯-六氟丙烯共聚物及含氟丙烯酸酯树脂中的一种或多种。

在一些实施方案中,所述正极导电剂包括选自超导碳、乙炔黑、炭黑、科琴黑、碳点、碳纳米管、石墨烯及碳纳米纤维中的一种或多种。

在一些实施方案中,所述正极浆料的固含量为40%~70%,可选地为55%~65%。

在一些实施方案中,所述正极浆料在20℃下的粘度为3000mpa.s~50000mpa.s,可选地为10000mpa.s~20000mpa.s。

本申请的第三方面提供了一种正极极片,包括正极集流体以及设置在所述正极集流体至少一个表面的正极膜层,其中,所述正极膜层包括本申请的第一方面的正极活性材料组合物,或通过将本申请的第二方面的正极浆料涂覆而成。

可选地,所述涂覆的方法选自提拉法、拉膜法、静电喷涂法和旋涂法。

在一些实施方案中,基于所述正极膜层的总质量计,

所述正极活性材料的质量百分含量为W1,W1为90%~99.5%,可选地为95%~99%;和/或,

在一些实施方案中,所述分散剂的质量百分含量为W2,W2为1%以下,可选地为0.1%~0.5%;和/或,

在一些实施方案中,所述浸润剂的质量百分含量为W3,W3为2%以下,可选地为0.1%~0.5%;和/或,

在一些实施方案中,所述正极粘结剂的质量百分含量为W4,W4为5.5%以下,可选地为1%~3%;和/或,

在一些实施方案中,所述正极导电剂的质量百分含量为W5,W5为2.5%以下,可选地为0.1%~1%。

本申请的第四方面提供了一种二次电池,本申请的第三方面的正极极片。

本申请的第五方面提供了一种电池模块,包括本申请的第三方面的正极极片、或本申请的第四方面的二次电池。

本申请的第六方面提供了一种电池包,包括本申请的第三方面的正极极片、本申请的第四方面的二次电池、或本申请的第五方面的电池模块。

本申请的第七方面提供了一种用电装置,包括本申请的第三方面的正极极片、或本申请的第四方面的二次电池、或本申请的第五方面的电池模块、或本申请的第六方面的电池包。

本申请提供的正极活性材料组合物可以解决正极浆料制备过程中,正极活性材料粉体的分散性差,浆料粘度大的问题,提高正极浆料的加工性能以及二次电池的性能。

图1示例性地展示了白金板法的测量装置和测量原理。

图2是本申请一实施方式的二次电池的示意图。

图3是图2所示的本申请一实施方式的二次电池的分解图。

图4是本申请一实施方式的电池模块的示意图。

图5是本申请一实施方式的电池包的示意图。

图6是图7所示的本申请一实施方式的电池包的分解图。

图7是本申请一实施方式的二次电池用作电源的用电装置的示意图。

附图标记说明:

1电池包;2上箱体;3下箱体;4电池模块;5二次电池;51壳体;52电极组件;53顶盖组件

图8示例性地展示了本申请实施例中正极浆料粘度测试使用的仪器和测试过程。

图9示例性地展示了本申请实施例中浆料过滤性能测试中滤网的折叠方法。

下面结合实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。

以下,详细说明具体公开了本申请的正极活性材料组合物、正极极片、二次电池、电池模块、电池包和电学装置的实施方式。但是会有省略不必要的详细说明的情况。例如,有省略对已众所周知的事项的详细说明、实际相同结构的重复说明的情况。这是为了避免以下的说明不必要地变得冗长,便于本领域技术人员的理解。

本申请所公开的“范围”以下限和上限的形式来限定,给定范围是通过选定一个下限和一个上限进行限定的,选定的下限和上限限定了特别范围的边界。这种方式进行限定的范围可以是包括端值或不包括端值的,并且可以进行任意地组合,即任何下限可以与任何上限组合形成一个范围。例如,如果针对特定参数列出了60~120和80~110的范围,理解为60~110和80~120的范围也是预料到的。此外,如果列出的最小范围值1和2,和如果列出了最大范围值3,4和5,则下面的范围可全部预料到:1~3、1~4、1~5、2~3、2~4和2~5。在本申请中,除非有其他说明,数值范围“a~b”表示a到 b之间的任意实数组合的缩略表示,其中a和b都是实数。例如数值范围“0~5”表示本文中已经全部列出了“0~5”之间的全部实数,“0~5”只是这些数值组合的缩略表示。另外,当表述某个参数为≥2的整数,则相当于公开了该参数为例如整数2、3、4、5、6、7、8、9、10、11、12等。

如果没有特别的说明,本申请的所有实施方式以及可选实施方式可以相互组合形成新的技术方案。

如果没有特别的说明,本申请的所有技术特征以及可选技术特征可以相互组合形成新的技术方案。

如果没有特别的说明,本申请的所有步骤可以顺序进行,也可以随机进行,优选是顺序进行的。例如,所述方法包括步骤(a)和(b),表示所述方法可包括顺序进行的步骤(a)和(b),也可以包括顺序进行的步骤(b)和(a)。例如,所述提到所述方法还可包括步骤(c),表示步骤(c)可以任意顺序加入到所述方法,例如,所述方法可以包括步骤(a)、(b)和(c),也可包括步骤(a)、(c)和(b),也可以包括步骤(c)、(a)和(b)等。

如果没有特别的说明,本申请所提到的“包括”和“包含”表示开放式,也可以是封闭式。例如,所述“包括”和“包含”可以表示还可以包括或包含没有列出的其他组分,也可以仅包括或包含列出的组分。

如果没有特别的说明,在本申请中,术语“或”是包括性的。举例来说,短语“A或B”表示“A,B,或A和B两者”。更具体地,以下任一条件均满足条件“A或B”:A为真(或存在)并且B为假(或不存在);A为假(或不存在)而B为真(或存在);或A和B都为真(或存在)。

需要说明的是,在本文中,中值粒径Dv50是指,所述正极活性材料累计体积分布百分数达到50%时所对应的粒径。在本申请中,正极活性材料的中值粒径Dv50可采用激光衍射粒度分析法测定。例如参照标准GB/T 19077-2016,使用激光粒度分析仪(例如Malvern Master Size 3000)进行测定。

在本文中,术语“包覆层”是指包覆在内核上的物质层,所述物质层可以完全或部分地包覆内核,使用“包覆层”只是为了便于描述,并不意图限制本发明。同样地,术语“包覆层的厚度”是指包覆在内核上的所述物质层在内核径向上的厚度。

在本文中,术语“源”是指作为某种元素的来源的化合物,作为实例,所述“源”的种类包括但不限于碳酸盐、硫酸盐、硝酸盐、单质、卤化物、氧化物和氢氧化物等。

[正极活性材料组合物]

本申请的第一方面提供了一种正极活性材料组合物,包括正极活性材料和分散 剂,其中,

所述正极活性材料包括内核及包覆所述内核的壳,

所述内核的化学式为Li

所述壳包括包覆所述内核的第一包覆层、包覆所述第一包覆层的第二包覆层以及包覆所述第二包覆层的第三包覆层,其中,

所述第一包覆层包括晶态焦磷酸盐Li

所述第二包覆层包括晶态磷酸盐XPO

所述第三包覆层为碳;

所述分散剂包括聚合物,并且所述聚合物包括:

式1表示的第一单体单元;

选自式2表示的单体单元和式3表示的单体单元组成的组中的至少一种的第二单体单元;以及

选自式4表示的单体单元和式5表示的单体单元组成的组中的至少一种的第三单体单元;

发明人发现,第一、二、三单体单元之间的比例可能会对分散剂的分散效果产生影响,进而影响正极浆料的流动性、粘度和过滤性能,还可能会对电池性能产生影响。

在一些实施方案中,基于所述聚合物的总质量,所述第一单体单元的质量百分含量为M1,M1为10%~55%(例如10%、15%、20%、25%、30%、32%、35%、40%、45%、50%或55%),可选地为25%~55%。M1的比例影响聚合物的溶解性和极片脆性,如果M1的比例超过55%,可能会导致分散性差和/或极片脆性差,如果M1的比例低于10%,则聚合物在溶剂(例如NMP)中溶解性变差,进而使得浆料不均匀。

在一些实施方案中,基于所述聚合物的总质量,所述第二单体单元的质量百分含量为M2,M2为40%~80%(例如40%、45%、50%、55%、58%、60%、64%、65%、68%、70%、71%、75%或80%),可选地为50%~70%。M2的比例影响聚合物的溶胀,M2的比例在40%~80%范围内可以保证聚合物的弱极性,更好地起到分散剂的效果。

在一些实施方案中,基于所述聚合物的总质量,所述第三单体单元的质量百分含量为M3,M3为0%~10%(例如0.001%、0.005%、0.01%、0.05%、0.1%、0.3%、0.4%、0.5%、1%、1.3%、1.8%、2%、3%、3.8%、4%、5%、5.2%、6%、7%、8%、9%或10%),可选地为0.001%~2%。M3的比例影响聚合物的溶解性以及与正极集流体(例如铝箔)的粘结,如果M3的比例过低,则浆料的粘结性差,如果M3的比例过高,易溶解于电解液中,影响电池性能。

在一些实施方案中,M3/(M2+M3)为0%~5%(例如0.001%、0.005%、0.01%、0.05%、0.1%、0.5%、1%、2%、3%、4%或5%),可选地为0.001%~1%。

在一些实施方案中,所述聚合物为无规共聚物。

在一些实施方案中,所述聚合物为氢化丁腈橡胶。

丁腈橡胶(NBR)是由丙烯腈与丁二烯单体聚合(例如乳液聚合)而成的无规共聚物,其结构通式为:

在丁腈橡胶中,丁二烯(B)和丙烯腈(A)链节的联接方式一般为BAB、BBA或ABB、ABA和BBB三元组,但随丙烯腈含量的增加,也有呈AABAA五元组联接者,甚至成为丙烯腈的本体聚合物。在丁腈橡胶中,丁二烯的序列分布主要是反式-1,4结构,其微观结构与聚合条件有关。聚合温度高,反式-1,4结构减少,顺式-1,4和1,2-结构增加。

氢化丁腈橡胶(HNBR)是指是丁腈橡胶中分子链上的碳碳双键加氢饱和得到的产物,故也称为高饱和丁腈橡胶。氢化丁腈橡胶的化学式如下:

HNBR的制备方法主要有三种:乙烯-丙烯腈共聚法、NBR溶液加氢法和NBR乳液加氢法。

由于氢化丁腈橡胶的极性较弱,与含碳材料亲和性较好,能够作用到正极活性材料(特别是含碳的正极活性材料)的颗粒表面,通过空间位阻避免颗粒间团聚,同时氢化丁腈橡胶还具有高强度,低玻璃化转变温度,可以提高极片的柔性。

在一些实施方案中,所述聚合物的重均分子量为5万~50万(例如为5万、6万、7万、8万、9万、10万、15万、20万、25万、30万、35万、40万、45万或50万),可选地为15万~35万。聚合物分子量低于5万时,浆料的成膜性较差,在正极极片中呈粘弹态,极片在冷压时极易粘辊;而聚合物分子量较大时,聚合物的溶解性变差,不利于浆料的分散。

分散剂氢化丁腈橡胶在电解液中吸液溶胀较大,加入量过多时可能会影响常温直流阻抗(DCR)。在一些实施方案中,基于所述正极活性材料的总质量,所述分散剂的质量百分含量为X1,X1为0.05%~1%(例如0.05%、0.1%、0.2%、0.25%、0.3%、 0.4%、0.5%、0.6%、0.7%、0.8%、0.9%或1%),可选地为0.1%~0.5%。当X1为0.05%~1%,既可以起到良好的分散效果,又可以避免分散剂加入量过多而影响常温DCR,影响电池的能量密度。

在一些情况下,正极活性材料在NMP(N-甲基吡咯烷酮)的浸润性较差,进而浆料稳定性差,表现为浆料固含量低、放置后粘度下降等,进而无法正常使用。发明人发现,含N基团(如-CN/-NH

在一些实施方案中,所述正极活性材料组合物还包括浸润剂,所述浸润剂的表面张力为20mN/m~40mN/m,并且所述浸润剂的分子结构包括如下官能团中的至少一种(例如2种或2种以上):-CN、-NH

示例性的测量方法可以是白金板法,其原理为:当感测白金板浸入到被测液体后,白金板周围就会受到表面张力的作用,液体的表面张力会将白金板尽量地往下拉。当液体表面张力及其他相关的力与平衡力达到均衡时,感测白金板就会停止向液体内部浸入。这时候,仪器的平衡感应器就会测量浸入深度,并将它转化为液体的表面张力值。

具体测试过程中,白金板法的测试步骤为:(1)将白金板逐渐浸入液体;(2)在浸入液体表面状态下,由感应器感测平衡值;(3)将感应到的平衡值转化为表面张力值,并显示出来。

表面张力的计算公式如下:

P=mg+Lγ·cosθ–shρg

平衡力=白金板的重力+表面张力总和–白金板受到的浮力

(向上)(向下)(向上)

m:白金板的重量

g:重力(9.8N/Kg)

L:白金板的周长

γ:液体的表面张力

θ:液体与白金板间的接触角

s:白金板横切面面积

h:白金板浸入的深度

ρ:液体的密度

图1示例性地展示了白金板法的测量装置和测量原理。

在一些实施方案中,所述浸润剂包括选自小分子有机溶剂、低分子量聚合物中的一种或多种,

所述小分子有机溶剂包括选自醇胺类化合物、醇类化合物、腈类化合物中的一种或多种,可选地,所述醇胺类化合物的碳原子数为1~16,可选地为2~6;例如异丙醇胺、2-氨基-2甲基-1-丙醇;

所述低分子量聚合物包括选自马来酸酐-苯乙烯共聚物、聚乙烯基吡咯烷酮、聚硅氧烷中的一种或多种,可选地,所述低分子量聚合物的重均分子量在6000以下,例如70~6000(例如70~100、100~500、500~1000、1000~2000、2000~3000、3000~4000、4000~5000或5000~6000),可选地为3000~6000。

在一些实施方案中,基于所述正极活性材料的总质量,所述浸润剂的质量百分含量为X2,X2为0.05%~2%(例如0.05%、0.1%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、1%、1.1%、1.2%、1.3%、1.4%、1.5%、1.6%、1.7%、1.8%、1.9%或2%),可选地为0.2%~0.8%。当X2为0.05%~2%,既可以起到良好的浸润效果,又可以避免浸润剂加入量过多而影响正极或电解液的稳定性或影响电池的性能(例如循环性能)。

在一些实施方案中,X1/X2为0.05~20(例如0.05、0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9、1、1.1、1.2、1.3、1.4、1.5、1.6、1.7、1.8、1.9、2、3、4、5、10、15或20),可选地为0.1~1,进一步地为0.3~0.8。当分散剂与浸润剂的比例在上述范围内时,正极浆料的粘度较低,流动性和过滤性较好。

[正极活性材料]

本申请发明人在实际作业中发现,目前现有的磷酸锰锂正极活性材料在深度充放电过程中,锰溶出比较严重。虽然现有技术中有尝试对磷酸锰锂进行磷酸铁锂包覆,从而减少界面副反应,但这种包覆无法阻止溶出的锰继续向电解液中迁移。溶出的锰在迁移到负极后,被还原成金属锰。这样产生的金属锰相当于“催化剂”,能够催化负极表面的SEI膜(solid electrolyte interphase,固态电解质界面膜)分解,产生副产物;所述副产物的一部分为气体,因此导致会二次电池发生膨胀,影响二次电池的安全性能;另外,所述副产物的另一部分沉积在负极表面,会阻碍锂离子进出负极的通道, 造成二次电池阻抗增加,从而影响二次电池的动力学性能。此外,为补充损失的SEI膜,电解液和电池内部的活性锂被不断消耗,会给二次电池容量保持率带来不可逆的影响。

发明人在进行大量研究后发现,通过对磷酸锰锂进行改性以及对磷酸锰锂的多层包覆,能够得到一种新型的具有核-壳结构的正极活性材料,所述正极活性材料能够实现显著降低的锰溶出以及降低的晶格变化率,其用于二次电池中,能够改善电池的循环性能、倍率性能、安全性能并且提高电池的容量。

本申请提供一种新型的具有核-壳结构的掺杂磷酸锰锂正极活性材料,使得应用所述正极活性材料的二次电池具有较高的克容量、良好的循环性能和安全性能。

为了达到上述目的,本申请的第一方面提供了一种具有核-壳结构的正极活性材料,其包括内核及包覆所述内核的壳,

所述内核的化学式为Li

所述x、y和z的值满足以下条件:使整个内核保持电中性;

所述壳包括包覆所述内核的第一包覆层、包覆所述第一包覆层的第二包覆层以及包覆所述第二包覆层的第三包覆层,其中,

所述第一包覆层包括晶态焦磷酸盐Li

0≤a≤2,1≤b≤4,1≤c≤6,所述a、b和c的值满足以下条件:使晶态焦磷酸盐Li

所述晶态焦磷酸盐Li

所述第二包覆层包括晶态磷酸盐XPO

所述第三包覆层为碳。

除非另有说明,否则上述内核的化学式中,当A为两种以上元素时,上述对于y数值范围的限定不仅是对每种作为A的元素的化学计量数的限定,也是对各个作为A的元素的化学计量数之和的限定。例如当A为两种以上元素A1、A2……An时,A1、A2……An各自的化学计量数y1、y2……yn各自均需落入本申请对y限定的数值范围内,且y1、y2……yn之和也需落入该数值范围内。类似地,对于R为两种以上元素的情况,本申请中对R化学计量数的数值范围的限定也具有上述含义。

在一个可选的实施方式中,当A为选自Zn、Al、Na、K、Mg、Mo、W、Ti、V、Zr、Fe、Ni、Co、Ga、Sn、Sb、Nb和Ge中的一种、两种、三种或四种元素时,A

所述内核Li

本申请的正极活性材料能够提高二次电池的克容量、循环性能和安全性能。虽然机理尚不清楚,但推测是本申请的磷酸锰锂正极活性材料为核-壳结构,其中通过对磷酸锰锂内核的锰位和磷位分别掺杂元素A和元素R,不仅可有效减少锰溶出,进而减少迁移到负极的锰离子,减少因SEI膜分解而消耗的电解液,提高二次电池的循环性能和安全性能,还能够促进Mn-O键调整,降低锂离子迁移势垒,促进锂离子迁移,提高二次电池的倍率性能;通过对内核包覆包括晶态焦磷酸盐的第一包覆层,能够进一步增大锰的迁移阻力,减少其溶出,并减少表面杂锂含量、减少内核与电解液的接 触,从而减少界面副反应、减少产气,提高二次电池的高温存储性能、循环性能和安全性能;通过进一步包覆具有优异导锂离子的能力的晶态磷酸盐包覆层,可以使正极活性材料的表面的界面副反应有效降低,进而改善二次电池的高温循环及存储性能;通过再进一步包覆碳层作为第三包覆层,能够进一步提升二次电池的安全性能和动力学性能。

此外,在所述内核中,在磷酸锰锂的锰位掺杂的元素A还有助于减小该材料在脱嵌锂过程中磷酸锰锂的晶格变化率,提高磷酸锰锂正极材料的结构稳定性,大大减少锰的溶出并降低颗粒表面的氧活性;在磷位掺杂的元素R还有助于改变Mn-O键长变化的难易程度,从而改善电子电导并降低锂离子迁移势垒,促进锂离子迁移,提高二次电池的倍率性能。

另外,整个内核体系保持电中性,能够保证正极活性材料中的缺陷和杂相尽量少。如果正极活性材料中存在过量的过渡金属(例如锰),由于该材料体系本身结构较稳定,那么多余的过渡金属很可能会以单质的形式析出,或在晶格内部形成杂相,保持电中性可使这样的杂相尽量少。另外,保证体系电中性还可以在部分情况下使材料中产生锂空位,从而使材料的动力学性能更优异。

本申请制备的内核的平均粒径范围为50-500nm,Dv50为200-300nm。内核的一次颗粒大小均在50-500nm的范围内,Dv50为200-300nm。如果所述内核平均粒径过大(超过500nm),则使用该材料的二次电池的克容量发挥会受到影响;如果所述内核平均粒径过小,则其比表面积较大,容易团聚,难以实现均匀包覆。

本申请中,中值粒径Dv50是指材料累计体积分布百分数达到50%时所对应的粒径。在本申请中,材料的中值粒径Dv50可采用激光衍射粒度分析法测定。例如参照标准GB/T 19077-2016,使用激光粒度分析仪(例如Malvern Master Size 3000)进行测定。

通过工艺控制(例如,对各种源的材料进行充分混合、研磨),能够保证各元素在晶格中均匀分布,不出现聚集的情况。A元素和R元素掺杂后的磷酸锰锂的XRD图中的主要特征峰位置与未掺杂的LiMnPO

本文中,晶态意指结晶度在50%以上,即50%-100%。结晶度小于50%的称为玻璃态。本申请所述的晶态焦磷酸盐和晶态磷酸盐的结晶度为50%至100%。具备一定结晶度的焦磷酸盐和磷酸盐不但有利于充分发挥焦磷酸盐包覆层阻碍锰溶出和磷酸盐包覆层优异的导锂离子的能力、减少界面副反应的功能,而且能够使得焦磷酸盐包覆层和磷酸盐包覆层能够更好的进行晶格匹配,从而能够实现包覆层和包覆层之间紧密的结合。

本申请中,所述正极活性材料的第一包覆层物质晶态焦磷酸盐和第二包覆层物质晶态磷酸盐的结晶度可以通过本领域中常规的技术手段来测试,例如通过密度法、红外光谱法、差示扫描量热法和核磁共振吸收方法测量,也可以通过例如,X射线衍射法来测试。

具体的X射线衍射法测试正极活性材料的第一包覆层晶态焦磷酸盐和第二包覆层晶态磷酸盐的结晶度的方法可以包括以下步骤:

取一定量的正极活性材料粉末,通过X射线测得总散射强度,它是整个空间物质的散射强度之和,只与初级射线的强度、正极活性材料粉末化学结构、参加衍射的总电子数即质量多少有关,而与样品的序态无关;然后从衍射图上将结晶散射和非结晶散射分开,结晶度即是结晶部分散射对散射总强度之比。

需要说明的是,在本申请中,包覆层中的焦磷酸盐和磷酸盐的结晶度例如可通过调整烧结过程的工艺条件例如烧结温度、烧结时间等进行调节。

本申请中,由于金属离子在焦磷酸盐中难以迁移,因此焦磷酸盐作为第一包覆层可以将掺杂金属离子与电解液进行有效隔离。晶态焦磷酸盐的结构稳定,因此,晶态焦磷酸盐包覆能够有效抑制过渡金属的溶出,改善循环性能。

第一包覆层与核之间的结合类似于异质结,其结合的牢固程度受晶格匹配程度的限制。晶格失配在5%以下时,晶格匹配较好,两者容易结合紧密。紧密的结合能够保证在后续的循环过程中,包覆层不会脱落,有利于保证材料的长期稳定性。第一包覆层与核之间的结合程度的衡量主要通过计算核与包覆各晶格常数的失配度来进行。本申请中,在所述内核中掺杂了A和R元素后,与不掺杂元素相比,所述内核与第一包覆层的匹配度得到改善,内核与焦磷酸盐包覆层之间能够更紧密地结合在一起。

选择晶态磷酸盐作为第二包覆层,首先,是因为它与第一层包覆物晶态焦磷酸盐的晶格匹配度较高(失配度仅为3%);其次,磷酸盐本身的稳定性好于焦磷酸盐,用其包覆焦磷酸盐有利于提高材料的稳定性。晶态磷酸盐的结构很稳定,其具有优异导锂离子的能力,因此,使用晶态磷酸盐进行包覆能够使正极活性材料的表面的界面副反应得到有效降低,从而改善二次电池的高温循环及存储性能。第二包覆层和第一包覆层之间的晶格匹配方式等,与上述第一包覆层和核之间的结合情况相似,晶格失配在5%以下时,晶格匹配较好,两者容易结合紧密。

碳作为第三层包覆的主要原因是碳层的电子导电性较好。由于在二次电池中应用时发生的是电化学反应,需要有电子的参与,因此,为了增加颗粒与颗粒之间的电子传输,以及颗粒上不同位置的电子传输,可以使用具有优异导电性能的碳来对正极活性材料进行包覆。碳包覆可有效改善正极活性材料的导电性能和去溶剂化能力。

在一些实施方式中,所述正极活性材料的一次颗粒的平均粒径范围为50-500nm,体积中值粒径Dv50在200-300nm范围内。由于颗粒会发生团聚,因此实际测得团聚后的二次颗粒大小可能为500-40000nm。正极活性材料颗粒的大小会影响材料的加工和极片的压实密度性能。通过选择一次颗粒的平均粒径在上述范围内,从而能够避免以下情况:所述正极活性材料的一次颗粒的平均粒径太小,可能会引起颗粒团聚,分散困难,并且需要较多的粘结剂,导致极片脆性较差;所述正极活性材料的一次颗粒的平均粒径太大,可能会使颗粒间的空隙较大,压实密度降低。

通过上述方案,能够有效抑制脱嵌锂过程中磷酸锰锂的晶格变化率和Mn溶出,从而提升二次电池的高温循环稳定性和高温储存性能。

本申请通过在磷酸锰锂的锰位掺杂元素A并在磷位掺杂元素R得到掺杂的磷酸锰锂内核并在所述内核表面依次进行三层包覆,提供了一种新型的具有核-壳结构的磷酸锰锂正极活性材料,将所述正极活性材料应用于二次电池中,能够显著改善二次电池的高温循环性能、循环稳定性和高温储存性能。

在任意实施方式中,所述第一包覆层中的晶态焦磷酸盐的晶面间距范围为0.293-0.470nm,晶向(111)的夹角范围为18.00°-32.00°;所述第二包覆层中的晶态磷酸盐的晶面间距范围为0.244-0.425nm,晶向(111)的夹角范围为20.00°-37.00°。

本申请所述的正极活性材料中的第一包覆层和第二包覆层均使用晶态物质,它们的晶面间距和夹角范围在上述范围内。由此,能够有效避免包覆层中的杂质相,从而提升材料的克容量,循环性能和倍率性能。

对于包覆层中的晶态焦磷酸盐和晶态磷酸盐,可通过本领域中常规的技术手段进行表征,也可以例如借助透射电镜(TEM)进行表征。在TEM下,通过测试晶面间距可以区分内核和包覆层。

包覆层中的晶态焦磷酸盐和晶态磷酸盐的晶面间距和夹角的具体测试方法可以包括以下步骤:

取一定量的经包覆的正极活性材料样品粉末于试管中,并在试管中注入溶剂如酒精,然后进行充分搅拌分散,然后用干净的一次性塑料吸管取适量上述溶液滴加在300目铜网上,此时,部分粉末将在铜网上残留,将铜网连带样品转移至TEM样品腔中进行测试,得到TEM测试原始图片,保存原始图片。

将上述TEM测试所得原始图片在衍射仪软件中打开,并进行傅里叶变换得到衍射花样,量取衍射花样中衍射光斑到中心位置的距离,即可得到晶面间距,夹角根据布拉格方程进行计算得到。

晶态焦磷酸盐的晶面间距范围和晶态磷酸盐的存在差异,可通过晶面间距的数值直接进行判断。

在上述晶面间距和夹角范围内的晶态焦磷酸盐和晶态磷酸盐,能够更有效地抑制脱嵌锂过程中磷酸锰锂的晶格变化率和Mn溶出,从而提升二次电池的高温循环性能、循环稳定性和高温储存性能。

在一些实施方式中,在所述内核中,y与1-y的比值为1:10至1:1,可选为1:4至1:1。此处y表示Mn位掺杂元素A的化学计量数之和。在满足上述条件时,使用所述正极活性材料的二次电池的能量密度和循环性能可进一步提升。

在一些实施方式中,在所述内核中,z与1-z的比值为1:999至1:9,可选为1:499至1:249。此处z表示P位掺杂元素R的化学计量数之和。在满足上述条件时,使用所述正极活性材料的二次电池的能量密度和循环性能可进一步提升。

在一些实施方式中,所述第三包覆层的碳为SP2形态碳与SP3形态碳的混合物,可选地,所述SP2形态碳与SP3形态碳的摩尔比为在0.1-10范围内的任意数值,可选为在2.0-3.0范围内的任意数值。

在一些实施方式中,所述SP2形态碳与SP3形态碳的摩尔比可为约0.1、约0.2、约03、约0.4、约0.5、约0.6、约0.7、约0.8、约0.9、约1、约2、约3、约4、约5、约6、约7、约8、约9或约10,或在上述任意值的任意范围内。

本申请中,“约”某个数值表示一个范围,表示该数值±10%的范围。

通过选择碳包覆层中碳的形态,从而提升二次电池的综合电性能。具体来说,通过使用SP2形态碳和SP3形态碳的混合形态并将SP2形态碳和SP3形态碳的比例限制在一定范围内,能够避免以下情况:如果包覆层中的碳都是无定形SP3形态,则导电性差;如果都是石墨化的SP2形态,则虽然导电性良好,但是锂离子通路少,不利于锂的脱嵌。另外,将SP2形态碳与SP3形态碳的摩尔比限制在上述范围内,既能实现良好的导电性,又能保证锂离子的通路,因此有利于二次电池功能的实现及其循环性能。

所述第三包覆层碳的SP2形态和SP3形态的混合比可以通过烧结条件例如烧结温度和烧结时间来控制。例如,在使用蔗糖作为碳源制备第三包覆层的情况下,使蔗糖在高温下进行裂解后,在第二包覆层上沉积同时在高温作用下,会产生既有SP3形态也有SP2形态的碳包覆层。SP2形态碳和SP3形态碳的比例可以通过选择高温裂解条件和烧结条件来调控。

所述第三包覆层碳的结构和特征可通过拉曼(Raman)光谱进行测定,具体测试方法如下:通过对Raman测试的能谱进行分峰,得到Id/Ig(其中Id为SP3形态碳的峰强度,Ig为SP2形态碳的峰强度),从而确认两者的摩尔比。

在一些实施方式中,所述第一包覆层的包覆量为大于0且小于或等于6重量%,可选为大于0且小于或等于5.5重量%,更可选为大于0且小于或等于2重量%,基于所述内核的重量计;和/或

所述第二包覆层的包覆量为大于0且小于或等于6重量%,可选为大于0且小于或等于5.5重量%,更可选为2-4重量%,基于所述内核的重量计;和/或

所述第三包覆层的包覆量为大于0且小于或等于6重量%,可选为大于0且小于或等于5.5重量%,更可选为大于0且小于或等于2重量%,基于所述内核的重量计。

本申请中,每一层的包覆量均不为零。

本申请所述的具有核-壳结构的正极活性材料中,三层包覆层的包覆量优选在上述范围内,由此能够对所述内核进行充分包覆,并同时在不牺牲正极活性材料克容量的前提下,进一步改善二次电池的动力学性能和安全性能。

对于第一包覆层而言,通过包覆量在上述范围内,则能够避免以下情况:包覆量过少则意味着包覆层厚度较薄,可能无法有效阻碍过渡金属的迁移;包覆量过大则意味着包覆层过厚,会影响Li

对于第二包覆层而言,通过包覆量在上述范围内,则能够避免以下情况:包覆量过多,可能会影响材料整体的平台电压;包覆量过少,可能无法实现足够的包覆效果。

对于第三包覆层而言,碳包覆主要起到增强颗粒间的电子传输的作用,然而由于结构中还含有大量的无定形碳,因此碳的密度较低,因此,如果包覆量过大,会影响极片的压实密度。

在一些实施方式中,所述第一包覆层的厚度为1-10nm;和/或

所述第二包覆层的厚度为2-15nm;和/或

所述第三包覆层的厚度为2-25nm。

在一些实施方式中,所述第一包覆层的厚度可为约2nm、约3nm、约4nm、约5nm、约6nm、约7nm、约8nm、约9nm或约10nm,或在上述任意数值的任意范围内。

在一些实施方式中,所述第二包覆层的厚度可为约2nm、约3nm、约4nm、约5nm、约6nm、约7nm、约8nm、约9nm、约10nm、约11nm、约12nm、约13nm、约14nm、约15nm,或在上述任意数值的任意范围内。

在一些实施方式中,所述第三层包覆层的厚度可为约2nm、约3nm、约4nm、约5nm、约6nm、约7nm、约8nm、约9nm、约10nm、约11nm、约12nm、约13nm、约14nm、约15nm、约16nm、约17nm、约18nm、约19nm、约20nm、约21nm、约22nm、约23nm、约24nm或约25nm,或在上述任意数值的任意范围内。

当所述第一包覆层的厚度范围为1-10nm时,能够避免过厚时可能产生的对材料的动力学性能的不利影响,且能够避免过薄时可能无法有效阻碍过渡金属离子的迁移的问题。

当所述第二包覆层的厚度在2-15nm范围内时,所述第二包覆层的表面结构稳定,与电解液的副反应小,因此能够有效减轻界面副反应,从而提升二次电池的高温性能。

当所述第三包覆层的厚度范围为2-25nm时,能够提升材料的电导性能并且改善使用所述正极活性材料制备的电池极片的压密性能。

包覆层的厚度大小测试主要通过FIB进行,具体方法可以包括以下步骤:从待测正极活性材料粉末中随机选取单个颗粒,从所选颗粒中间位置或中间位置附近切取100nm左右厚度的薄片,然后对薄片进行TEM测试,量取包覆层的厚度,测量3-5个位置,取平均值。

在一些实施方式中,基于所述具有核-壳结构的正极活性材料的重量计,锰元素含量在10重量%-35重量%范围内,可选在15重量%-30重量%范围内,更可选在17重量%-20重量%范围内,磷元素的含量在12重量%-25重量%范围内,可选在15重量%-20重量%范围内,锰元素和磷元素的重量比范围为0.90-1.25,可选为0.95-1.20。

本申请所述的具有核-壳结构的正极活性材料中,所述锰元素的含量在上述范围内,能够有效避免若锰元素含量过大可能会引起的材料结构稳定性变差、密度下降等问题,从而提升二次电池的循环、存储和压实密度等性能;且能够避免若锰元含量过小可能会导致的电压平台低等问题,从而提升二次电池的能量密度。

本申请所述的具有核-壳结构的正极活性材料中,所述磷元素的含量在上述范围内,能够有效避免以下情况:若磷元素的含量过大,可能会导致P-O的共价性过强而影响小极化子导电,从而影响材料的电导率;若磷元素的含量过小,可能会使所述内核、所述第一包覆层中的焦磷酸盐和/或所述第二包覆层中的磷酸盐晶格结构的稳定性下降,从而影响材料整体的稳定性。

锰与磷含量重量比大小对二次电池的性能具有以下影响:该重量比过大,意味着锰元素过多,锰溶出增加,影响正极活性材料的稳定性和克容量发挥,进而影响二次电池的循环性能及存储性能;该重量比过小,意味着磷元素过多,则容易形成杂相,会使材料的放电电压平台下降,从而使二次电池的能量密度降低。

锰元素和磷元素的测量可采用本领域中常规的技术手段进行。特别地,采用以下方法测定锰元素和磷元素的含量:将材料在稀盐酸中(浓度10-30%)溶解,利用ICP测试溶液各元素的含量,然后对锰元素的含量进行测量和换算,得到其重量占比。

在一些实施方式中,所述具有核-壳结构的正极活性材料在完全脱嵌锂前后的晶格变化率为4%以下,可选为3.8%以下,更可选为2.0-3.8%。

磷酸锰锂(LiMnPO

本申请所述的具有核-壳结构的正极活性材料能够实现4%以下的脱嵌锂前后的晶格变化率。因此使用所述正极活性材料能够改善二次电池的克容量和倍率性能。

在一些实施方式中,所述具有核-壳结构的正极活性材料的Li/Mn反位缺陷浓度为4%以下,可选为2.2%以下,更可选为1.5-2.2%。

本申请所述的Li/Mn反位缺陷,指的是LiMnPO

本申请所述的具有核-壳结构的正极活性材料能够实现上述较低的Li/Mn反位缺陷浓度。虽然机理尚不十分清楚,但本申请发明人推测,由于LiMnPO

在一些实施方式中,所述正极活性材料在3T(吨)下的压实密度为2.2g/cm

在一些实施方式中,所述正极活性材料的表面氧价态为-1.90以下,可选地为-1.90至-1.98。氧的稳定价态本为-2价,价态越接近-2价,其得电子能力越强,即氧化性越强,通常情况下,其表面价态在-1.7以下。本申请通过如上所述将正极活性材料的表面 氧价态限定在上述范围内,能够减轻正极材料与电解液的界面副反应,从而改善电芯的循环,高温存储产气等性能。

表面氧价态可通过本领域中已知的方法测量,例如通过电子能量损失谱(EELS)测量。

在一些实施方案中,所述正极活性材料可以通过包括以下步骤的方法制得:

提供内核材料的步骤:所述内核化学式为Li

包覆步骤:分别提供Li

其中,所述正极活性材料具有核-壳结构,其包括所述内核及包覆所述内核的壳,所述壳包括包覆所述内核的第一包覆层、包覆所述第一包覆层的第二包覆层以及包覆所述第二包覆层的第三包覆层,所述第一包覆层包括晶态焦磷酸盐Li

在任意实施方式中,所述提供内核材料的步骤包括以下步骤:

步骤(1):将锰源、元素A的掺杂剂和酸在容器中混合并搅拌,得到掺杂有元素A的锰盐颗粒;

步骤(2):将所述掺杂有元素A的锰盐颗粒与锂源、磷源和元素R的掺杂剂在溶剂中混合并得到浆料,在惰性气体气氛保护下烧结后得到掺杂有元素A和元素R的内核,其中,所述掺杂有元素A和元素R的内核为Li

本申请的制备方法对材料的来源并没有特别的限制,某种元素的来源可包括该元素的单质、硫酸盐、卤化物、硝酸盐、有机酸盐、氧化物或氢氧化物中的一种或多种,前体是该来源可实现本申请制备方法的目的。

在一些实施方式中,所述元素A的掺杂剂为选自Zn、Al、Na、K、Mg、Mo、W、Ti、V、Zr、Fe、Ni、Co、Ga、Sn、Sb、Nb和Ge中的一种或多种元素各自的单质、碳酸盐、硫酸盐、氯化盐、硝酸盐、有机酸盐、氧化物、氢氧化物中的一种或多种。

在一些实施方式中,所述元素R的掺杂剂为选自B、Si、N和S中的一种或多种元素各自的无机酸、亚酸、有机酸、硫酸盐、氯化盐、硝酸盐、有机酸盐、氧化物、氢氧化物中的一种或多种;

本申请中,锰源可为本领域已知的可用于制备磷酸锰锂的含锰物质。作为示例,所述锰源可为选自单质锰、二氧化锰、磷酸锰、草酸锰、碳酸锰中的一种或多种。

本申请中,酸可为选自盐酸、硫酸、硝酸、磷酸、硅酸、亚硅酸等有机酸和有机酸如草酸中的一种或多种。在一些实施方式中,所述酸为浓度为60重量%以下的稀的有机酸。

本申请中,锂源可为本领域已知的可用于制备磷酸锰锂的含锂物质。作为示例,所述锂源为选自碳酸锂、氢氧化锂、磷酸锂、磷酸二氢锂中的一种或多种。

本申请中,磷源可为本领域已知的可用于制备磷酸锰锂的含磷物质。作为示例,所述磷源为选自磷酸氢二铵、磷酸二氢铵、磷酸铵和磷酸中的一种或多种。

在一些可选实施方式中,在所述锰源、所述元素A的掺杂剂与所述酸在溶剂中反应得到掺杂有元素A的锰盐悬浮液后,将所述悬浮液过滤,烘干,并进行砂磨以得到粒径为50-200nm的经元素A掺杂的锰盐颗粒。

在一些可选实施方式中,将步骤(2)中的浆料进行干燥得到粉料,然后将粉料烧结得到掺杂有元素A和元素R的内核。

在一些实施方式中,所述步骤(1)在20-120℃、可选为40-120℃的温度下进行混合;和/或

所述步骤(1)中所述搅拌在400-700rpm下进行1-9h,可选地为3-7h。

可选地,所述步骤(1)中的反应温度可在约30℃、约50℃、约60℃、约70℃、约80℃、约90℃、约100℃、约110℃或约120℃进行;所述步骤(1)中所述搅拌进行约2小时、约3小时、约4小时、约5小时、约6小时、约7小时、约8小时或约9小时;可选地,所述步骤(1)中的反应温度、搅拌时间可在上述任意数值的任意范围内。

在一些实施方式中,所述步骤(2)在20-120℃、可选为40-120℃的温度下进行混合1-12h。可选地,所述步骤(2)中的反应温度可在约30℃、约50℃、约60℃、约70℃、约80℃、约90℃、约100℃、约110℃或约120℃进行;所述步骤(2)中所述混合进行约2小时、约3小时、约4小时、约5小时、约6小时、约7小时、约8小时、约9小时、约10小时、约11小时或约12小时;可选地,所述步骤(2)中的反应温度、混合时间可在上述任意数值的任意范围内。

当内核颗粒制备过程中的加热温度和搅拌时间处于上述范围内时,制备获得的内核以及由其制得的正极活性材料的晶格缺陷较少,有利于抑制锰溶出,减少正极活性材料与电解液的界面副反应,从而改善二次电池的循环性能和安全性能。

在一些实施方式中,可选地,在制备A元素和R元素掺杂的稀酸锰颗粒的过程中,控制溶液pH为3.5-6,可选地,控制溶液pH为4-6,更可选地,控制溶液pH为4-5。需要说明的是,在本申请中可通过本领域通常使用的方法调节所得混合物的pH,例如可通过添加酸或碱。

在一些实施方式中,可选地,在步骤(2)中,所述锰盐颗粒与锂源、磷源的摩尔比为1:0.5-2.1:0.5-2.1,更可选地,所述掺杂有元素A的锰盐颗粒与锂源、磷源的摩尔比为约1:1:1。

在一些实施方式中,可选地,制备A元素和R元素掺杂的磷酸锰锂过程中的烧结条件为:在惰性气体或惰性气体与氢气混合气氛下在600-950℃下烧结4-10小时;可选地,所述烧结可在约650℃、约700℃、约750℃、约800℃、约850℃或约900℃下烧结约2小时、约3小时、约4小时、约5小时、约6小时、约7小时、约8小时、约9小时或约10小时;可选地,所述烧结的温度、烧结时间可在上述任意数值的任意范围内。在制备A元素和R元素掺杂的磷酸锰锂过程中,烧结温度过低以及烧结时间过短时,会导致材料内核的结晶度较低,会影响整体的性能发挥,而烧结温度过高时, 材料内核中容易出现杂相,从而影响整体的性能发挥;烧结时间过长时,材料内核颗粒长的较大,从而影响克容量发挥,压实密度和倍率性能等。

在一些可选实施方式中,可选地,保护气氛为70-90体积%氮气和10-30体积%氢气的混合气体。

在任意实施方式中,所述包覆步骤包括:

第一包覆步骤:将元素M的源、磷源和酸以及任选地锂源,得到第一包覆层悬浊液;将内核步骤中获得的内核与第一包覆步骤获得的第一包覆层悬浊液充分混合,干燥,然后烧结,得到第一包覆层包覆的材料;

第二包覆步骤:将元素X的源、磷源和酸溶于溶剂中,得到第二包覆层悬浊液;将第一包覆步骤中获得的第一包覆层包覆的材料与第二包覆步骤获得的第二包覆层悬浊液充分混合,干燥,然后烧结,得到两层包覆层包覆的材料;

第三包覆步骤:将碳源溶于溶剂中,充分溶解得到第三包覆层溶液;然后将第二包覆步骤中获得的两层包覆层包覆的材料加入所述第三包覆层溶液中,混合均匀,干燥,然后烧结得到三层包覆层包覆的材料,即正极活性材料。

在一些实施方式中,所述元素M的源为选自Fe、Ni、Mg、Co、Cu、Zn、Ti、Ag、Zr、Nb或Al中的一种或多种元素各自的单质、碳酸盐、硫酸盐、氯化盐、硝酸盐、有机酸盐、氧化物、氢氧化物中的一种或多种。

在一些实施方式中,所述元素X的源为选自Li、Fe、Ni、Mg、Co、Cu、Zn、Ti、Ag、Zr、Nb或Al中的一种或多种元素各自的单质、碳酸盐、硫酸盐、氯化盐、硝酸盐、有机酸盐、氧化物、氢氧化物中的一种或多种。

本申请中,元素A、R、M、X各自的源的加入量取决于目标掺杂量,锂源、锰源和磷源的用量之比符合化学计量比。

作为示例,所述碳源为选自淀粉、蔗糖、葡萄糖、聚乙烯醇、聚乙二醇、柠檬酸中的一种或多种。

在任意实施方式中,所述第一包覆步骤中,控制溶解有元素M的源、磷源和酸以及任选地锂源的溶液pH为3.5-6.5,然后搅拌并反应1-5h,然后将所述溶液升温至50-120℃,并保持该温度2-10h,和/或,烧结在650-800℃下进行2-6小时。

可选地,在第一包覆步骤中,所述反应充分进行。可选地,在第一包覆步骤中,所述反应进行约1.5小时、约2小时、约3小时、约4小时、约4.5小时或约5小时。可选地,第一包覆步骤中,所述反应的反应时间可在上述任意数值的任意范围内。

可选地,在第一包覆步骤中,控制溶液pH为4-6。可选地,在第一包覆步骤中,将所述溶液升温至约55℃、约60℃、约70℃、约80℃、约90℃、约100℃、约110℃或约120℃,并在该温度下保持约2小时、约3小时、约4小时、约5小时、约6小时、约7小时、约8小时、约9小时或约10小时;可选地,第一包覆步骤中,所述升温的温度和保持时间可在上述任意数值的任意范围内。

可选地,在所述第一包覆步骤中,所述烧结可在约650℃、约700℃、约750℃、或约800℃下烧结约2小时、约3小时、约4小时、约5小时或约6小时;可选地,所述烧结的温度、烧结时间可在上述任意数值的任意范围内。

在所述第一包覆步骤中,通过将烧结温度和时间控制在以上范围内,可以避免以下情况:当所述第一包覆步骤中的烧结温度过低以及烧结时间过短时,会导致第一包覆层的结晶度低,非晶态物质较多,这样会导致抑制金属溶出的效果下降,从而影响二次电池的循环性能和高温存储性能;而烧结温度过高时,会导致第一包覆层出现杂相,也会影响到其抑制金属溶出的效果,从而影响二次电池的循环和高温存储性能等;烧结时间过长时,会使第一包覆层的厚度增加,影响Li

在一些实施方式中,所述第二包覆步骤中,将元素X的源、磷源和酸溶于溶剂后,搅拌并反应1-10h,然后将所述溶液升温至60-150℃,并保持该温度2-10h,和/或,烧结在500-700℃下进行6-10小时。

可选地,在第二包覆步骤中,所述反应充分进行。可选地,在第二包覆步骤中,所述反应进行约1.5小时、约2小时、约3小时、约4小时、约4.5小时、约5小时、约6小时、约7小时、约8小时、约9小时或约10小时。可选地,第二包覆步骤中,所述反应的反应时间可在上述任意数值的任意范围内。

可选地,在第二包覆步骤中,将所述溶液升温至约65℃、约70℃、约80℃、约90℃、约100℃、约110℃、约120℃、约130℃、约140℃或约150℃,并在该温度下保持约2小时、约3小时、约4小时、约5小时、约6小时、约7小时、约8小时、约 9小时或约10小时;可选地,第二包覆步骤中,所述升温的温度和保持时间可在上述任意数值的任意范围内。

在所述提供内核材料的步骤和所述第一包覆步骤和所述第二包覆步骤中,在烧结之前,即,在发生化学反应的内核材料的制备中(步骤(1)-(2))以及在第一包覆层悬浮液和第二包覆层悬浮液的制备中,通过如上所述选择适当的反应温度和反应时间,从而能够避免以下情况:反应温度过低时,则反应无法发生或反应速率较慢;温度过高时,产物分解或形成杂相;反应时间过长时,产物粒径较大,可能会增加后续工艺的时间和难度;反应时间过短时,则反应不完全,获得的产物较少。

可选地,在第二包覆步骤中,所述烧结可在约550℃、约600℃或约700℃下烧结约6小时、约7小时、约8小时、约9小时或约10小时;可选地,所述烧结的温度、烧结时间可在上述任意数值的任意范围内。

在所述第二包覆步骤中,通过将烧结温度和时间控制在以上范围内,可以避免以下情况:当所述第二包覆步骤中的烧结温度过低以及烧结时间过短时,会导致第二包覆层的结晶度低,非晶态较多,降低材料表面反应活性的性能下降,从而影响二次电池的循环和高温存储性能等;而烧结温度过高时,会导致第二包覆层出现杂相,也会影响到其降低材料表面反应活性的效果,从而影响二次电池的循环和高温存储性能等;烧结时间过长时,会使第二包覆层的厚度增加,影响材料的电压平台,从而使材料的能量密度下降等。

在一些实施方式中,所述第三包覆步骤中的烧结在700-800℃下进行6-10小时。可选地,在第三包覆步骤中,所述烧结可在约700℃、约750℃或约800℃下烧结约6小时、约7小时、约8小时、约9小时或约10小时;可选地,所述烧结的温度、烧结时间可在上述任意数值的任意范围内。

在所述第三包覆步骤中,通过将烧结温度和时间控制在以上范围内,可以避免以下情况:当所述第三包覆步骤中的烧结温度过低时,会导致第三包覆层的石墨化程度下降,影响其导电性,从而影响材料的克容量发挥;烧结温度过高时,会造成第三包覆层的石墨化程度过高,影响Li

在上述第一包覆步骤、第二包覆步骤、第三包覆步骤中,所述干燥均在100℃至200℃、可选为110℃至190℃、更可选为120℃至180℃、甚至更可选为120℃至170℃、最可选为120℃至160℃的干燥温度下进行,干燥时间为3-9h、可选为4-8h,更可选为5-7h,最可选为约6h。

通过本申请所述的正极活性材料的制备方法所制备的正极活性材料,其制备的二次电池在循环后Mn与Mn位掺杂元素的溶出量降低,且高温稳定性、高温循环性能和倍率性能得到改善。另外,原料来源广泛、成本低廉,工艺简单,有利于实现工业化。

[正极浆料]

本申请的第二方面提供了一种正极浆料,包括本申请的第一方面的正极活性材料组合物;可选地还包括溶剂、正极导电剂、正极粘结剂中的一种或多种。

在一些实施方案中,所述正极浆料包括溶剂,可选地,所述溶剂包括N-甲基吡咯烷酮(NMP)。

在一些实施方案中,所述正极浆料包括正极粘结剂。可选地,所述正极粘结剂包括选自聚偏氟乙烯(PVDF)、聚四氟乙烯(PTFE)、偏氟乙烯-四氟乙烯-丙烯三元共聚物、偏氟乙烯-六氟丙烯-四氟乙烯三元共聚物、四氟乙烯-六氟丙烯共聚物及含氟丙烯酸酯树脂中的一种或多种。

在一些实施方案中,所述正极浆料包括正极导电剂。可选地,所述正极导电剂包括选自超导碳、乙炔黑、炭黑、科琴黑、碳点、碳纳米管、石墨烯及碳纳米纤维中的一种或多种。

本申请中,通过选择合适的分散剂和/或浸润剂,可以提升正极浆料的固含量,和/或降低正极浆料的粘度。

在一些实施方案中,所述正极浆料的固含量为40%~70%(例如40%、45%、50%、55%、58%、60%、64%、65%、68%或70%),可选地为55%~65%。

在一些实施方案中,所述正极浆料在20℃下的粘度为3000mpa.s~50000mpa.s(例如3000mpa.s、4000mpa.s、5000mpa.s、6000mpa.s、7000mpa.s、8000mpa.s、9000mpa.s、10000mpa.s、11000mpa.s、12000mpa.s、13000mpa.s、14000mpa.s、15000mpa.s、16000mpa.s、17000mpa.s、18000mpa.s、19000mpa.s、20000mpa.s、30000mpa.s、40000mpa.s或50000mpa.s),可选地为10000mpa.s~20000mpa.s。

[正极极片]

本申请的第三方面提供了一种正极极片,包括正极集流体以及设置在所述正极集流体至少一个表面的正极膜层,其中,所述正极膜层包括本申请的第一方面的正极活性材料组合物,或通过将本申请的第二方面的正极浆料涂覆而成。所述正极膜层可设置在正极集流体的其中一个表面上,也可设置在正极集流体的两个表面上。

在一些实施方案中,基于所述正极膜层的总质量计,

所述正极活性材料的质量百分含量为W1,W1为90%~99.5%(例如90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或99.5%),可选地为95%~99%;和/或,

在一些实施方案中,所述分散剂的质量百分含量为W2,W2为1%以下(例如0.001%、0.005%、0.01%、0.05%、0.1%、0.2%、0.3%、0.4%、0.5%或1%),可选地为0.1%~0.5%;和/或,

在一些实施方案中,所述浸润剂的质量百分含量为W3,W3为2%以下(例如0.001%、0.005%、0.01%、0.05%、0.1%、0.2%、0.3%、0.4%、0.5%、1%或2%),可选地为0.1%~0.5%;和/或,

在一些实施方案中,所述正极粘结剂的质量百分含量为W4,W4为5.5%以下(例如0.001%、0.005%、0.01%、0.05%、0.1%、0.5%、1%、1.2%、1.5%、2%、2.3%、2.5%、2.7%、3%、4%、5%或5.5%),可选地为1%~3%;和/或,

在一些实施方案中,所述正极导电剂的质量百分含量为W5,W5为2.5%以下(例如0.001%、0.005%、0.01%、0.05%、0.1%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、1%、2%或2.5%)、,可选地为0.1%~1%。

在一些实施方式中,所述正极集流体可采用金属箔片或复合集流体。例如,作为金属箔片,可采用铝箔。复合集流体可包括高分子材料基层和形成于高分子材料基层至少一个表面上的金属层。复合集流体可通过将金属材料(铝、铝合金、镍、镍合金、钛、钛合金、银及银合金等)形成在高分子材料基材(如聚丙烯(PP)、聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲酸丁二醇酯(PBT)、聚苯乙烯(PS)、聚乙烯(PE)等的基材)上而形成。

在一些实施方案中,所述正极集流体与正极膜层之间还存在一层或多层底涂层,以增加正极集流体与正极膜层之间的粘结力。在一些实施方案中,所述底涂层包含聚丙烯酸-丙烯酸酯共聚物(例如重均分子量30万~35万的聚丙烯酸-丙烯酸酯共聚物)和导电剂(例如导电炭黑(Super P)),二者的重量比可以是60:40~40:60。示例性的制备方法包括:将聚丙烯酸-丙烯酸酯共聚物和导电剂溶解/分散于去离子水中,配制成 底涂层浆料;将底涂层浆料涂布于正极集流体(例如铝箔)的一侧或两侧,干燥后获得具有导电底涂层的正极集流体。在一些实施方案中,底涂层的厚度为1~5μm。

在一些实施方式中,正极材料层还可选地包括粘结剂。导电剂以及粘结剂的种类和含量不受具体的限制,可根据实际需求进行选择。作为示例,所述粘结剂可以包括聚偏氟乙烯(PVDF)、聚四氟乙烯(PTFE)、偏氟乙烯-四氟乙烯-丙烯三元共聚物、偏氟乙烯-六氟丙烯-四氟乙烯三元共聚物、四氟乙烯-六氟丙烯共聚物及含氟丙烯酸酯树脂中的至少一种。

在一些实施方式中,正极材料层还可选地包括导电剂。作为示例,所述导电剂可以包括超导碳、乙炔黑、炭黑、科琴黑、碳点、碳纳米管、石墨烯及碳纳米纤维中的至少一种。

在一些实施方式中,可以通过以下方式制备正极极片:将正极活性材料、导电剂、粘结剂和任意其他的组分分散于溶剂(例如N-甲基吡咯烷酮)中,形成正极浆料;将正极浆料涂覆在正极集流体上,经烘干、冷压等工序后,即可得到正极极片。可选地,所述涂覆的方法选自提拉法、拉膜法、静电喷涂法和旋涂法。

本申请的第四方面提供了一种二次电池,包括本申请的第三方面的正极极片。

[负极极片]

本申请的二次电池中,负极极片可包括负极集流体以及设置于负极集流体上且包括负极活性材料的负极材料层,所述负极材料层可设置在负极集流体的其中一个表面上,也可设置在负极集流体的两个表面上。

在一些实施方式中,所述负极集流体可采用金属箔片或复合集流体。例如,作为金属箔片,可以采用铜箔。复合集流体可包括高分子材料基层和形成于高分子材料基材至少一个表面上的金属层。复合集流体可通过将金属材料(铜、铜合金、镍、镍合金、钛、钛合金、银及银合金等)形成在高分子材料基材(如聚丙烯(PP)、聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲酸丁二醇酯(PBT)、聚苯乙烯(PS)、聚乙烯(PE)等的基材)上而形成。

在一些实施方式中,负极活性材料可采用本领域公知的用于电池的负极活性材料。作为示例,负极活性材料可包括以下材料中的至少一种:石墨(例如人造石墨、天然石墨)、软炭、硬炭、中间相碳微球、碳纤维、碳纳米管、硅基材料、锡基材料和钛酸锂等。所述硅基材料可选自单质硅、硅氧化合物、硅碳复合物、硅氮复合物以及硅合金中的至少一种。所述锡基材料可选自单质锡、锡氧化合物以及锡合金中的至 少一种。但本申请并不限定于这些材料,还可以使用其他可被用作电池负极活性材料的传统材料。这些负极活性材料可以仅单独使用一种,也可以将两种以上组合使用。

在一些实施方式中,负极膜层还可选地包括粘结剂。所述粘结剂可选自丁苯橡胶(SBR)、聚丙烯酸(PAA)、聚丙烯酸钠(PAAS)、聚丙烯酰胺(PAM)、聚乙烯醇(PVA)、海藻酸钠(SA)、聚甲基丙烯酸(PMAA)及羧甲基壳聚糖(CMCS)中的至少一种。

在一些实施方式中,负极膜层还可选地包括导电剂。导电剂可选自超导碳、乙炔黑、炭黑、科琴黑、碳点、碳纳米管、石墨烯及碳纳米纤维中的至少一种。

在一些实施方案中,负极材料层包含负极活性材料人造石墨、导电剂乙炔黑和粘结剂丁苯橡胶(SBR)。

在一些实施方式中,负极材料层还可选地包括其他助剂,例如增稠剂(如羧甲基纤维素钠(CMC-Na))等。

在一些实施方式中,可以通过以下方式制备负极极片:将上述用于制备负极极片的组分,例如负极活性材料、导电剂、粘结剂和任意其他组分分散于溶剂(例如去离子水)中,形成负极浆料;将负极浆料涂覆在负极集流体上,经烘干、冷压等工序后,即可得到负极极片。

[隔离膜]

本申请的二次电池中,隔离膜设置在正极片和负极片之间,起到隔离的作用。其中,所述隔离膜的种类并不受到具体的限制,可以选用任意公知的具有良好的化学稳定性和机械稳定性的多孔结构隔离膜。在一些实施方式中,隔离膜的材质可选自玻璃纤维、无纺布、聚乙烯、聚丙烯及聚偏氟乙烯中的至少一种。隔离膜可以是单层薄膜,也可以是多层复合薄膜,没有特别限制。在隔离膜为多层复合薄膜时,各层的材料可以相同或不同,没有特别限制。

本申请的二次电池可以是锂离子电池。

可使用常规方法制备本申请的二次电池。在一些实施方式中,正极极片、负极极片和隔离膜可通过卷绕工艺或叠片工艺制成电极组件。示例性的制备方法包括:

步骤1:将正极极片、隔离膜、负极极片按顺序叠好,使隔离膜处于正、负极片之间,然后卷绕得到电极组件;

步骤2:将电极组件置于二次电池壳体中,干燥后注入电解液,再经过化成、静置工艺制得二次电池。

在一些实施方式中,本申请的二次电池可包括外包装。该外包装可用于封装上述 电极组件及电解质。

在一些实施方式中,二次电池的外包装可以是硬壳,例如硬塑料壳、铝壳、钢壳等。二次电池的外包装也可以是软包,例如袋式软包。软包的材质可以是塑料,作为塑料,可列举出聚丙烯、聚对苯二甲酸丁二醇酯以及聚丁二酸丁二醇酯等。

本申请对二次电池的形状没有特别的限制,其可以是圆柱形、方形或其他任意的形状。例如,图2是作为一个示例的方形结构的二次电池5。

在一些实施方式中,参照图3,外包装可包括壳体51和盖板53。其中,壳体51可包括底板和连接于底板上的侧板,底板和侧板围合形成容纳腔。壳体51具有与容纳腔连通的开口,盖板53能够盖设于所述开口,以封闭所述容纳腔。正极极片、负极极片和隔离膜可经卷绕工艺或叠片工艺形成电极组件52。电极组件52封装于所述容纳腔内。电解液浸润于电极组件52中。二次电池5所含电极组件52的数量可以为一个或多个,本领域技术人员可根据具体实际需求进行选择。

在一些实施方式中,二次电池可以组装成电池模块,电池模块所含二次电池的数量可以为一个或多个,具体数量本领域技术人员可根据电池模块的应用和容量进行选择。

图4是作为一个示例的电池模块4。参照图4,在电池模块4中,多个二次电池5可以是沿电池模块4的长度方向依次排列设置。当然,也可以按照其他任意的方式进行排布。进一步可以通过紧固件将该多个二次电池5进行固定。

可选地,电池模块4还可以包括具有容纳空间的外壳,多个二次电池5容纳于该容纳空间。

在一些实施方式中,上述电池模块还可以组装成电池包,电池包所含电池模块的数量可以为一个或多个,具体数量本领域技术人员可根据电池包的应用和容量进行选择。

图5和图6是作为一个示例的电池包1。参照图5和图6,在电池包1中可以包括电池箱和设置于电池箱中的多个电池模块4。电池箱包括上箱体2和下箱体3,上箱体2能够盖设于下箱体3,并形成用于容纳电池模块4的封闭空间。多个电池模块4可以按照任意的方式排布于电池箱中。

另外,本申请还提供一种用电装置,所述用电装置包括本申请提供的二次电池、电池模块或电池包。所述二次电池、电池模块、或电池包可以用作所述用电装置的电源,也可以用作所述用电装置的能量存储单元。所述用电装置可以选自移动设备(例如手机、笔记本电脑等)、电动车辆(例如纯电动车、混合动力电动车、插电式混合 动力电动车、电动自行车、电动踏板车、电动高尔夫球车、电动卡车等)、电气列车、船舶及卫星、储能系统等,但不限于此。作为所述用电装置,可以根据其使用需求来选择二次电池、电池模块或电池包。

图7是作为一个示例的用电装置。该用电装置为纯电动车、混合动力电动车、或插电式混合动力电动车等。为了满足该用电装置对二次电池的高功率和高能量密度的需求,可以采用电池包或电池模块。

作为另一个示例的装置可以是手机、平板电脑、笔记本电脑等。该装置通常要求轻薄化,可以采用二次电池作为电源。

实施例

以下,说明本申请的实施例。下面描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。实施例中未注明具体技术或条件的,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。

本申请实施例涉及的原材料来源如下:

I.电池制备

实施例1:

步骤1:正极活性材料的制备

步骤S1:制备Fe、Co、V和S共掺杂的草酸锰

将689.6g碳酸锰、455.27g碳酸亚铁、4.65g硫酸钴、4.87g二氯化钒加入混料机中充分混合6h。然后将得到的混合物转入反应釜中,并加入5L去离子水和1260.6g二水合草酸,加热至80℃,以500rpm的转速充分搅拌6h,混合均匀,直至反应终止无气泡产生,得到Fe、Co、和V共掺杂的草酸锰悬浮液。然后将悬浮液过滤,在120℃下烘干,再进行砂磨,得到粒径为100nm的草酸锰颗粒。

步骤S2:制备内核Li

取(1)中制备的草酸锰1793.1g以及368.3g碳酸锂、1146.6g磷酸二氢铵和4.9g稀硫酸,将它们加入到20L去离子水中,充分搅拌,在80℃下均匀混合反应10h,得到浆料。将所述浆料转入喷雾干燥设备中进行喷雾干燥造粒,在250℃的温度下进行干燥,得到粉料。在保护气氛(90%氮气和10%氢气)中,在700℃下将所述粉料在辊道窑中进行烧结4h,得到上述内核材料。

步骤S3:第一包覆层悬浊液的制备

制备Li

步骤S4:第一包覆层的包覆

将步骤S2中获得的掺杂后的1571.9g磷酸锰锂内核材料加入到步骤S3中获得的第一包覆层悬浊液(包覆物质含量为15.7g)中,充分搅拌混合6h,混合均匀后,转入120℃烘箱中干燥6h,然后在650℃下烧结6h得到焦磷酸盐包覆后的材料。

步骤S5:第二包覆层悬浊液的制备

将3.7g碳酸锂、11.6g碳酸亚铁、11.5g磷酸二氢铵和12.6g二水合草酸溶于1500mL去离子水中,然后搅拌并反应6h得到溶液,之后将该溶液升温到120℃并保持此温度6h,得到第二包覆层悬浊液。

步骤S6:第二包覆层的包覆

将步骤S4中获得的1586.8g的焦磷酸盐包覆后的材料加入到步骤S5中得到的第二包覆层悬浊液(包覆物质含量为47.1g)中,充分搅拌混合6h,混合均匀后,转入120℃烘箱中干燥6h,然后700℃烧结8h得到两层包覆后的材料。

步骤S7:第三包覆层水溶液的制备

将37.3g蔗糖溶于500g去离子水中,然后搅拌并充分溶解,得到蔗糖水溶液。

步骤S8:第三包覆层的包覆

将步骤S6中获得的两层包覆的材料1633.9g加入到步骤S7中得到的蔗糖溶液中,一同搅拌混合6h,混合均匀后,转入150℃烘箱中干燥6h,然后在700℃下烧结10h得到三层包覆后的材料。

步骤2:正极极片的制备

将上述制备的三层包覆后的正极活性材料、导电剂乙炔黑、粘结剂聚偏二氟乙烯(PVDF)按重量比为97.0:1.2:1.8加入到N-甲基吡咯烷酮(NMP)中,搅拌混合均匀,得到正极浆料。然后将正极浆料按0.280g/1540.25mm

步骤3:负极极片的制备

将负极活性物质人造石墨、硬碳、导电剂乙炔黑、粘结剂丁苯橡胶(SBR)、增稠剂羧甲基纤维素钠(CMC)按照重量比为90:5:2:2:1溶于溶剂去离子水中,搅拌混合均匀后制备成负极浆料。将负极浆料按0.117g/1540.25mm

步骤4:电解液的制备

在氩气气氛手套箱中(H

步骤5:隔离膜的制备

使用市售的厚度为20μm、平均孔径为80nm的PP-PE共聚物微孔薄膜(来自卓高电子科技公司,型号20)。

步骤6:全电池的制备

将上述获得的正极极片、隔离膜、负极极片按顺序叠好,使隔离膜处于正负极中间起到隔离的作用,并卷绕得到裸电芯。将裸电芯置于外包装中,注入上述电解液并封装,得到全电池(下文也称“全电”)。

【扣式电池的制备】

将上述制备的正极活性材料、聚偏二氟乙烯(PVDF)、乙炔黑以90:5:5的重量比加入至N-甲基吡咯烷酮(NMP)中,在干燥房中搅拌制成浆料。在铝箔上涂覆上述浆料,干燥、冷压制成正极极片。涂覆量为0.02g/cm

采用锂片作为负极,采用1mol/L的LiPF

实施例2至27和对比例1至19

以类似于实施例1的方式制备实施例2至27和对比例1至19中的正极活性材料和电池,正极活性材料的制备中的不同之处参见表1~6,其中对比例1~2、4~10和12未包覆第一层,因此没有步骤S3、S4;对比例1~11未包覆第二层,因此没有步骤S5-S6。

注:本申请所有实施例和对比例中,如未标明,则使用的第一包覆层物质和/或第二包覆层物质均默认为晶态。

表1:内核的制备原料

II.性能评价

1.晶格变化率测试方法:

在25℃恒温环境下,将正极活性材料样品置于XRD(型号为Bruker D8 Discover)中,采用1°/min对样品进行测试,并对测试数据进行整理分析,参照标准PDF卡片,计算出此时的晶格常数a0、b0、c0和v0(a0,b0和c0表示晶胞各个方面上的长度大小,v0表示晶胞体积,可通过XRD精修结果直接获取)。

采用上述实施例中扣电制备方法,将所述正极活性材料样品制备成扣电,并对上述扣电以0.05C小倍率进行充电,直至电流减小至0.01C。然后将扣电中的正极极片取出,并置于碳酸二甲酯(DMC)中浸泡8小时。然后烘干,刮粉,并筛选出其中粒径小于500nm的颗粒。取样并按照与上述测试新鲜样品同样的方式计算出其晶胞体积v1,将(v0-v1)/v0×100%作为其完全脱嵌锂前后的晶格变化率(晶胞体积变化率)示于表中。

2.Li/Mn反位缺陷浓度

将“晶格变化率测量方法”中测试的XRD结果与标准晶体的PDF(Powder Diffraction File)卡片对比,得出Li/Mn反位缺陷浓度。具体而言,将“晶格变化率测量方法”中测试的XRD结果导入通用结构分析系统(GSAS)软件中,自动获得精修结果,其中包含了不同原子的占位情况,通过读取精修结果获得Li/Mn反位缺陷浓度。

3.压实密度

取5g的上述制得的正极活性材料粉末放于压实专用模具(美国CARVER模具,型号13mm)中,然后将模具放在压实密度仪器上。施加3T的压力,在设备上读出压力下粉末的厚度(卸压后的厚度),通过ρ=m/v,计算出压实密度,其中使用的面积值为标准的小图片面积1540.25mm

4. 3C充电恒流比

在25℃恒温环境下,将上述各个实施例和对比例制备的新鲜全电池静置5min,按照1/3C放电至2.5V。静置5min,按照1/3C充电至4.3V,然后在4.3V下恒压充电至电流小于等于0.05mA。静置5min,记录此时的充电容量为C0。按照1/3C放电至2.5V,静置5min,再按照3C充电至4.3V,静置5min,记录此时的充电容量为C1。3C充电恒流比即为C1/C0×100%。

3C充电恒流比越高,说明二次电池的倍率性能越好。

5.过渡金属Mn(以及Mn位掺杂的Fe)溶出测试

将45℃下循环至容量衰减至80%后的上述各个实施例和对比例制备的全电池采用0.1C倍率进行放电至截止电压2.0V。然后将电池拆开,取出负极极片,在负极极片上随机取30个单位面积(1540.25mm

6.表面氧价态

取5g上述制得的正极活性材料样品按照上述实施例中所述扣电制备方法制备成扣电。对扣电采用0.05C小倍率进行充电,直至电流减小至0.01C。然后将扣电中的正极极片取出,并置于DMC中浸泡8小时。然后烘干,刮粉,并筛选出其中粒径小于500nm的颗粒。将所得颗粒用电子能量损失谱(EELS,所用仪器型号为Talos F200S)进行测量,获取能量损失近边结构(ELNES),其反映元素的态密度和能级分布情况。根据态密度和能级分布,通过对价带态密度数据进行积分,算出占据的电子数,从而推算出充电后的表面氧的价态。

7.正极活性材料中锰元素和磷元素的测量

将5g上述制得的正极活性材料在100ml逆王水(浓盐酸:浓硝酸=1:3)中(浓盐酸浓度~37%,浓硝酸浓度~65%)溶解,利用ICP测试溶液各元素的含量,然后对锰元素或磷元素的含量进行测量和换算(锰元素或磷元素的量/正极活性材料的量*100%),得到其重量占比。

8.扣式电池初始克容量测量方法

在2.5-4.3V下,将上述各实施例和对比例制备的扣式电池按照0.1C充电至4.3V,然后在4.3V下恒压充电至电流小于等于0.05mA,静置5min,然后按照0.1C放电至2.0V,此时的放电容量为初始克容量,记为D0。

10.全电池60℃存储30天电芯膨胀测试:

在60℃下,存储100%充电状态(SOC)的上述各个实施例和对比例制备的全电池。在存储前后及过程中测量电芯的开路电压(OCV)和交流内阻(IMP)以监控SOC,并测量电芯的体积。其中在每存储48h后取出全电池,静置1h后测试开路电压(OCV)、内阻(IMP),并在冷却至室温后用排水法测量电芯体积。排水法即先用表盘数据自动进行单位转换的天平单独测量电芯的重力F

由OCV、IMP测试结果来看,本实验过程中直至存储结束,全部实施例的电池始终保持99%以上的SOC。

存储30天后,测量电芯体积,并计算相对于存储前的电芯体积,存储后的电芯体积增加的百分比。

11.全电池45℃下循环性能测试

在45℃的恒温环境下,在2.5-4.3V下,按照1C充电至4.3V,然后在4.3V下恒压充电至电流≤0.05mA,静置5min,然后按照1C放电至2.5V,容量记为D

12.晶面间距和夹角测试

取1g上述制得的各正极活性材料粉末于50mL的试管中,并在试管中注入10mL质量分数为75%的酒精,然后进行充分搅拌分散30分钟,然后用干净的一次性塑料吸管取适量上述溶液滴加在300目铜网上,此时,部分粉末将在铜网上残留,将铜网连带样品转移至TEM(Talos F200s G2)样品腔中进行测试,得到TEM测试原始图片,保存原始图片格式(xx.dm3)。

将上述TEM测试所得原始图片在DigitalMicrograph软件中打开,并进行傅里叶变换(点击操作后由软件自动完成)得到衍射花样,量取衍射花样中衍射光斑到中心位置的距离,即可得到晶面间距,夹角根据布拉格方程进行计算得到。

通过得到的晶面间距和相应夹角数据,与其标准值比对,即可对包覆层的不同物质进行识别。

13.包覆层厚度测试

包覆层的厚度大小测试主要通过FIB从上述制得的正极活性材料单个颗粒中间切取100nm左右厚度的薄片,然后对薄片进行TEM测试,得到TEM测试原始图片,保存原始图片格式(xx.dm3)。

将上述TEM测试所得原始图片在DigitalMicrograph软件中打开,通过晶格间距和夹角信息,识别出包覆层,量取包覆层的厚度。

对所选颗粒测量三个位置处的厚度,取平均值。

14.第三层包覆层碳中SP2形态和SP3形态摩尔比的测定

本测试通过拉曼(Raman)光谱进行。通过对Raman测试的能谱进行分峰,得到Id/Ig,其中Id为SP3形态碳的峰强度,Ig为SP2形态碳的峰强度,从而确认两者的摩尔比。

所有实施例和对比例的性能测试结果参见下面的表格。

使用上述各实施例和对比例制备的正极活性材料制备正极浆料、正极极片和全电池,并进行浆料和电池的性能测试。

以下对比例和实施例中,极片和电池的制备、浆料和电池的性能测试按照以下方法进行:

1)制备正极极片

将正极活性材料与导电剂乙炔黑、粘结剂聚偏二氟乙烯(PVDF)、浸润剂和分散剂在N-甲基吡咯烷酮溶剂体系中混合均匀后,涂覆于带有底涂层的铝箔上并烘干、冷压,得到正极极片。正极活性材料、导电剂乙炔黑、粘结剂聚偏二氟乙烯(PVDF)、分散剂和浸润剂的重量比为(92-Y

具有导电底涂层的铝箔按照如下方法制备:

制备导电底涂层浆料:将聚丙烯酸-丙烯酸酯共聚物(重均分子量34万)和导电剂(Super P)按照40:60的重量比配比,溶解/分散于去离子水中,配制成导电底涂层浆料。

将导电底涂层浆料涂布于铝箔的两侧,干燥后每侧形成厚度为2μm的导电底涂层。获得具有导电底涂层的铝箔。

2)制备负极极片

将负极活性材料人造石墨、硬碳、导电剂乙炔黑、粘结剂丁苯橡胶(SBR)、增稠剂羧甲基纤维素钠(CMC)按照重量比90:5:2:2:1在去离子水中混合均匀后,涂覆于铜箔上烘干、冷压,得到负极极片。涂覆量为0.01g/cm

3)全电池的组装

以聚乙烯(PE)多孔聚合薄膜作为隔离膜,将正极极片、隔离膜、负极极片按顺序叠好,使隔离膜处于正负极中间起到隔离的作用,并卷绕得到裸电池。将裸电池置于外包装中,注入电解液并封装,得到全电池(下文也称“全电”)。

单个全电池中正极活性物质的重量为11.85g;负极活性物质的重量为6.73g。

4)浆料粘度测试

a.将粘度计放置于指定的操作台面,调节支架使水平气泡居中,粘度计处于水平状态;

b.取样:用500mL的玻璃烧杯取500mL的待测样品,25℃恒温测试;

c.测试:选择对应的转子、转速,目视检查转子无变形/污渍后,将转子倾斜,缓慢浸润,直至转子凹槽以下的部位全部浸润,浸润过程不允许用转子搅拌浆料,按开始键测试10分钟,每一分钟读取一次数据并记录,最终粘度为10组数据的均值。

图8示例性地展示了浆料粘度测试使用的仪器和测试过程。

5)浆料流动性测试(凝胶测试)

测试方法:用500mL玻璃烧杯取500mL待测样品,将长25cm、宽2cm带有刻度的钢尺垂直沿烧杯边缘慢慢伸入到液面下4~5cm位置,缓慢挑起浆料,然后查看钢尺带出的浆料流动情况,并拍照记录。有凝胶的判定为不合格。

6)浆料过滤性能测试

准备25cm*25cm的200目滤网,折成三角形,如图9所示;取浆料500mL沿三层滤网一面快速倒入,从浆料完全倒入开始计时,记录通过滤网的浆料为300mL时的过滤时间。时间大于2分钟则判定为不合格。

7)放电直流阻抗测试

在25℃下,以1.0C恒流恒压将锂离子电池充电至4.3V(1.0C指的是标称容量);1.0C倍率下调整电池电量至50%SoC,静置5分钟后4C恒流放电30s(每1s采集一次电压数据),计算放电30s的阻抗即为该测试数据。

8)45℃容量保持率80%循环圈数(简称为“45℃循环圈数”)

在45℃的恒温环境下,在2.5~4.3V下,将全电池按照1C充电至4.3V,然后在4.3V下恒压充电至电流小于等于0.05mA。静置5分钟,然后按照1C放电至2.5V,记录此时的放电容量为D0。重复前述充放电循环,直至放电容量降低到D0的80%。记录此时电池经过的循环圈数。

相关技术
  • 改性磷酸铁锂正极材料及其制备方法、正极片、锂二次电池
  • 正极活性材料、制备正极材料的方法、正极极片、二次电池、电池模块、电池包和用电装置
  • 锰酸锂正极活性材料及包含其的正极极片、二次电池、电池模块、电池包和用电装置
技术分类

06120116502333