掌桥专利:专业的专利平台
掌桥专利
首页

用于蚀刻硬件的基于氢等离子体的清洗工艺

文献发布时间:2024-04-18 19:58:26


用于蚀刻硬件的基于氢等离子体的清洗工艺

本申请是申请日为2016年12月29日、申请号为“201680062587.6”、发明名称为“用于蚀刻硬件的基于氢等离子体的清洗工艺”的发明专利申请的分案申请。

技术领域

本发明的实施方式大体而言是关于用于清洗在半导体制造应用中所使用的蚀刻硬件的方法。

背景技术

可靠地生产亚半微米和更小的特征是半导体器件的下一代大规模集成电路(VLSI)和超大规模集成电路(ULSI)的关键技术挑战之一。然而,随着电路技术的极限被推进,VLSI和ULSI技术的缩小尺寸对处理能力提出了额外的要求。在基板上可靠地形成栅极结构对于VLSI和ULSI的成功及对于用以提高单独的基板和晶粒的电路密度和质量的持续努力是重要的。

当形成这些特征时,使用光刻胶层作为蚀刻掩模的蚀刻工艺是经常使用的。边缘环可用于控制基板的可用于蚀刻剂的区域。通常,蚀刻剂在边缘环附近的暴露的基板表面处积聚,这可能导致那个区域的过度蚀刻(也称为边缘卷起)。使用围绕晶片而放置的镍边缘环(Ni-ER)控制晶片边缘蚀刻量(EA)。金属Ni通过作为淬灭过量蚀刻剂的化学催化剂而移除晶片边缘附近的过量蚀刻剂。

然而,一些生产的晶片含有金属化合物(诸如TiN)的可改变的数量。即使在对这些化合物具有良好选择性(如,大于500:1)的蚀刻工艺中,在Si蚀刻工艺期间可能蚀刻少量。空中传播的Ti物种沉积在腔室零件上,诸如工艺套组的铝部件和Ni-ER。Ti可接着影响Ni-ER的催化活性,从而防止Ni-ER的保护活性。ER催化活性的损失可导致在晶片边缘附近的强的Si蚀刻和在Si膜上的不良的蚀刻均匀性,这可能包括12%或更高的非均匀性百分比。

一些人已试图通过高温烘烤受污染的部件(如,在160℃的温度下烘烤)和部件擦拭(如,使用湿的和干的擦拭物)来恢复蚀刻轮廓,而未成功。其他选项包括以新部件更换所有的部件零件和边缘环。然而,部件的更换是既耗时又不具成本效益的。

因此,在本领域中存在有对用于清洗或恢复蚀刻腔室部件的活性的方法的需求。

发明内容

本公开提供用于在半导体应用中的蚀刻工艺之后从Ti污染中恢复腔室部件的方法。在一个例子中,清洗方法可包括以下步骤:使用等离子体活化蚀刻气体混合物,以产生活化的蚀刻气体混合物,蚀刻气体混合物包含含氢前体和含氟前体;及将活化的蚀刻气体混合物输送到工艺腔室的处理区域,工艺腔室具有位于其中的边缘环,边缘环包含催化剂和抗催化材料,其中活化的气体从边缘环移除抗催化材料。

在另一个例子中,一种用于处理基板的方法可包括以下步骤:蚀刻位于工艺腔室的处理区域中的基板,基板与包含催化剂的边缘环结合定位,其中蚀刻基板的步骤包含以下步骤:将抗催化材料沉积在边缘环上;从处理区域移除基板;使用蚀刻气体混合物形成远程等离子体,蚀刻气体混合物包含含氢前体和含氟前体;及将远程等离子体输送到处理区域中的边缘环,其中远程等离子体从边缘环移除抗催化材料。

在另一个例子中,一种装置清洗方法可包括以下步骤:将蚀刻气体混合物输送到工艺腔室的等离子体腔,工艺腔室具有边缘环,边缘环包含镍和小于5%原子量的钛;使用蚀刻气体混合物形成远程等离子体,蚀刻气体混合物包含H

附图说明

为使可详细理解本发明的以上所载的特征的方式,可通过参考实施方式来获得对上面所简要概述的本发明的更具体的描述,实施方式的一些图示在附随的附图中。然而,应当注意附随的附图仅图示本发明的典型实施方式,且因此不应被认为是对本发明的范围的限制,因为本发明可允许其他等效的实施方式。

图1描绘可用以在基板上执行蚀刻工艺的蚀刻工艺腔室;

图2描绘根据一个实施方式的用于从边缘环清洗抗催化材料的方法的流程图;且

为促进理解,在可能的情况下已使用相同的组件符号来指定共享于附图中的相同组件。应理解一个实施方式的要素和特征可有利地并入其他实施方式中,而无需进一步详述。

然而,应注意附随的附图仅图示示例性实施方式且因此不被视为限制实施方式的范围,因为于此所述的方法可允许其它等效的实施方式。

具体实施方式

于此所述的实施方式大体而言是关于用于在半导体应用中的蚀刻工艺之后从Ti污染中恢复腔室部件的方法。在一个例子中,方法包括将远程等离子体输送到催化边缘环,诸如镍边缘环。远程等离子体包括含氢物种和含氟物种。

在蚀刻工艺期间,一些钛被蚀刻并再沉积到边缘环上,这降低了边缘环的催化活性并且在边缘环-基板界面处产生增加的蚀刻。通过将包含含氢前体和含氟前体的等离子体输送到边缘环,可清洗边缘环并可恢复催化活性。这种清洗工艺减少了更换部件的停机时间和成本。于此所公开的实施方式参照以下的附图更清楚地描述。

图1是适于执行如以下所进一步描述的边缘环污染物移除工艺的说明性工艺腔室100的剖面图。工艺腔室100可经配置以从设置在基板表面上的材料层移除材料。工艺腔室100对于执行等离子体辅助的干式蚀刻工艺是特别有用的。工艺腔室100可以是可从位于加利福尼亚州圣克拉拉市的应用材料公司取得的Frontier TM、PCxT Reactive Preclean TM(RPC)、AKTIV Pre-Clean TM、Siconi TM或Capa TM腔室。应注意可从其它制造商取得的其它真空工艺腔室也可适于实施于此所述的实施方式。

工艺腔室100包括腔室主体112、盖组件140和支撑组件180。盖组件140设置在腔室主体112的上端处,且支撑组件180至少部分地设置在腔室主体112内。

腔室主体112包括形成在腔室主体112的侧壁中的狭缝阀开口114,以提供对工艺腔室100的内部的接入。狭缝阀开口114选择性地打开和关闭,以允许通过晶片搬运机器人(未显示)而进入腔室主体112的内部。

在一或多个实施方式中,腔室主体112包括在其中形成的通道115,用于使传热流体流过其中。腔室主体112可进一步包括围绕支撑组件180的衬垫120。衬垫120为可移除的,以用于维修和清洗。在一或多个实施方式中,衬垫120包括一或多个孔125和形成在其中的与真空系统流体连通的泵送通道129。孔125为气体进入泵送通道129中提供流动路径,泵送通道129为工艺腔室100内的气体提供出口。

真空系统可包括真空泵130和节流阀132,以调节通过工艺腔室100的气体的流量。真空泵130耦接到设置在腔室主体112中的真空端口131,且因此与在衬垫120内所形成的泵送通道129流体连通。盖组件140包括至少两个堆叠的部件,该至少两个堆叠的部件经配置以在其之间形成等离子体容积或腔,从而形成远程等离子体源。在一或多个实施方式中,盖组件140包括垂直设置在第二电极145(“下电极”)上方的第一电极143(“上电极”),在第一电极143和第二电极145之间限定等离子体容积或腔150。第一电极143连接到诸如RF功率源之类的功率源152,且第二电极145连接到地面,从而在两个电极143、145之间形成电容,以提供远程等离子体给处理区域141。

在一或多个实施方式中,盖组件140包括至少部分地形成在第一电极143的上区域156内的一或多个气体入口154(仅显示一个)。一或多种工艺气体经由一或多个气体入口154而进入盖组件140。一或多个气体入口154在其第一端处与等离子体腔150流体连通,且在其第二端处耦接到一或多个上游气体源和/或其它气体输送部件,诸如气体混合器。在一或多个实施方式中,第一电极143具有容纳等离子体腔150的扩展区段155。

在一或多个实施方式中,扩展区段155是环形构件,具有从其上部分155A到其下部分155B逐渐增加的内表面或直径157。因此,在第一电极143和第二电极145之间的距离是可变的。那种变化的距离帮助控制在等离子体腔150内所产生的等离子体的形成和稳定性。在等离子体腔150中所产生的等离子体在进入支撑组件180上方的处理区域141之前被限定在盖组件140中,其中基板继续进行,该等离子体被认为是远离处理区域141而产生的远程等离子体源。

盖组件140可进一步包括将第一电极143与第二电极145电隔离的隔离环160。盖组件140可进一步包括与第二电极145相邻的分配板170和阻挡板175。第二电极145、分配板170和阻挡板175可堆叠并设置在连接到腔室主体112的盖边缘178上。在一或多个实施方式中,第二电极145可包括形成在等离子体腔150之下的多个气体通路或孔165,以允许来自等离子体腔150的气体流过其中。分配板170基本上是盘形的,且还包括多个孔172或通路,以通过多个孔172或通路分配气体流。在一或多个实施方式中,分配板170包括一或多个嵌入的通道或通路174,用于容纳加热器或加热流体,以提供盖组件140的温度控制。阻挡板175包括多个孔176,以提供从第二电极145到分配板170的多个气体通路。孔176可绕阻挡板175而经调整尺寸和位置,以向分配板170提供气体的受控且均匀的流动分配。

支撑组件180可包括支撑构件185,以支撑用于在腔室主体112内处理的基板(在这个附图中未显示)。支撑构件185可通过轴187而耦接到升降机构183,轴187延伸穿过形成在腔室主体112的底表面中的中心定位的开口116。升降机构183可通过波纹管188而柔性地密封到腔室主体112,波纹管188防止围绕轴187的真空泄漏。

在一个实施方式中,电极181耦接到多个RF偏压功率源184、186。RF偏压功率源184、186耦接在设置在支撑构件185中的电极181之间。RF偏压功率激发并维持由设置在腔室主体的处理区域141中的气体所形成的等离子体放电。

在图1中所示的实施方式中,双RF偏压功率源184、186通过匹配电路189而耦接到设置在支撑构件185中的电极181。通过RF偏压功率源184、186所产生的信号通过单一馈送而通过匹配电路189输送到支撑构件185,以离子化在工艺腔室100中所提供的气体混合物,从而提供用于执行沉积或其它等离子体增强工艺所需的离子能量。RF偏压功率源184、186一般能够产生具有从约50kHz至约200MHz的频率和在约0W与约5000W之间的功率的RF信号。额外的偏压功率源可耦接到电极181,以根据需求而控制等离子体的特性。

支撑构件185可包括穿过其中而形成的钻孔192,以容纳升降销193,升降销193之一显示在图1中。每一升降销193由陶瓷或含陶瓷的材料所构成,且用于基板搬运和运输。当升降销193啮合设置在腔室主体112内的环形升降环195时,升降销193在其相应的钻孔192内为可移动的。支撑组件180可进一步包括绕支撑构件185而设置的边缘环196。

支撑组件180的温度可通过穿过嵌入在支撑构件185的主体中的流体通道198而循环的流体来控制。在一或多个实施方式中,流体通道198与穿过支撑组件180的轴187而设置的传热导管199流体连通。流体通道198绕支撑构件185而定位,以提供均匀的传热到支撑构件185的基板接收表面。流体通道198和传热导管199可流动传热流体,以加热或冷却支撑构件185。可使用任何合适的传热流体,诸如水、氮、乙二醇或其混合物。支撑组件180可进一步包括用于监控支撑构件185的支撑表面的温度的嵌入式热偶(未显示)。例如,来自热偶的信号可用在反馈回路中,以控制穿过流体通道198而循环的流体的温度或流率。

支撑构件185可在腔室主体112内垂直地移动,使得可控制在支撑构件185和盖组件140之间的距离。传感器(未显示)可提供关于在工艺腔室100内的支撑构件185的位置的信息。

系统控制器(未显示)可用以调节工艺腔室100的操作。系统控制器可在存储于计算机的存储器上的计算机程序的控制下操作。计算机程序可包括使得能够在工艺腔室100中执行以下所述的清洗工艺的指令。例如,计算机程序可指示工艺顺序和计时、气体的混合、腔室压力、RF功率水平、基座定位、狭缝阀开启和关闭、晶片冷却以及特定工艺的其他参数。

图2显示用于在基板的蚀刻后清洗边缘环的方法200。在一或多个实施方式中,基板包含含硅成分和含金属成分(诸如含钛成分)两者。在一个实施例中,使用氯或氟蚀刻基板。蚀刻工艺在边缘环中或边缘环上留下抗催化成分,诸如钛。接着用包含氢和氟的等离子体处理边缘环,这从边缘环移除抗催化成分。使用于此所述的方法恢复边缘环的催化活性、减少停机时间、降低成本并维护腔室衬垫。

方法200通过蚀刻位于工艺腔室的处理区域中的基板而开始于202处。基板可以是诸如晶体硅(如,Si<100>或Si<111>)、氧化硅、应变硅、硅锗、锗、掺杂或未掺杂的多晶硅、掺杂或未掺杂的硅晶片及图案化或未图案化的晶片硅上绝缘体(SOI)、碳掺杂氧化硅、氮化硅、掺杂硅、锗、砷化镓、玻璃或蓝宝石之类的材料。基板203可具有各种尺寸,诸如200mm、300mm、450mm或其它直径,以及为矩形或正方形面板。除非另有说明,于此所述的例子在具有300mm直径的基板上进行。

基板与边缘环结合定位。边缘环包括催化剂,诸如镍。在蚀刻基板时,蚀刻剂从基板部分地萃取抗催化材料。于此所用的抗催化材料描述影响边缘环的催化性质的任何材料,诸如钛。在正常的蚀刻操作期间,蚀刻剂将在边缘环和基板之间的界面处积聚。这导致表面不均匀性,从而可能对装置性能有害。为防止这种情况,边缘环包括催化材料,诸如镍。催化材料降低了边缘环-基板界面附近的蚀刻剂的蚀刻活性。诸如钛之类的抗催化材料降低边缘环的催化活性,因此允许在随后的蚀刻工艺期间的表面不均匀性。

接着在204处将基板从处理区域移除。接着将被充分蚀刻的基板从腔室移除。基板可被精密加工,或可被移动到群集工具中的另一个腔室。这既防止对基板的进一步的不受控制的蚀刻,又防止抗催化材料进一步沉积到边缘环上。

在206处,使用蚀刻气体混合物而形成远程等离子体。蚀刻气体混合物包括含氢前体和含氟前体。将蚀刻气体混合物供应到工艺腔室中,以从边缘环蚀刻抗催化材料。连续地或间歇地供应蚀刻气体混合物,以蚀刻抗催化材料,直到移除足够的抗催化材料,以恢复边缘环的催化活性。

在一个实施方式中,选择来蚀刻抗催化材料的蚀刻气体混合物包括至少含氢气体和含氟前体。含氟前体的合适例子包括F

含氢前体的合适例子包含H

不意欲受理论束缚地,据信氢和氟的组合允许清洗边缘环,而不会对工艺腔室中的工艺套组部件造成有害影响。在远程等离子体中产生的氢自由基与沉积在边缘环和其它腔室零件上的Ti物种反应,以形成富氢化学复合物(如,氢与TiF

在一个实施方式中,在蚀刻气体混合物中供应的含氟前体可以约100sccm和约10000sccm之间的体积流率而维持。H

蚀刻气体混合物可通过等离子体腔150而供应到工艺腔室100中,以在等离子体腔150中从蚀刻气体混合物形成远程等离子体源,用于蚀刻硅材料306。

从蚀刻气体混合物引入到工艺腔室100中的气体的量可改变和调整,以适应(例如)待移除的抗催化材料的厚度、被清洗的边缘环的几何形状、等离子体的体积容量、腔室主体的体积容量及耦接到腔室主体的真空系统的能力。

应注意还可调节含氟前体与含氢前体之间的比率,以改良蚀刻选择性,包括在抗催化材料和边缘环中的其它材料之间的选择性。产生来自功率源152的远程等离子体功率,以在等离子体腔中从如上所述而供应的蚀刻气体混合物形成等离子体。在等离子体腔中远程产生的等离子体可具有离解的蚀刻剂,以形成相对轻微且温和的蚀刻剂,以便缓慢地、温和地并逐渐地蚀刻抗催化材料,直到暴露出下面的边缘环材料。

接着在208处将远程等离子体输送到处理区域中的边缘环。远程等离子体从边缘环移除抗催化材料。接着将远程等离子体输送到边缘环,以从边缘环蚀刻抗催化材料。蚀刻工艺可利用远程等离子体源而控制成以缓慢的速率进行。结果,远程等离子体工艺为界面蚀刻提供良好的控制并促进高蚀刻选择性,以允许从边缘环移除抗催化材料的精确蚀刻终点,而不损害边缘环的组成或工艺套组的铝部件。

在蚀刻工艺期间,可调节一些工艺参数以控制蚀刻工艺。在一个示例性实施方式中,将工艺腔室100中的工艺压力调节到小于0.5Torr,诸如在约10mTorr和约100mTorr之间。替代地,RF偏压功率可任选地通过RF偏压功率源184、186而供应给设置在基板支撑构件185中的电极181。例如,当根据需求而供应蚀刻气体混合物时,可施加约小于300W,诸如小于100W,例如在约20W至约95W之间的RF偏压功率。RF源功率可根据需求而任选地供应到工艺腔室100。基板温度维持在约摄氏25度至约摄氏1000度之间,诸如在约摄氏30度至约摄氏500度之间,例如在约摄氏50度至摄氏150度之间。在一个实施方式中,在蚀刻工艺期间不提供RF偏压功率或不提供RF源功率,以减少离子轰击。在另一个例子中,在蚀刻工艺期间在没有RF源功率的情况下提供RF偏压功率,以减少离子轰击。在又另一个例子中,在蚀刻工艺期间不提供RF偏压功率,以减少离子轰击。

因此,通过输送活化的第一气体(包括含氢前体和含氟前体),可从催化边缘环移除过量的抗催化材料。当与其它工作方案(如,零件更换)相比时,催化边缘环的恢复可导致多倍的成本减少和时间减少。此外,不需要腔室拆卸。此外,以上所述的方法仅使用对先前存在的蚀刻和清洗工艺的最小改变。氢前体流率、等离子体产生功率、ICC工艺时间允许使用者控制边缘蚀刻量。最后,以上所述的方法具有减少某些金属污染物的第三个益处。由于形成挥发性金属氢化物,所以可消除处理区域中的一些金属污染物(如,铬)。

虽然前面部分针对于此所述的方法的实施方式,但可设计方法的其他和进一步的实施方式而不背离本发明的基本范围,且本发明的范围由以下的权利要求确定。

相关技术
  • 用于蚀刻硬件的基于氢等离子体的清洗工艺
  • 一种用于等离子清洗机或蚀刻机的真空清洗结构及清洗工艺
技术分类

06120116489176