掌桥专利:专业的专利平台
掌桥专利
首页

改进的干膜配方、流体喷射头及其制作方法

文献发布时间:2023-06-19 09:32:16


改进的干膜配方、流体喷射头及其制作方法

技术领域

本公开涉及一种改进的干膜配方、流体喷射头及其制作方法,且具体来说涉及改进的光致抗蚀剂干膜层,具有用于制作厚膜积层体的改进配方的光致抗蚀剂干膜层。

背景技术

光致抗蚀剂干膜层可用于各种电子器件,包括但不限于流体射流喷射器件、气化器件及微电子结构。流体射流喷射器件包括可用于喷射各种流体的流体喷射头,所述流体包括油墨、冷却流体、药物、润滑剂、气化流体等。随着制作流体喷射头的技术不断进步,使用流体喷射头的器件不断改进。正在不断开发新的技术来为流体喷射器件提供低成本、高度可靠的流体喷射头以用于各种应用。

在流体射流喷射器件中使用的流体喷射头具有相对复杂的结构,所述结构包括精确组装的电路、流体通道及各种微小部件,以提供强大但通用的流体喷射头。流体喷射头的组件必须相互配合,并与各种流体配方配合,以提供用于从中喷射流体所需的特性。因此,重要的是使喷射头组件与使用流体喷射头的流体喷射器件所需要的流体及占空比匹配。生产品质的轻微变化可对产品良率及所得流体喷射性能产生巨大影响。

在制作流体喷射头期间,可使用感光成像材料来提供流体流动层和/或喷嘴板层。在制备感光成像材料时,将光致抗蚀剂树脂配方以液体形式施加到离型膜,且将所述配方在离型膜上干燥。然后从干燥的感光成像材料移除离型膜,且将干燥的感光成像材料积层到硅半导体衬底或硅半导体衬底上的流动特征层。然后对感光成像材料进行成像及显影以提供各种流体流动特征和/或喷嘴孔。在一些情况下,将含有流体喷射腔室及流体流动通道的流体流动层作为旋涂层直接施加到硅半导体衬底,且将喷嘴板层作为干膜积层到流体流动层,在其他情况下,将流体流动层作为干膜积层到硅半导体衬底,且将喷嘴板作为干膜积层到流体流动层。

由于硅衬底与流体流动层的不同的化学性质及物理性质,在不使用硅衬底的表面处理和/或在流体流动层中不使用粘合增强剂的情况下,无法实现流体流动层与硅衬底的适当粘合。同样地,喷嘴板与流体流动层之间的粘合是重要的,且需要在用于制作喷嘴板层的干膜光致抗蚀剂材料的配方中使用粘合增强剂。然而,发现在对离型膜上的光致抗蚀剂配方进行干燥的步骤期间会损失大量的粘合增强剂。在干燥步骤期间粘合增强剂的损失已导致流体流动层与衬底之间和/或流体流动层与喷嘴板层之间的较差粘合。因此,需要一种在光致抗蚀剂配方干燥步骤期间粘合增强剂不会显著损失的改进的干膜光致抗蚀剂配方。

发明内容

鉴于以上所述,本公开的示例性实施例提供一种改进的感光成像干膜配方、一种含有衍生自改进的感光成像干膜配方的厚膜层的流体喷射头以及一种制作流体喷射头的方法。改进的感光成像干膜配方包含多官能环氧化合物、能够产生阳离子的光引发剂、非光反应性溶剂及以干燥前的感光成像干膜配方的总重量计约0.5重量%到约5重量%的硅烷寡聚物粘合增强剂。

在另一个实施例中,提供一种制作改进的流体喷射头的方法。所述方法包括:将光致抗蚀剂层施加到离型膜,其中所述光致抗蚀剂层衍生自感光成像干膜配方,所述感光成像干膜配方包含多官能环氧化合物、光酸产生剂、硅烷寡聚物粘合增强剂及非光反应性溶剂。对所述离型膜层上的所述感光成像干膜配方进行干燥以提供厚膜层。将所述厚膜层积层到半导体衬底上的流动特征层。然后从所述厚膜层移除所述离型膜。在所述厚膜层中对喷嘴孔进行成像,且对成像的厚膜层进行显影以为流体喷射头提供喷嘴板。

进一步的实施例提供一种用于喷射流体组合物的流体喷射头。流体喷射头包括其上含有流体喷射器件的半导体衬底。流动特征层设置在半导体衬底上,且厚膜层被积层到流动特征层。所述厚膜层衍生自感光成像干膜配方,所述感光成像干膜配方包含多官能环氧化合物、能够产生阳离子的光引发剂、非光反应性溶剂及以干燥前的所述感光成像干膜配方的总重量计约0.5重量%到约5重量%的硅烷寡聚物粘合增强剂。

在一些实施例中,以干燥前的所述感光成像干膜配方的总重量计,所述感光成像干膜配方包含约1重量%到约3重量%的所述硅烷寡聚物粘合增强剂。

在一些实施例中,所述非光反应性溶剂包含芳基酮溶剂或脂族酮溶剂。在其他实施例中,脂族酮溶剂包括环己酮且视需要包括丙酮。

在一些实施例中,硅烷寡聚物粘合增强剂是烷氧基硅烷寡聚物化合物。在其他实施例中,烷氧基硅烷寡聚物化合物是下式的γ-缩水甘油氧基丙基三甲氧基硅烷寡聚物

其中n介于1到4的范围内。

在一些实施例中,所述离型膜上的感光成像干膜配方是在介于约110℃到约150℃范围内的温度下干燥。

在一些实施例中,将由感光成像干膜配方制成的干膜积层体施加到硅半导体衬底。

在其他实施例中,将由感光成像干膜配方制成的干膜积层体施加到流体喷射头的流动特征层。

本文所述实施例的优点在于,与用传统粘合增强剂制成的干膜感光成像层相比,所述干膜感光成像层改善了半导体衬底与流体流动层之间以及流体流动层与喷嘴板之间的粘合。

附图说明

当结合各图考虑时,通过参考详细说明,所公开的实施例的进一步的特征及优点可变得显而易见,所述图并非按比例绘制,其中在所有几个视图中,相同的参考编号指示相同的元件,且在所述图中:

图1是其上含有流体喷射头的流体喷射匣的不按比例绘制的透视图。

图2是用于从根据本公开制成的喷射头喷射流体的流体喷射器件的不按比例绘制的透视图。

图3是流体喷射头的由本文所述的光致抗蚀剂材料制成的流体流动层的一部分的显微照片。

图4到图5示出对由本文所述的光致抗蚀剂材料制成的流体流动层进行成像及显影以制作流体喷射头的方法。

图6是由本文所述的光致抗蚀剂材料制成的流体流动层中的流动特征的平面图。

图7示出根据本公开的由光致抗蚀剂材料制作喷嘴板以用于流体喷射头的方法。

图8是含有由光致抗蚀剂材料制成的流体流动层及喷嘴板的流体喷射头的一部分的不按比例绘制的剖视图。

具体实施方式

如上所述,本公开的实施例涉及用于流体喷射头的改进的感光成像干膜配方。图1中示出含有流体喷射头12的代表性流体喷射匣10。流体喷射匣10包括用于在其上含有流体喷射头12的匣体14。如下面更详细所述,喷射头12包括附着到流体流动层的喷嘴板16,流体流动层又附着到其上含有流体喷射器的硅衬底。在现有技术的流体喷射头中,由聚酰亚胺材料制成的喷嘴板被激光烧蚀,然后通过粘合剂附着到衬底上的流体流动层。此种现有技术工艺需要用于喷嘴板的单独处理步骤及困难的对准技术,通过使用本文所述的感光成像干膜配方会避免所述单独处理步骤及困难的对准技术。

含有电接触件20的柔性电路18通过电迹线22电连接到硅衬底上的流体喷射器。流体喷射匣10可用于例如喷墨打印机24(参照图2)等器件中,然而,本公开的实施例不限于用于喷墨打印机24的流体喷射头12。

为了制备具有改善的性质的流体喷射头12,根据本公开的实施例,使用将液体光致抗蚀剂组合物施加到离型膜的移动幅板(moving web)的狭缝模具涂布方法,以在离型膜上提供感光成像层。将液体光致抗蚀剂组合物提供到包括含有模具出口的封闭压力容器的狭缝模具涂布机。狭缝模具涂布机以约3米/分钟到约50米/分钟的速率将光致抗蚀剂组合物递送到离型膜的移动幅板的表面。然后对离型膜上的光致抗蚀剂组合物进行干燥以提供感光成像层,所述感光成像层可积层到硅衬底或硅衬底上的流体流动层。

可配制合适的液体光致抗蚀剂组合物以包含多官能环氧化合物、双官能环氧化合物、相对高分子量多羟基醚、粘合增强剂、光引发剂及脂族酮溶剂中的一种或多种。为了本公开的目的,“双官能环氧”意指在分子中仅具有两个环氧官能基的环氧化合物及材料。“多官能环氧”意指在分子中具有两个或更多个环氧官能基的环氧化合物及材料。典型的光致抗蚀剂组合物阐述于下表中。

表1

可用于根据本公开的光致抗蚀剂组合物中的多官能环氧组分可选自芳族环氧化物,例如多酚的缩水甘油醚。示例性第一多官能环氧树脂是酚醛清漆树脂的聚缩水甘油醚,例如具有介于约190到约250范围内的环氧化物克当量重量(epoxide gram equivalentweight)及在130℃下介于约10到约60范围内的粘度的酚醛清漆环氧树脂。

光致抗蚀剂组合物的多官能环氧组分可具有通过凝胶渗透色谱法确定的约3,000道尔顿到约5,000道尔顿的重量平均分子量及大于3、优选地约6到约10的平均环氧基官能度。以固化的感光成像层的总重量计,示例性光致抗蚀剂组合物中的多官能环氧树脂的量可介于约30重量%到约50重量%范围内。

光致抗蚀剂组合物的双官能环氧组分可选自双官能环氧化合物,其包括双酚-A的二缩水甘油醚、3,4-环氧环己基甲基-3,4-环氧环-己烯羧酸酯、3,4-环氧-6-甲基环己基-甲基-3,4-环氧-6-甲基环己烯羧酸酯、双(3,4-环氧-6-甲基环己基甲基)己二酸酯及双(2,3-环氧环戊基)醚。

示例性双官能环氧组分是环氧化物当量(epoxide equivalent)大于约1000的双酚-A/表氯醇环氧树脂。“环氧化物当量”是含有1克当量环氧化物的树脂的克数。双官能环氧组分的重量平均分子量通常高于2500道尔顿,例如约2800重量平均分子量到约3500重量平均分子量。以固化的感光成像层的总重量计,光致抗蚀剂组合物中的双官能环氧组分的量可介于约30重量%到约50重量%。

在一些实施例中,为了增强固化的感光成像层的柔性以用于积层目的,在配方中可包含第二双官能环氧化合物。第二双官能环氧化合物通常具有比上述双官能环氧化合物的重量平均分子量小的重量平均分子量。特别地,第二双官能环氧化合物的重量平均分子量可介于约250道尔顿到约400道尔顿范围内。在光致抗蚀剂组合物中可使用实质上相等份数的双官能环氧化合物。合适的第二双官能环氧化合物可选自双酚-A的二缩水甘油醚。以固化的感光成像层的总重量计,光致抗蚀剂组合物中的双官能环氧化合物的总量可介于约40重量%到约60重量%范围内。

光致抗蚀剂组合物的另一种组分是具有末端α-二醇基的下式的相对高分子量多羟基醚化合物:

[OC

其中n为约35到约100的整数。此种化合物是由与环氧树脂相同的原材料制成,但在所述化合物中不含环氧基。此种化合物通常被称为苯氧基树脂。合适的相对高分子量苯氧基树脂的实例包括但不限于以商品名PKHP200及PKHJ购自南卡罗来纳州洛克希尔市的应化公司(InChem Corporation of Rock Hill,South Carolina)的苯氧基树脂。此种苯氧基树脂具有约99重量%的固体含量、在25℃下介于约450厘泊到约800厘泊范围内的布鲁克菲尔德粘度(Brookfield viscosity)、介于约50,000到约60,000范围内的以道尔顿计的重量平均分子量、在25℃下熔融的约1.18的比重及约90℃到约95℃的玻璃化转变温度。

苯氧基树脂特别地可用于制作感光成像层以积层到衬底,这部分地是由于其通常不会结晶或形成应力集中。苯氧基树脂具有在宽的温度范围(包括高于约38℃的温度)内实现稳定性的高温特性。以固化的感光成像层的重量计,光致抗蚀剂组合物可含有约25重量%到约35重量%的苯氧基树脂。

示例性光酸产生剂包括能够产生阳离子的化合物或化合物的混合物,例如芳族络合物盐,其可选自VA族元素的鎓盐、VIA族元素的鎓盐及芳族卤鎓盐。芳族络合物盐在暴露于紫外线辐射或电子束照射时能够产生酸部分,所述酸部分会引发与环氧化物的反应。以固化的感光成像层的重量计,光酸产生剂可以介于约5重量%到约15重量%范围内的量存在于光致抗蚀剂组合物中。

当被活化射线照射时产生质子酸的化合物可用作光酸产生剂,包括但不限于芳族碘鎓络合物盐及芳族锍络合物盐。实例包括三氟甲磺酸二-(叔丁基苯基)碘鎓、四(五氟苯基)硼酸二苯基碘鎓、六氟磷酸二苯基碘鎓、六氟锑酸二苯基碘鎓、六氟磷酸二(4-壬基苯基)碘鎓、六氟锑酸[4(辛氧基)苯基]苯基碘鎓、三氟甲磺酸三苯基锍、六氟磷酸三苯基锍、六氟锑酸三苯基锍、四(五氟苯基)硼酸三苯基锍、4,4′-双[二苯基锍]二苯基硫醚、双-六氟磷酸盐、4,4′-双[二([β]-羟基乙氧基)苯基锍]二苯基硫醚双-六氟锑酸盐、4,4′-双[二([β]-羟基乙氧基)(苯基锍)二苯基硫醚-双六氟磷酸盐、7-[二(对甲苯基)锍]-2-异丙基噻吨酮六氟磷酸盐、7-[二(对甲苯基)锍-2-异丙基噻吨酮六氟锑酸盐、7-[二(对甲苯基)锍]-2-异丙基四(五氟苯基)硼酸盐、苯基羰基-4′-二苯基锍二苯基硫醚六氟磷酸盐、苯基羰基-4′-二苯基锍二苯基硫醚六氟锑酸盐、4-叔丁基苯基羰基-4′-二苯基锍二苯基硫醚六氟磷酸盐、4-叔丁基苯基羰基-4′-二苯基锍二苯基硫醚六氟锑酸盐、4-叔丁基苯基羰基-4′-二苯基锍二苯基硫醚四(五氟苯基)硼酸盐、二苯基[4-(苯硫基)苯基]锍六氟锑酸盐等。

光致抗蚀剂组合物优选地包含有效量的粘合增强剂,例如硅烷化合物。与光致抗蚀剂组合物的组分相容的硅烷化合物通常具有能够与选自由多官能环氧化合物、双官能环氧化合物及光引发剂组成的群组中的至少一个成员反应的官能基。此种粘合增强剂可为具有环氧化物官能基的硅烷,例如缩水甘油氧基烷基三烷氧基硅烷(例如γ-缩水甘油氧基丙基三甲氧基硅烷)。当使用时,以固化的感光成像层的总重量计,粘合增强剂可以介于约0.5重量%至约2重量%、例如约1.0重量%至约1.5重量%范围内(包括其中包含的所有范围)的量存在。本文所用的粘合增强剂被定义为意指可溶于光致抗蚀剂组合物中的有机材料,其有助于光致抗蚀剂组合物的膜形成及粘合特性。

非常令人惊讶地发现,并非所有的粘合增强剂都适用于由前述光致抗蚀剂组合物制成的干膜层压体。因此,用硅烷寡聚物粘合增强剂制成的干膜感光成像层已经显示出,当暴露于与喷射头12一起使用的流体一段时间时,会增强抗分层性。合适的硅烷寡聚物粘合增强剂包括环氧硅烷寡聚物化合物。

环氧硅烷寡聚物化合物可选自γ-缩水甘油氧基丙基三甲氧基硅烷寡聚物、γ-缩水甘油氧基丙基三乙氧基硅烷寡聚物、γ-缩水甘油氧基丙基甲基二甲氧基硅烷寡聚物及γ-缩水甘油氧基丙基甲基二乙氧基硅烷寡聚物。可使用的其他硅烷寡聚物化合物包括但不限于3-甲基丙烯酰氧基丙基三甲氧基硅烷-四甲氧基硅烷寡聚物、3-丙烯酰氧基丙基三甲氧基硅烷-四甲氧基硅烷寡聚物、乙烯基三甲氧基硅烷-四甲氧基硅烷寡聚物、3-氨基丙基三甲氧基硅烷-四甲氧基硅烷寡聚物、3-缩水甘油氧基丙基三甲氧基硅烷、四乙氧基硅烷寡聚物、3-缩水甘油氧基丙基甲基二乙氧基硅烷-四甲氧基硅烷寡聚物、3-缩水甘油氧基丙基三乙氧基硅烷-四甲氧基硅烷寡聚物、2-(3,4-环氧环己基)乙基三甲氧基硅烷-四乙氧基硅烷寡聚物,例如四乙氧基硅烷寡聚物。

在一些实施例中,硅烷寡聚物是下式的γ-缩水甘油氧基丙基-三甲氧基硅烷寡聚物

其中n介于1到4的范围内。

下表提供在配方中具有及不具有硅烷粘合组分且在衬底的表面上涂布有及不涂布硅烷粘合材料的情况下,光致抗蚀剂组合物的表面粘合数据。在测试光致抗蚀剂层的粘合性质之前,将每种配方固化在硅衬底上并在油墨配方中浸泡0周、2周、4周及8周。表2提供含有缩水甘油氧基丙基三甲氧基硅烷粘合促进剂的传统光致抗蚀剂组合物的粘合性质。表3提供在衬底的表面上涂布有及不涂布缩水甘油氧基丙基三甲氧基硅烷粘合促进剂的情况下不含粘合促进剂的光致抗蚀剂组合物的粘合性质。表4提供在衬底的表面上涂布有及不涂布硅烷粘合促进剂的情况下含有2重量%缩水甘油氧基丙基三甲氧基硅烷寡聚物粘合促进剂的光致抗蚀剂组合物的粘合性质。

表2

表3

表4

表4显示,在具有硅烷涂布的衬底表面(样品4A到4J)及不具有硅烷涂布的衬底表面(样品5A到5J)的情况下,与含有传统硅烷粘合促进剂的表2的光致抗蚀剂组合物(样品1A到1J)相比,含有硅烷寡聚物的光致抗蚀剂组合物的粘合性显著增加。表3显示出与不含表面粘合促进剂的样品3A到3J相比,当在衬底(样品2A到2J)的表面上使用粘合促进剂时,不含硅烷粘合促进剂的光致抗蚀剂组合物具有稍微提高的粘合性。

用于光致抗蚀剂配方的示例性溶剂是非光反应性的溶剂。非光反应性溶剂包含芳基酮溶剂或脂族酮溶剂。举例来说,非光反应性溶剂包括但不限于γ-丁内酯、C

如上所述,通过狭缝模具涂布机将光致抗蚀剂组合物施加到离型膜,然后在介于约110℃到约150℃范围内、典型地约130℃的温度下,用来自热源的热对光致抗蚀剂组合物进行干燥,以提供干燥的感光成像层。

合适的离型膜材料可选自通常用作载体片幅板材料(carrier sheet webmaterial)的各种柔性弹性膜,例如有机聚合物膜及金属箔或其组合。因此,离型膜可选自聚酯膜、聚酰亚胺膜、覆铜聚酰亚胺膜、铜、铝、镍、黄铜或不锈钢箔等。其他可用的离型膜材料包括聚萘二甲酸乙二醇酯(polyethylene naphthalate,PEN)、聚氯乙烯(polyvinylchloride,PVC)、聚甲基丙烯酸甲酯(polymethylmethacrylate,PMMA)及聚碳酸酯膜。特别合适的离型膜可选自厚度介于约25微米到约250微米范围内的取向聚对苯二甲酸乙二醇酯(polyethylene terephthalate,PET)膜及聚对苯二甲酸丁二醇酯(polybutyleneterephthalate,PBT)膜。

离型膜的特征是其具有可用光致抗蚀剂组合物润湿的表面,但当干膜感光成像层被施加到硅衬底或衬底上的流体流动层时,容易从干燥的感光成像层剥离。离型膜的另一个特征是其提供相对光滑的表面以用于将光致抗蚀剂组合物施加到离型膜,使得干膜感光成像层的被暴露表面为相对光滑的。

为了改进干膜感光成像层的被暴露表面的光滑度,可在离型膜与感光成像层之间插置共形离型涂层以提供复合结构。共形离型涂层可选自硅酮离型层、丙烯酸酯离型层、氟碳离型层等。特别共形的合适的离型涂层是氨基甲酸酯丙烯酸/硅酮混合固化离型涂层,所述涂层是以商品名塞卡贝姆(SEIKABEAM)EXY-10(NS)购自日本东京的大日精化Mfg.公司(Dainichiseika Color&Chemicals Mfg.Co.,Ltd.of Tokyo,Japan)且具有介于约20纳米到约100纳米范围内、典型地约50纳米的厚度。共形离型涂层可通过各种传统网涂(webcoating)技术施加到离型膜,所述网涂技术包括但不限于轮转凹版涂布、刮刀涂布、喷涂、网版印刷等。一种将共形离型涂层施加到离型膜的合适方法可为微凹版涂布方法。施加有共形离型涂层的离型膜可在施加有所述离型涂层的至少一个表面上进行电晕处理,以改善离型涂层与离型膜之间的粘合。

在从干膜感光成像层30移除离型膜及离型涂层时,感光成像层30如图3所示具有表面32,表面32可具有小于约20纳米的表面粗糙度(Ra)值及小于1微米的最大峰-谷(Rt)值。同样地,例如感光成像层30中的流体喷射腔室34等流动特征是均匀及平滑的。

现在参考图4到图8,现在将阐述根据本公开实施例的制作流体喷射头12的方法。作为构造流体喷射头12的过程中的初始步骤,将感光成像层30施加到含有多个单独硅衬底40的晶片的器件表面,以在衬底40的表面44上提供流动特征层42,如图4所示。衬底40中的每一者的尺寸相对小,且衬底40中的每一者通常具有介于约2毫米到约10毫米宽乘约10毫米到约25毫米长及约0.4mm到约0.8mm厚的范围内的总体尺寸。衬底40可为硅、陶瓷或其他衬底晶片材料,其含有形成在衬底40的表面44上的多个流体喷射致动器,例如压电器件或加热器电阻器46。可通过已知的半导体制造技术在衬底的表面44上形成加热器电阻器46。除加热器电阻器46之外,衬底的表面44可包括有源逻辑器件及无源逻辑器件、加热器选择电路、以及绝缘层、导电层及电阻层。

衬底40的表面44还含有从加热器电阻器46到电接触件20的电迹线22,电接触件20用于将衬底40连接到柔性电路18(图1)或带自动接合(tape automated bonding,TAB)电路,以用于从流体喷射控制器供应电脉冲来激活一个或多个加热器电阻器46。

流体流动层42可由正性或负性光致抗蚀剂材料提供,且可通过旋涂方法或作为干膜感光成像层使用热及压力施加到衬底40的表面44。在将流体流动层42施加到衬底40的表面44之后,然后可使用传统感光成像技术(例如波长通常介于约193纳米到约450纳米范围内的由箭头50所示的紫外辐射)在流体流动层42中形成流动特征。可使用具有透明区域54及不透明区域56的掩模52来界定流体流动层42中的流动特征。可使用标准光刻显影技术对成像的流体流动层42进行显影。

在将流体流动层42施加到含有衬底40的晶片之前或之后且在对流体流动层42进行成像及显影之前或之后,可通过衬底40形成一个或多个流体供应槽60,如图5所示。流体供应槽60通常具有约9.7毫米长及0.39毫米宽的尺寸。用于形成槽60的技术可选自湿法蚀刻技术及干法蚀刻技术或机械技术,例如喷砂。

一旦显影,显影的流体流动层30可含有流体供应通道(例如与槽60流体连通的供应通道64),以向流体喷射腔室(例如图3、图5及图6所示流体喷射腔室34)提供流体。对于每个流体喷射致动器46通常有一个流体喷射腔室34及一个流体供应通道64。

所得复合衬底/流体流动层40/30在本文中被称为流体喷射头结构。接着,如图7所示,通过积层技术将感光成像厚膜层70施加到成像及显影的流体流动层30。积层技术可包括热及压力以将感光成像厚膜层70固定地附着到流体流动层30。例如,将感光成像厚膜层70积层到流体喷射头结构可在单辊或双辊积层机中或在真空积层机中使用热和/或压力来实现。用于将感光成像厚膜层70积层到流体流动层30所需的温度及压力条件可介于约30℃到约150℃及约5psig到约80psig的范围内。厚膜层可具有介于约10微米到约30微米范围内的厚度。

使用与以上关于对流体流动层42进行成像所述的技术类似的感光成像技术,在感光成像厚膜层70中形成喷嘴。因此,使用由箭头72指示的紫外线辐射以及含有不透明区域76及透明区域78的掩模74在感光成像厚膜层70中形成喷嘴孔。在对感光成像厚膜层70进行成像之后,使用合适的溶剂来溶解未成像的区域,从而提供含有喷嘴82的喷嘴板16,如图8所示。

将干膜光致抗蚀剂层积层到流体喷射头结构的优点在于,此工艺能够对喷射头进行晶片级处理。晶片级处理意谓一旦厚膜层70被积层到流体喷射头结构,便可消除用于喷嘴板及流体喷射头结构的单独处理步骤,以有利于对厚膜层70进行感光成像及显影。因此,会避免用于单个喷嘴板的激光烧蚀步骤以及用于将传统喷嘴板附着到流体喷射头结构的对准公差、粘合剂和/或热压接合技术。

单个流体喷射头12可从含有多个喷射头12的晶片切除,以提供图8所示的喷射头。在激活加热器电阻器46时,使通过衬底40中的槽60经由通道64供应到腔室34的流体通过喷嘴板16中的喷嘴82朝向介质喷射。

流体喷射头12可以已知的方式附着到匣体14中的容屑槽(chip pocket)以形成图1所示流体喷射匣10。将待喷射的流体从通常与容屑槽相对的匣体14中的流体贮存器供应到流体喷射头12。在替代形式中,可使用远程流体供应来提供待由流体喷射头12喷射的流体。

匣体14可由多种材料制成,所述材料包括但不限于金属、玻璃、陶瓷、或选自由非晶热塑性聚醚酰亚胺、玻璃填充的热塑性聚对苯二甲酸乙二醇酯树脂、可获得的含玻璃纤维的间同立构聚苯乙烯、聚苯醚/高冲击聚苯乙烯树脂共混物及聚酰胺/聚苯醚树脂组成的群组中的聚合材料。

考虑到本说明书及本文公开的实施例的实践,本公开的其他实施例对于所属领域中的技术人员将是显而易见的。在说明书及权利要求通篇中所使用的“一(a和/或an)”可指代一个或多于一个。除非另外指明,否则在说明书及权利要求中使用的表达成分的数量、例如分子量、百分比、比率、反应条件等性质的所有数字应理解为在所有情况下均由术语“约”修饰。因此,除非作出相反的指示,否则在说明书及权利要求中阐述的数值参数是近似值,其可根据本发明旨在获得的所需性质而变化。至少且不是试图将等同原则的应用限制于权利要求的范围,每个数值参数应至少根据所报告的有效数字的数量且通过应用一般舍入技术来解释。尽管阐述本发明的宽范围的数值范围及参数是近似值,但在具体实例中阐述的数值被尽可能精确地报告。然而,任何数值固有地含有特定误差,所述误差必然是由在其各自的测试测量中发现的标准偏差引起的。旨在将本说明书及实例认为仅是示例性的,且本发明的真实范围及精神由以上权利要求来指示。

专利权人不旨在将任何公开的实施例奉献给公众,且在任何公开的修改或变更可能不字面上落入权利要求的范围内的程度上,根据等同原则,其被认为是权利要求的一部分。

相关技术
  • 改进的干膜配方、流体喷射头及其制作方法
  • 流体喷射头、数字分配装置及分配方法
技术分类

06120112199043