掌桥专利:专业的专利平台
掌桥专利
首页

电力网

文献发布时间:2023-06-19 09:32:16


电力网

技术领域

本公开涉及电力网。特别地,本公开提出了一种基于串联连接的变换器的电力再分 配网或电力分配与收集网。

背景技术

为了实现对所连接的负载的单独电压控制,优选地使用基于SiC MOSFET(碳化硅金属氧化物半导体场效应晶体管)的能量储存元件和能源变换器。用于各个负载的电力 分配单元允许高效地利用基础设施并且增加了可用性。创新的电力分配与收集网的总体 能量管理使得电能成本最高效并且能够控制电能成本。

能量来源和负载在近年已经发生变化,这产生了对于电力网的不同需求。电力分配 网中的典型新负载和能量源是例如,热泵,主要交流(AC)连接的数据中心和通信基础设施,处于电力网边缘的电池能量系统,用于电动汽车(EV)、电动公交车、电动卡车、 电动列车的电动车辆DC(直流)充电器、以及诸如光伏(PV)太阳能和风的可再生能 源。

现有技术的具有电绝缘的分配中压或高压DC到低压DC(MVDC/LVDC或 HVDC/LVDC)的变换器通常是基于ISOP拓扑(输入串联、输出并联)的。

图1至图3示出了利用ISOP拓扑并基于串联谐振变换器(SRC)的典型MVDC/LVDC 变换器。一般,串联谐振变换器拓扑需要后调节(post-regulation)或预先调节 (pre-regulation)级,以控制所需要的输出电压。图1示出了具有MVDC输入和串联连 接的多个DC/AC变换器的基本配置。DC/AC变换器经由变压器耦合到相应的AC/DC变 换器。AC/DC变换器的低压DC输出端并联连接,即,形成ISOP拓扑,并且可以连接 到数据中心、电池储能系统(BESS)、DC充电器、光伏发电或风力发电场。

图2的配置基于图1,并且另外包括连接到并联输出端的后调节DC/DC变换器。另一方面,图3也基于图1的配置,但是包括分别串联连接到每个DC/AC变换器的上游的 DC/DC变换器的预先调节。

图4示出了基于双有源桥(DAB)变换器的根据现有技术的使用ISOP的 MVDC/LVDC变换器。其包括多个DC/AC变换器,这些DC/AC变换器串联连接并且经 由每个DC/AC AC/DC对各一个的变压器耦合到相应的AC/DC变换器。LVDC输出端并 联连接。DAB可以以功率转换效率明显降低为代价控制输出电压。

发明内容

因此,本公开的目的在于提供一种灵活高效的电力网。电力网也可以被称为电力再 分配网或电力分配与收集网。电力网尤其能够为诸如可变热泵系统、超大规模数据中心、 分布式电池储能装置、以及物理分布式或配套DC充电器之类的各种应用提供电能(serve)。可以提供DC/DC变换器的单独串联输出,而不影响剩余的DC/DC变换器。 另外,实现了可再生能源的整合。

独立权利要求限定了本公开。从属权利要求描述了优选实施例。

本公开涉及一种电力网,该电力网包括变换级,该变换级包括多个DC/DC变换器。至少一个DC/DC变换器是单级隔离式DC/DC变换器,该单级隔离式DC/DC变换器包括 被配置为控制相应DC/DC变换器的电压的电压控件。DC/DC变换器串联连接,并且该 变换级的多个变换器中的至少一个变换器被配置为向负载提供相应的预定输出电压。

各种实施例可以优选地实现以下特征。

优选地,多个DC/DC变换器中的每个DC/DC变换器可以包括至少一个DC/AC变换 器和多个AC/DC变换器。至少一个DC/AC变换器和至少一个AC/DC变换器可以优选地 被配置为连接到变压器单元,该变压器单元包括将至少一个DC/AC变换器耦合到多个 AC/DC变换器的至少一个变压器。该变压器单元可以优选地包括每个DC/AC变换器各 一个的绕组以及每个AC/DC变换器各一个的绕组,并且变压器单元的绕组可以共享公用 内核。

优选地,电力网包括另一变换级,该另一变换级在多个DC/DC变换器的上游。优选地,该另一变换级包括具有受控电压输出的DC/DC变换器。优选地,该另一变换级包括 具有受控电压输出的AC/DC变换器。

优选地,多个DC/DC变换器中的每个DC/DC变换器包括多个DC/AC变换器和多个AC/DC变换器。至少一个DC/AC变换器和至少一个AC/DC变换器可以被配置为连接到 变压器单元,该变压器单元包括将多个DC/AC变换器耦合到多个AC/DC变换器的多个 变压器。多个变压器中的至少两个变压器可以通过阻抗电路连接。

优选地,阻抗电路包括多个AC/DC变换器中的至少两个AC/DC变换器的阻抗和绕组,并且这些绕组和阻抗互相连接。

优选地,多个DC/DC变换器中的每个DC/DC变换器包括多个DC/AC变换器和多个AC/DC变换器,其中,至少一个DC/AC变换器和至少一个AC/DC变换器可以被配置为 连接到变压器单元,该变压器单元包括将多个DC/AC变换器耦合到多个AC/DC变换器 的变压器单元。电力网优选地还包括多个第二DC/DC变换器,该多个第二DC/DC变换 器在多个DC/AC变换器的中的每个DC/AC变换器上游并且连接到多个DC/AC变换器中 的每一个。第二DC/DC变换器可以串联连接,并且优选地,阻抗连接在多个第二DC/DC 变换器中的两个第二DC/DC变换器之间,并且优选地,电容器并联连接到多个第二 DC/DC变换器。

电力网优选地还包括电力分配单元,该电力分配单元被配置为向至少一个用户负载 分配电力。电力分配单元优选地包括第二变换级的每个变换器的各至少一个的开关,该至少一个开关被配置为连接或断开第二变换级的至少两个变换器的输出端。

优选地,电力分配单元包括每个变换器的各多个开关,该多个开关被配置为连接或 断开第二变换级的输出端,其中,开关的数目对应于负载的数目。

优选地,电力分配单元进一步包括控制单元,该控制单元被配置为根据连接到电力 网的负载和/或源来控制至少一个开关以分配电力,和/或控制单元被配置为根据连接到电 力网的负载和/或源来管理第二变换级的多个变换器的输出电压的分派。

优选地,电力网还包括DC限流和/或断流单元。

优选地,电力网连接到中压直流电(MVDC),并且其中优选地,MVDC是可变的。

优选地,电力网能连接到变速热泵系统、超大规模数据中心、分布式电池储能装置、 物理分布式或配套式DC充电器、和可再生能源中的至少一者。

本公开还涉及一种控制电力网的方法,优选地如上所述。该方法包括通过包括多个 DC/DC变换器的变换级将输入电压转换为输出电压;串联连接多个DC/DC变换器,其 中,每个DC/DC变换器是单级隔离式DC/DC变换器;通过电压控件控制相应DC/DC变 换器的电压;以及在变换级的多个变换器中的每个变换器向负载提供相应的预定输出电 压。

附图说明

参考附图进一步描述本公开,其中:

图1至图4示出了根据现有技术的配置;

图5a和图5b示出了根据本公开的目标功能;

图6至图13示出了根据本公开的示例;

图14至图16示出了根据本公开的电力分配单元的示例;

图17和图18示出了控制单元的示例性流程图;以及

图19示出了根据本公开的进一步示例。

在没有相反指示的情况下,各个附图中具有相同参考标记或符号的元件表示相同或 类似的元件。

具体实施方式

为了支持不断增长的电力需求并实现物理分布式系统,公用DC母线电压是根据实施例的中压直流电(MVDC)型的。为了最小化需要为若干低功率负载和源提供电能的 多个应用的成本,有利的是串联连接的DC/DC变换器被不同地加载。根据现有技术, DC/DC变换器的不同加载导致MVDC侧的输入电压的改变。与具有串联输入和并联输 出拓扑的现有技术相反,本公开能够提供单独的并行DC输出。

图5a示出了根据本公开的系统的目标功能。具体地,提供了为多个DC/DC变换器1提供电能以便提供多个低压直流(LVDC)输出的MVDC输入。DC/DC变换器1可以形 成变换级或者可以被称为变换级。下面将描述DC/DC变换器的详细配置。每个DC/DC 变换器可以包括接收MVDC输入的至少一个DC/AC变换器11(如下面示出的第一变换 级)和提供输出的至少一个AC/DC变换器13(如下面示出的第二变换级)。根据实施 例,AC/DC变换器13对应于DC/AC变换器11,并且向负载供应多个LVDC输出。如 下面示出的变压器单元12可以将DC/AC变换器11耦合到AC/DC变换器13。DC/AC变 换器11被构造为串联连接的多个单独变换器,而AC/DC变换器13并联连接。因此,所 提出的系统包括提供并行输出的多个隔离式DC/DC变换器。每个DC/DC变换器1可以 进一步装配有电压控制功能。这样,可以连接单独负载,而不会影响电力网的稳定性。 换言之,所有隔离式DC/DC变换器1可以提供预定输出电压,并且输出电压可以不同。 另外,电网可以连接到能量源,并且可以将输入能量再分配给不同的负载。换言之,根 据下面描述的示例的系统可以是双向型的。

可以利用图5b描绘的电力分配单元进一步增强该系统。因此,图5a和图5b示出了具有为多个负载或源提供电能的串联连接的隔离式DC/DC变换器1的MVDC/LVDC变 换器。输出端可以可选地被配置为提供不同的功率等级。由于输出端可以独立配置或者 根据负载连接从而提供更高的功率输出,该结构提高了电力分配与收集网的灵活性和效 率。

根据实施例,至少一个变换级包括固态变压器(SST)。DC/DC变换器1具体地被 设计为单级隔离式DC/DC变换器1,该单级隔离式DC/DC变换器包括被配置为控制相 应DC/DC变换器1的电压的电压控件。

将参考各种示例进一步描述本公开。根据图6所示的第一示例,可变MVDC输入被用于该系统。通过允许MVDC母线可变并且适配到所需要的功率等级,可以为多个不同 加载的LVDC连接提供电能。可以通过支持可变DC链路运行的电网变换器(即,具有 一些全桥单元的MMC变换器)或者通过连接到恒定MVDC链路的(非隔离式)DC/DC 变换器3供应可变MVDC母线。这个DC/DC变换级也可以被分配给隔离式DC/DC单元, 从而允许更加模块化的实现方式。DC/DC变换级用作预先调节并且考虑了稳定系统。根 据示例,DC/DC变换级具有受控电压输出。根据示例,DC/DC变换级可以被具有受控电 压输出的AC/DC变换器或AC/DC变换级替代。AC/DC变换级也可以充当预先调节。根 据图6的示例还可以装配有多绕组变压器。下面描述电力分配单元的可能实施方式。

图7至图10示出了根据本公开的DC/DC变换器的进一步实施例。

具体地,根据图7,提供了具有串联DC/DC变换器1和多绕组变压器12的 MVDC-LVDC变换器。根据本示例,变压器12具有在(多个)初级绕组和(多个)次 级绕组之间共享的单个内核。DC/DC转换可以为双有源桥(DAB)型或串联谐振变换器 (SRC)型。更具体地,图7示出了包括四个DC/AC变换器11的第一变换级和包括四 个相应的AC/DC变换器13的第二变换级。第一和第二变换级通过变压器单元12耦合, 其中,多绕组变压器12具有公用内核。第二变换级的每个AC/DC变换器13提供连接到 负载的LVDC输出。变换器可以被配置为提供相同或不同的额定功率,并且也可以相互 连接以便为更高的负载(例如,车辆的快速充电)提供更高的功率。这种功能可以由下 面描述的电力分配单元实现。

去往和来自MVDC和每个LVDC端口的功率流可以被单独控制。这要求隔离式 DC/DC变换器1(即,DAB或SRC型)具有电压比控制功能或者替代地具有预先调节 或后调节级所支持的固定电压比。变压器绕组的数目是灵活的,并且可以在MVDC和 LVDC侧具有不同的数目。

根据图8所示的优选示例,提供多个串联连接的SiC MOSFET单元,每个SiC MOSFET单元形成DC/AC变换器11。根据其他实施例描绘变压器单元12和AC/DC变 换器13(在这种情况下使用二极管)。本示例的优点在于,多绕组变压器的额定功率为 N倍高,其中,N=具有相等功率的单元的数目。这导致等于(0.75^N)/N的较低成本。

图9示出了基于串联DC/DC变换器1的MVDC/LVDC变换器和相对于以上示例具 有不同数目的MVDC绕组的多绕组变压器12的替代配置。具体地,DC/DC变换器1包 括单个DC/AC变换器11、用于提供输出电压的多个AC/DC变换器13、以及具有用于 DC/AC变换器11的初级绕组和用于每个AC/DC变换器13的次级绕组的变压器单元12。 变压器单元12还具有公用内核,因此类似于图7的配置。DC/DC变换器可以为DAB或 SRC型的。

图10中示出了进一步的示例性配置,其中,第一变换级(即,DC/AC变换器11) 包括串联连接的SiC MOSFET。电容器可以可选地设置为与对应的MOSFET并联。第二 变换级(即,经由变压器单元12连接到第一变换级11的AC/DC变换器13)也包括 MOSFET,以便将接收到的AC功率转换为LVDC输出。所描绘的示例的功能类似于本 文描述的其他示例。

在根据图11的示例中,示出了具有串联DC/DC变换器1的MVDC/LVDC变换器。 另外,设置了多个多绕组变压器12。根据一个实施例,每个DC/AC/AC/DC变换器对(1, 11,12,13)各一个多绕组变压器12。阻抗调节需要阻抗Z,或者阻抗Z可以用于控制能量 交换。具体地,阻抗电路14可以相互连接一些或所有变压器12。阻抗电路14可以用作 平衡器。可以实现与参考图7至10描述的示例的情况类似的结果。

根据进一步示例,可以设置用于MVDC侧的单体(cell)功率交换(即,第一变换 级的相应变换器之间的交换)的预先调节级。这在图12中示出。预先调节级可以基于模 块化多电平变换器(MMC)级。具体地,电力再分配网可以进一步包括多个第二DC/DC 变换器,该多个第二DC/DC变换器在多个DC/AC变换器11中的每一个的上游并且连接 到多个DC/AC变换器11中的每一个(这些DC/AC变换器形成隔离式DC/DC变换器1 的一部分)。第二DC/DC变换器串联连接,其中,示例性地,阻抗连接在多个第二DC/DC 变换器中的两个DC/DC变换器之间。另外,电容器并联连接到多个第二DC/DC变换器。 这允许循环电流通过所有DC/DC级并用作功率平衡器。

图13示出了根据本公开的使用形成为固态变压器(SST)的串联DC/DC变换器1 的电力网的概况。该电网包括被配置为控制该电网的运行的能量管理单元和电力分配单 元。根据所描绘的示例,可以为DC负载(DC负载_1至L)提供多个输出1至L,并且 这些输出可以由电力分配单元控制或连接。另外,可以提供用于DC电力储存DC(储存 装置_1至M)的至少一个输出端和用于DC源(DC源_1至N)的至少一个输入端。可 以为至少一个AC负载或源(AC负载或源_1至P)提供进一步的连接。这明显需要图中 所示的DC/AC变换器。

参考图6至13描述的每个示例可以与被配置为将DC输出端连接到负载或从负载断开的电力分配单元2结合在一起。

参考使用可以连接到待充电的车辆的充电桩作为负载22的示例性车辆充电系统进行 描述。在每个充电桩22具有其自己的母线并且每个DC变换器1都可以连接到这些母线中的每条母线的情况下,存在三个充电桩和三个输出端必需的九个开关(3x3)以及十个 输出端和十个充电桩所需的一百个开关。即,开关数量与输出端数量呈二次增长关系。 节省开关的替代方案可以是环形结构,其中,每个DC输出端可以通过隔离器或开关21 连接到两个相邻输出端,每个充电桩22可以直接经由隔离器21直接连接到一个DC输 出端。这在图14中示出,其中,附图标记1表示DC/DC变换器和相应的DC输出端, 附图标记22表示根据上述示例的负载或充电桩。这种布置允许使用仅2xn个开关21,其 中,n是输出端的数目。为了最高效地使用可用电力,可以采用将车辆连接到自由电桩 22的顺序的智能管理。这种管理的目标是始终提供以下情况的高概率,即,至少有一个 电桩22可用于双电源快速充电,这可以通过经由开关21连接相邻的DC输出端并且在 另一方面将所有DC输出均匀地加载来实现。

图15示出了包括或连接到电力分配单元2的电力分配与收集网的进一步的示例性配 置。在本示例中,开关21也形成环型配置。

图16描绘了可以被称为矩阵配置的替代配置。在每个DC/DC变换器1的每个相应的输出端子中,存在分别与N个DC负载连接的N个开关21。开关的总数是N*n,其中, N是负载22的数目,并且在充电桩的情况下,n是DC/DC变换器1的数目。矩阵型开 关组可以用在不需要断开短路电流的应用中。如果开关仅需要断开正常运行的电流,则 矩阵型开关电流仅是按照环形的电流的(1/N)。

换言之,参考上述示例,该系统可以基于SST拓扑,其中,该拓扑中的关键组件是若干隔离式DC/DC变换器1和开关组。隔离式DC/DC变换器1是串联的输入端子。串 联输入端子中的两个最外侧的端子连接到MV DC母线。每个隔离式DC/DC变换器1的 输出端子经由开关组连接所有电动汽车(EV)充电器。开关组控制它们的DC/DC变换 器1加入到一个指定的EV充电器中。MV DC母线由可控DC源支持。

可选地,电力网可以进一步包括控制单元22和/或旁路断路器电路23。控制单元24也可以被称为(协调)控制器。这个控制器24被提出用于所提出的SST拓扑的平滑运行。 控制器24生成系统运行基准和切换指令,包括用于DC源的电流基准I

图16是根据示例性实施例的电力网和分配单元的示意图,其示出了诸如,开关21的矩阵型配置、控制单元24、以及旁路断路器电路23之类的可选特征和基本结构。

图17描绘了流程图。在一个控制周期中,控制器24首先根据所有充电器功率的最近平均值和最小电压差的原理,计算用于每个EV充电器22的电力模块(DC/DC变换器 1)的适当数目。该原理可以解释如下:利用第i个充电器功率要求和所有充电器的平均 功率的除法结果的舍入数计算切换到第i个充电器的功率模块的数目。使用以下公式(F1) 示例性地执行该计算:

因此,可以例如,利用下面示出的公式(F2)和(F3)计算所选择的功率模块和它 们的电压基准。具体地,使用(F2)计算功率模块j(即,相应的DC/DC变换器1)的 功率基准P

如上面提到的,系统还可以包括可选的旁路断路器电路23。如图16所示,旁路断路器电路23示例性地设置在每个隔离式DC/DC变换器1的输入端子中。每个隔离式DC/DC 变换器1的旁路断路器23被用来使得该变换器暂时不工作,以避免输入DC电压过低从 而确保高效运行。在一些运行情况中,隔离式DC/DC变换器1的功率差非常大。因此, 一些变换器以低输入DC电压运行,并且因此具有低运行效率。为了避免这种情况,通 过闭合一些DC/DC变换器1的旁路断路器23,来停用这些DC/DC变换器1。运行中的 DC/DC变换器1将得到更统一的功率要求和输入DC电压。但是,在该拓扑中旁路断路 器23是可选的。旁路断路器23也可以由协调控制器24控制。

图18示出了具有旁路断路器23的功能的相应流程图。上面描述了各个公式(F1)至(F4)。只要最大功率模块电压和最小功率模块电压之间的差值max(U

另外,可以提供控制器24或站控,用于控制分派诸如充电桩22之类的负载(在用于电动车辆的DC充电器的情况下)。以四个桩为例(参见图15的桩22),站控24尝 试保持两个相邻的DC馈送(DC/DC变换器1)空闲。即,在桩1连接到DC1输出端后, 下一车辆将连接到桩2或桩4(例如,经由信号灯指示,其中,桩3上的红灯指示桩3 被占用或者将不连接,并且桩2和4上的绿灯指示它们可用)。如果这样做,在连接第 二车辆后,两个相邻的DC馈送将可用于快速充电。一个DC输出端不需要空载。在所 有充电器没有都被使用的情况下,联络开关可以连接到相邻的DC输出端,并且负载可 以被共享。在如上的四桩系统中,当充电桩1和2处于运行中时,从DC1到DC4的联 络开关可以闭合,并且DC2和DC3之间的联络开关也可以闭合。这样,所有DC输出端 均已加载。即使在桩1和3有效并且新车辆(该新车辆随后仅可以利用一个DC输出端 的功率充电)进来的情况下运行时,也可以通过闭合相关的联络开关与空闲的剩余DC 输出端共享加载更多的电桩1或3的负载。

电力分配单元还可以与本文的示例中提出的其他电力分配网和其他负载或源结合在 一起。

图19是根据本公开的进一步示例。这里,高压AC(HVAC)输入被提供,并且被 转换为馈送到AC/DC变换器中的中压AC(MVAC)。随后,提供了串联连接的多个DC/DC 变换器1。在本示例中,n表示DC/DC变换器1的数目,n是整数。多个DC/DC变换器 1中的每个DC/DC变换器1包括DC电压(VDC)到中频AC(MFAC)变换器11、MFAC 到VDC变换器13、以及耦合这两个变换器11和13的变压器12。DC/DC变换器可以被 设置为隔离式单级变换器。另外,上述任意示例可以用于根据图19的示例,因此其详细 描述被省去。多个DC/DC变换器1可以采用固态变压器(SST)拓扑。DC/DC变换器1 的每个DC输出电压可以被提供给形成低压DC(LVDC)母线和连接器系统的一部分的 多个开关21。LVDC母线和连接器系统可以对应于电力分配单元2。LVDC母线和连接 器系统连接到多个负载1至n(在本示例中,充电桩22)。在图19的示例中,示出了以 上描述的环型开关配置。但是,开关21的数目可以对应于负载的数目n或者可以是其任 意偶数倍。根据图19的示例的功能与以上描述的示例相同。

根据本公开,提供了能够以最佳效率控制多个输入和输出的改进的电力再分配网。

本公开还覆盖对应的方法。

根据以上概述和下面的描述(包括附图和权利要求),其他方面、特征、和优点将显而易见。

尽管在附图和前面的说明中详细示出并描述了本公开,但是这些图示和描述将被认 为是说明性或示例性的而不是限制性的。将理解的是,本领域普通技术人员可以做出落入后附权利要求的范围内的改变和修改。具体地,本公开覆盖包括上面和下面描述的不 同实施例的特征的各种组合的进一步实施例。

另外,在权利要求中,词“包括”并不排除其他元件或步骤,并且不定冠词“一” 或“一个”并不排除多个。单个单元可以实现权利要求中列举的若干特征的功能。与某 个属性或值相关联的术语“基本上”、“大约”、“大概”等还分别精确地限定该属性 或值。权利要求中的任何参考标记不应该理解为限制范围。

相关技术
  • 多通道FCR:提供控制电力网络的网络频率的控制电力的方法和系统以及电力网络
  • 基于电力网特性的电力网覆盖范围控制装置及其方法
技术分类

06120112206223