掌桥专利:专业的专利平台
掌桥专利
首页

AlNiCo类硬磁体粒子以及其制造方法

文献发布时间:2023-06-19 11:21:00


AlNiCo类硬磁体粒子以及其制造方法

技术领域

本申请要求基于2019年7月29日提出的韩国专利申请第2019-0091610号的优先权利益,该韩国专利申请的文献中公开的所有内容作为一部分包含在本说明书中。

本发明涉及AlNiCo类硬磁体粒子以及其制造方法。

背景技术

作为用于银行券等的防伪文件的防止伪造以及正品认证的安全因素,使用磁性物质的情况在增加。若利用将磁性物质混合到油墨中制造的防伪油墨,在防伪文件印刷图案,则可以利用能够检测磁性物质的检测装置,确认防伪文件是否伪造。

作为可以检测防伪油墨中包含的磁性物质的检测装置,多在普及磁阻(Magnetoresistance)装置,其利用了磁阻因外部磁场发生变化的特性。为了利用磁阻装置检测磁性物质,需要用于磁化磁性物质的永久磁铁,在目前普及中的磁阻装置中,内置有永久磁铁的形式和没有内置永久磁铁的形式都存在。当在磁阻装置没有内置永久磁铁时,可以首选由另外的永久磁铁磁化磁性物质之后,磁阻装置检测磁性物质引起的磁场。

另一方面,为了利用磁阻装置辨别包括利用防伪油墨印刷的图案的防伪文件的真伪,需要严密调整防伪油墨中包含的磁性物质的特性。例如,优选将磁性物质的矫顽力调整为预定范围内。当矫顽力为特定值以上时,可能难以磁化磁性物质。其表示需要提高用于磁化磁性物质的永久磁铁的性能,根据情况,利用已经普及的磁阻装置不能磁化磁性物质,因此可能难以辨别防伪文件的真伪。当矫顽力过小时,可能难以得到可检测水准的剩磁。进一步地,矫顽力为特定值以下的磁性物质具有剩磁立即消失的软磁体特性,因此如果不是一体内置永久磁铁的磁阻装置,则可能难以进行检测。

即便矫顽力为适当的范围,如果剩磁过小,则具有通过一般的磁阻装置不能以高灵敏度进行检测的问题。为了提高剩磁,可以增加矫顽力,然而其具有脱离适当矫顽力范围的担忧。因此,需要使矫顽力保持适当范围的同时提高剩磁,在这种方面,剩磁/矫顽力比率在防伪油墨用途的磁性粒子中可能成为重要数值。

作为用于适用于防伪油墨中的磁性物质,对AlNiCo类磁性物质进行着研究。在韩国授权专利第1869484号中公开有如下技术:从AlNiCo类熔融液中通过真空雾化方式制造磁性粒子之后,进行热处理,从而制造硬磁体粉末。另一方面,在AlNiCo类磁性物质中,为了提高矫顽力以及剩磁,一般是提高Co含量,然而Co价格相对高,因此在经济方面不优选。因此,要求开发出尽可能降低Co含量的同时能够确保可用于防伪油墨程度的磁性特性的新组成的AlNiCo类磁性物质。

发明内容

本发明是为了解决如上所述现有技术的问题而提出的,其目的在于,提供具有可以使用在防伪油墨程度的磁性特性的同时Co含量低的AlNiCo类硬磁体粒子以及其制造方法。

具体地,本发明的目的在于,提供在250Oe至450Oe矫顽力范围内剩磁/矫顽力比率为0.06以上的同时Co含量为17wt%以下的AlNiCo类硬磁体粒子以及其制造方法。

本发明的目的不限于前述内容,尚未提及的本发明的其他目的以及优点可以通过以下说明理解。

为了达成所述目的,根据本发明的一实施例的AlNiCo类硬磁体粒子含有Al、Ni、Co、Cu、Ti以及其余部Fe,其特征在于,Co含量为10wt%至17wt%,矫顽力为250Oe~450Oe范围,剩磁/矫顽力比率为0.06以上。

此时,可以是,Ni含量为18wt%至25wt%,Al含量为4wt%至9wt%,Cu含量为1wt%至4wt%,Ti含量为2wt%至5.5wt%。

另外,可以是,Co含量和Ni含量之和为32wt%至40wt%。

可以是,根据本发明的实施例的AlNiCo类硬磁体粒子在表面依次形成有由二氧化锆(ZrO

根据本发明的实施例的防伪油墨的特征在于,含有上述任一项的AlNiCo类硬磁体粒子。

根据本发明的实施例的AlNiCo类硬磁体粒子制造方法,所述AlNiCo类硬磁体粒子含有Al、Ni、Co、Cu、Ti以及其余部Fe,其特征在于,所述AlNiCo类硬磁体粒子制造方法包括:熔融AlNiCo合金原料,制造熔融液的步骤;从熔融液通过雾化(Atomization)制造微粒子的步骤;从利用气流分级制造的微粒子中筛选预定大小以下的粒子的步骤;以及在惰性气体氛围下进行热处理的步骤,此时,AlNiCo合金原料含有4wt%至9wt%的Al、18wt%至25wt%的Ni、10wt%至17wt%的Co、1wt%至4wt%的Cu、2wt%至5.5wt%的Ti以及其余部Fe。

另外,可以还包括:形成由二氧化锆(ZrO

根据本发明,具有如下效果:可以提供具有可以使用在防伪油墨程度的磁性特性的同时Co含量低的AlNiCo类硬磁体粒子以及其制造方法的效果。

具体地,具有如下效果:提供在250Oe至450Oe矫顽力范围内剩磁/矫顽力比率为0.06以上的同时Co含量为17wt%以下的AlNiCo类硬磁体粒子以及其制造方法。

然而,本发明的效果不限于以上所提及的,本发明所属技术领域中具有通常知识的人可以通过以下记载供明确理解尚未提及的其他效果。

附图说明

图1是根据本发明的实施例的AlNiCo类硬磁体粒子的制造方法。

图2是根据本发明的实施例的银(Ag)涂层形成方法的流程图。

具体实施方式

以下,详细说明本发明的优选实施例,然而本发明不受实施例限定或者限制。在本发明的说明中,当判断为对相关公知技术的具体说明可能混淆本发明的主旨时,省略其详细说明。另外,当未作其他定义时,本说明书中使用的术语应解释为本领域中具有通常知识的人通常所理解的内容。

本发明公开AlNiCo类硬磁体粒子。尤其,公开一种Co含量低的同时具有适合利用磁阻装置进行检测的磁性特性的AlNiCo类硬磁体粒子。其中,合适的磁性特性可以由适当矫顽力范围以及该矫顽力范围中的剩磁/矫顽力比率进行定义。

在本发明的实施例中,适当矫顽力范围可以为250Oe至450Oe。若磁性粒子的矫顽力大于450Oe,则通过一般的磁阻装置中包含的永久磁铁难以磁化防伪油墨中包含的磁性粒子,其可以意指利用该磁阻装置无法检测防伪油墨中包含的磁性粒子。另外,当矫顽力小于250Oe时,虽然利用磁阻装置中包含的永久磁铁磁化磁性粒子是没有问题,然而磁性粒子的剩磁过低而有可能脱离磁阻装置的检测极限。即,若剩磁过低,则磁性粒子中产生的磁场的强度小而难以利用磁阻装置进行检测。尤其,磁阻装置中还有没有内置永久磁铁的种类,在该情况下,需要另设的永久磁铁先磁化磁性粒子之后,磁阻装置扫描防伪文件,检测来自磁性粒子的磁场。然而,当矫顽力为250Oe以下时,具有剩磁立即消失的软磁铁的特性,因此在磁阻装置进行扫描的时刻,有可能成为剩磁已经消失的状态。

在本发明的实施例中,剩磁/矫顽力比率可以为0.06以上。尤其,这种剩磁/矫顽力比率需要在250Oe至450Oe的矫顽力范围中达到。若按照将矫顽力大幅增加的方向调整磁性粒子的组成(例如,将Co含量增加为20%以上),则剩磁也增加,从而比较容易使剩磁/矫顽力比率为0.06以上,然而为了在将矫顽力保持250Oe至450Oe范围的状态下使剩磁/矫顽力比率成为0.06以上,需要设计新的组成范围以及制造工艺。

根据本发明的实施例的AlNiCo类硬磁体粒子可以除Al、Ni、Co之外,含有Cu、Ti、Fe以及不可避免的杂质。其中,特征在于,Co含量为10至17wt%。

若Co含量为17wt%以上,则容易选择满足所要磁性特性的组成范围,然而高价的Co含量变多而不经济。另外,当Co含量低于10wt%时,不容易找出剩磁/矫顽力比率为0.06以上的组成范围。因此,为了达成本发明的目的,在本发明的实施例中,在10wt%至17wt%范围中调整Co含量。

在本发明的实施例中,将Co含量设为17wt%的同时,调整其他成分的含量,从而可以获得本发明的目标磁性特性。尤其,将Ni含量调整为18wt%至25wt%,从而可以补偿Co含量减少导致的矫顽力以及剩磁数值的减少。需要一同考虑Co含量和Ni含量。具体地,Co含量和Ni含量之和可以为28wt%至42wt%,更加优选地可以为32wt%至40wt%。

另外,可以在4wt%至9wt%范围中调整Al含量。当Al含量满足这种组成范围时,在用于控制磁性特性的后续热处理时,可以获得烧结防止效果。由此,当通过雾化(atomization)法制造微粒时,可以将微粒形状保持在可适用于防伪油墨中的大小。

Cu和Ti可以添加到AlNiCo合金中而提高矫顽力并抑制剩磁的减少。然而,为了确保本发明的目标磁性特性,可以是,Cu含量调整为1wt%至4wt%,Ti含量调整为2wt%至5.5wt%。

根据本发明的实施例的AlNiCo硬磁体粒子可以是满足上述Al、Ni、Co、Cu、Ti的组成范围,其余部为Fe和不可避免的杂质。

根据本发明的实施例的AlNiCo硬磁体粒子可以包含在防伪油墨中。此时,可以在AlNiCo硬磁体粒子表面形成金属涂层而制成淡色磁性粒子,以能够赋予防伪油墨各种颜色。金属涂层可以反射入射光,使AlNiCo硬磁体粒子呈现亮色。金属涂层可以为反射率优异的银(Ag)涂层。金属涂层可以形成为约50nm至100nm的厚度。当金属涂层为银(Ag)涂层时,为了形成均匀的涂层,可以调整银(Ag)含量以相对于AlNiCo粒子的重量成为10重量%至20重量%范围。

此时,可以在形成金属涂层之前形成中间层,以能够均匀形成金属涂层。中间层可以由TiO

以下,参照图1说明AlNiCo硬磁体粒子的制造方法。

首先,将上述组成范围的AlNiCo合金原料在惰性气体氛围中进行熔融,制造熔融液(S11步骤)。AlNiCo合金原料可以以粉末形态混合而进行熔融,或者可以制成锭或者碎片形态之后进行熔融。熔融温度可以为约1600℃。

接着,通过雾化(Atomization)制造微粒(S12步骤)。具体地,可以是,将熔融液注入到真空雾化密封器(vacuum atomization confinement)中,通过喷嘴以预定压力雾化冷却介质,从而制造微粒。作为冷却介质,可以使用通过急速冷却以优异的收率制造超细微粒的水。此时,水中可以含有尿素等抗氧化剂。雾化压力可以为约600bar。

制造的微粒可以通过分级过程而筛选出预定大小以下的粒子(S13步骤)。分级可以使用气流分级。可以经过分级过程,获得粒度(D

可以将筛选为预定大小以下的AlNiCo粒子在惰性气体氛围下进行热处理而调整磁性特性(S14步骤)。可以通过热处理,制成硬磁体。此时,可以根据热处理条件,改变AlNiCo硬磁体粒子的磁性特性。在本发明中,可以在氩气氛围下,以750℃热处理1小时。

可以改变S13步骤和S14步骤的顺序。即,也可以先热处理通过雾化制造的微粒之后,进行分级工艺。

如此制造的AlNiCo硬磁体粒子可以使Co含量为17%以下的同时,在250Oe至450Oe的矫顽力范围内使剩磁/矫顽力比率为0.06以上。

可以选择性地进行S15步骤和S16步骤,以赋予AlNiCo硬磁体粒子亮色而能够适用到各种外观的防伪油墨中。S15步骤作为中间层形成步骤,中间层可以由TiO

在S16步骤中,金属涂层可以通过非电解镀层法形成。假设银(Ag)涂层可以按照图2所示顺序形成。参照图2,根据本发明的实施例的银(Ag)涂层形成方法可以包括:制造银胺络合溶液的步骤(S21);向制造的银胺络合溶液投入AlNiCo硬磁体粒子的步骤(S22);投入还原剂溶液的步骤(S23);清洗以及干燥步骤(S24)。

首先,制造银胺络合溶液的步骤(S21)可以为,向溶剂投入银前驱体、pH调节剂以及络合剂(Complexing agent)之后进行搅拌,制造银胺络合溶液的步骤。其中,可以是,溶剂为蒸馏水,银前驱体为硝酸银(AgNO

S22步骤为,向制造的银胺络合溶液投入AlNiCo硬磁体粒子的步骤。AlNiCo硬磁体粒子可以为在表面形成有中间层的粒子。投入之后,可以进行充分搅拌以使硬磁体粒子和银胺络合溶液均匀混合的步骤。

接着,投入还原剂溶液(S23)。作为还原剂,可以包括葡萄糖(glucose)、单糖类(fructose)、半乳糖(galactose)、酒石酸钾(potassium tartrate)、酒石酸钠钾(potassium sodium tartrate)、酒石酸钠(sodium tartrate)、硬脂酰酒石酸酯(stearyltartrate)、甲醛等。优选是,可以使用在蒸馏水中溶解葡萄糖和酒石酸钾的溶液。

最后,可以分离形成有银涂层的AlNiCo硬磁体粒子之后,进行清洗以及干燥(S24)。可以利用磁铁分离AlNiCo硬磁体粒子,可以利用乙醇反复清洗多次。

本发明利用实施例公开包含AlNiCo硬磁体粒子的防伪油墨。可以是,根据本发明的防伪油墨包括5wt%至15wt%的上述AlNiCo硬磁体粒子,包括20wt%至40wt%的清漆、30wt%至50wt%的颜料、5wt%至10wt%的表面活性剂、1wt%至10wt%的蜡以及2wt%至10wt%的溶剂。

作为一例,清漆可以为热塑性树脂、热固性树脂或者光固化树脂,可以溶解在有机溶剂中。作为热塑性树脂,具有石油树脂、酪蛋白、虫胶、松香改性马来酸树脂、松香改性酚醛树脂、硝化纤维、乙酸丁酸纤维素、环化橡胶、氯化橡胶、氧化橡胶、盐酸化橡胶、酚醛树脂、醇酸树脂、聚酯树脂、不饱和聚酯树脂、氨基树脂、环氧树脂、乙烯树脂、氯乙烯树脂、过氯乙烯树脂、氯醋酸乙烯树脂、乙烯醋酸乙烯树脂、丙烯酸树脂、甲基丙烯酸树脂、聚氨酯树脂、硅树脂、氟树脂、干性油、合成干性油、苯乙烯-马来酸树脂、苯乙烯-丙烯酸树脂、聚酰胺树脂或者丁醛树脂等。作为热固性树脂,具有环氧树脂、酚醛树脂、苯代三聚氰胺树脂、三聚氰胺树脂或者尿素树脂等。作为光固化树脂(光敏树脂),可以使用将具有异氰酸酯基、醛基或者环氧基等反应性取代基的(甲基)丙烯酸化合物或者肉桂酸与具有羟基、羧基或者氨基等反应性取代基的线型高分子进行反应,从而将(甲基)丙烯酰基或者苯乙烯基等光交联基导入到该线型高分子中的树脂。另外,也可以使用将含有苯乙烯-马来酸酐共聚物或者α-烯烃-马来酸酐共聚物等酸酐的线型高分子通过具有羟烷基(甲基)丙烯酸酯等羟基的(甲基)丙烯酸化合物进行半酯化的树脂。

颜料不受特别限制,例如,可以使用可溶性偶氮颜料、不溶性偶氮颜料、酞菁颜料、卤化酞菁颜料、喹吖啶酮颜料、异吲哚啉酮颜料、异吲哚啉颜料、二萘嵌苯颜料、芘酮颜料、二恶嗪颜料、蒽醌颜料、二蒽醌基颜料、蒽嘧啶颜料、蒽嵌蒽醌颜料、靛蒽醌颜料、黄蒽酮颜料、皮蒽酮颜料或者二酮吡咯并吡咯颜料等。

表面活性剂可以为选自由氟化表面活性剂、聚合性氟化表面活性剂、硅氧烷表面活性剂、聚合性硅氧烷表面活性剂、聚氧乙烯表面活性剂以及其衍生物等而成的组中的任一种以上,种类不受特别限制。

蜡可以为具有减少树脂的粘性(tack)效果的粉末类型,作为一例,可以含有选自聚乙烯蜡、酰胺蜡、芥酸酰胺(erucamide)蜡、聚丙烯蜡、石蜡、特氟龙以及巴西棕榈(carnauba)蜡等中的一个以上,然而不限于此。

溶剂作为一般的有机溶剂,只要是可以均匀混合蜡、颜料、清漆等物质的溶剂,则不受特别限制。作为可使用的溶剂,可以为选自乙酸乙酯、乙酸丁酯、乙酸异丁酯、甲苯、二甲苯、丙酮、己烷、甲乙酮、环己酮、丙二醇单甲醚乙酸酯、二乙二醇单乙醚醋酸酯、二乙二醇二乙醚、二乙二醇单丁醚、二丙二醇单甲醚醋酸酯、二甘醇一乙基醚醋酸酯以及二乙二醇单丁醚醋酸酯等中的任一个或者两个以上。

根据本发明的实施例的防伪油墨可以具有12Pa·sec以下的粘度,可以优选具有8Pa·sec~12Pa·sec范围的粘度。

以下,基于具体实施例更加详细说明本发明。

按照设计组成,将原料粉末放入熔炉之后,以1600℃进行加热,形成AlNiCo类熔融液。原料粉末使用了99.9%以上纯度的粉末。将熔融液注入到真空雾化密封器(vacuumatomization confinement)中,将25%的尿素水溶液作为冷却介质,以600bar进行雾化,形成微粒。

将制造的微粒在氩气氛围下,以750℃热处理1小时。将热处理之后获得的粒子以7500rpm的旋转速度以及2.8m

将获得的粒子的中心区域利用EDS(能量色散X射线谱(Energy Dispersive X-RaySpectroscopy),FEI公司,Magellan400)进行元素分析(10kV,100sec),确认是否按照设计组成制造。

改变设计组成,准备各种实施例以及比较例样品。除组成之外,所有样品按照相同的方法制造。表1中示出根据实施例和比较例的AlNiCo硬磁体粒子的组成。

[表1]

利用VSM(振动样品磁强计(vibrating sample magnetometer),Lakeshore,7400series)测定制造的磁性粒子的矫顽力(Hc)和剩磁(Mr)。表2中示出测定结果。

[表2]

从表1、2的结果可知,根据本发明的实施例1~4的AlNiCo硬磁体粒子其矫顽力全部属于250Oe至450Oe范围,另外,剩磁/矫顽力比率为0.06以上。尤其,在17wt%以下的低Co含量下得到这样的磁性特性。另外,可以确认到,所有实施例样品的Ni含量属于18wt%至25wt%范围,Ni和Co含量之和属于28wt%至42wt%,更加具体为属于32wt%至40wt%范围。

另外,Al含量包含在4wt%~9wt%,Cu含量包含在1wt%至4wt%,Ti含量包含在2wt%至5.5wt%范围。

与此相反地,脱离这种组成范围的比较例没有得到所要的磁性特性。在比较例1中,虽然满足矫顽力范围,然而剩磁低而剩磁/矫顽力比率为0.055,属于0.06以下,在比较例2中,得到大数值的剩磁,然而矫顽力也大幅度增加,因此剩磁/矫顽力比率为0.058,属于0.06以下。另外,在比较例3中,虽然剩磁/矫顽力比率为0.08,得到大数值,然而矫顽力和剩磁的绝对值低到难以利用磁阻装置进行检测的程度。尤其,在比较例2和比较例3中,Co含量高至24%,在经济方面也不优选。

以上,参照有限的实施例以及附图进行了说明,然而其属于示例,一般的技术人员应明确可以在本发明的技术构思的范围内进行各种变形。另外,各实施例中说明的技术构思不仅当然可以各自独立实施,而且也可以彼此组合实施。因此,本发明的保护范围应通过权利要求书中的记载以及其等同范围来确定。

相关技术
  • AlNiCo类硬磁体粒子以及其制造方法
  • 稀土类烧结磁体、稀土类烧结磁体用原料合金粉末以及稀土类烧结磁体的制造方法
技术分类

06120112893630