掌桥专利:专业的专利平台
掌桥专利
首页

一种适用于内窥镜结构的异质接合方法

文献发布时间:2023-06-19 11:47:31



技术领域

本发明属于材料技术领域,具体涉及一种适用于内窥镜结构的异质接合方法。

背景技术

在医学相关领域的应用层面而言,以医疗器械领域最易切合大众生活的医疗行为与应用,现今在医疗器械的快速发展状态之下,尤其以侵入式的内窥镜等相关技术最常见于在各类型的外科手术或是相关的医疗行为中所涉及的环节,然而在医疗器械中的各式的内窥镜需要一种可适应于人体内的酸碱环境以及相关的生理环境所构成的严苛的外在声里环境因素的考量,故建立一种可构成高安全性的内窥镜的嵌合接合装配技术在内窥镜的構装领域为一重要的议题与深究的领域。

在各类型的内窥镜结构产品尤其以医疗所用的类型,需要涉及对应严苛的环境因素,系如生理环境、酸碱环境以及菌体环境等构成可能性,对内窥镜结构以及相关接合面产生无法预期的破坏行为,进一步导致腐蚀状态或是潜在性的结构性破坏。

发明内容

本发明目的在于提供一种适用于内窥镜结构的异质接合方法,能够有效地克服各种不同材料特性以及构装形状等外在条件的限制,完整抵御腐蚀行为以及相关的结构性破坏行为所导致的构装不完全的缺陷。

为达到上述目的,采用技术方案如下:

一种适用于内窥镜结构的异质接合方法,包括以下步骤:

(1)表面处理

将待接合异质材料的接合面进行预处理,使接合面的材料裸露;

(2)微结构阵列制备

对裸露的接合面进行刻蚀,使其表面产生致密排列的微结构阵列图案;

(3)复合镀层制备

分别在待接合异质材料的微结构阵列图案上依次进行置换层生长、晶种层替换、中间层镀层得到复合镀层;

(4)超声波接合

将待接合异质材料的接合面接触并施加压力,在超声波照射处理下完成接合。

按上述方案,所述异质接合方法适用于金属、半导体或高分子材料。

按上述方案,步骤1所述表面处理过程包括腐蚀或清洗或腐蚀加清洗。

按上述方案,步骤2所述微结构阵列制备采用湿式刻蚀压印阵列图案,具体工艺如下:

准备带有微结构阵列的模具,利用适用于接合面材料的电解反应进行催化腐蚀,将所述模具的微结构阵列图案反向刻蚀复印于接合面。

按上述方案,步骤2所述微结构阵列制备采用干式压印转印阵列图案,具体工艺如下:

准备带有微结构阵列的模具,利用适用于接合面材料的干式电解压印,在接合面形成模具的微结构阵列图案。

按上述方案,步骤3所述置换层生长,包括以下步骤:

将接合面的微结构阵列图案浸入催化电解金属络合物液中,使该金属络合物在微结构阵列表面形成催化离子层;所述络合物液为二氧化锡与甘氨酸、半胱氨酸、精氨酸或丝氨酸的络合物溶液。

按上述方案,步骤3所述晶种层替换,包括以下步骤:

将接合面的微结构阵列图案浸入金、银、钯或铂的氯化物溶液中,受到上述催化离子层的催化进行置换,在微结构阵列图案表面的催化离子层吸附置换形成金属镀层。

按上述方案,步骤3所述中间层镀层,包括以下步骤:

通过三项电极,在微结构阵列表面的金属镀层上电镀制备镍、铜、锌、铬或钛得到中间层镀层。

按上述方案,步骤4中施加压力使接合面的压强为0.3-0.8Mpa;超声处理的功率为2000-5000kw;振动频率范围为15-40khz;处理时间为0.2-1s;HORN功率扩大比为(3-5):2。

相对于现有技术,本发明的有益效果如下:

本发明异质材料接合方法可直接使用于异质异形结构的表面接合,其结构形状不受限于圆形、环形、方形或是相关特定形状;特别适用于内窥镜结构的装配制作。

超声波接合的技术不受限于异质介面,主要透过有效地介面连接,通过超声波在两相介面进行声波的震荡,促使两相介面在声波的高速作用下使分子快速振动,接触面上的分子接受能量被融熔,完成接合。

对于晶向匹配度不足的金属、半导体或高分子材料,本发明通过在接合面制备复合镀层将两种本无法通过超声波接合的材料转变为可接合的状态;对于异质材料的接合过程,除了以物理形式的铆接,还通过复合镀层的有效接合增强了接合效果。

具体实施方式

以下实施例进一步阐释本发明的技术方案,但不作为对本发明保护效果的限制。

以内窥镜结构的化学接合为例,一般实施案例可视为不锈钢与玻璃,可多涉及不锈钢与各可作为玻璃或是相关的光学镜片材料,如氧化铟锡玻璃,氟化玻璃,蓝宝石玻璃,塑料镜片。

(1)脱除原始膜层,即表面处理。

本工艺主要在移除需要进行镀层处理的工件表层材料,如金属或是合金材料表面会有一层保护作用的薄膜,在进行任何的腐蚀,刻蚀或是镀层的处理都需要先进行移除该膜层的动作,以利后续的动作执行。

以不锈钢合金为例,表面因铁镍和金与铬金属的组份会产生容易被氧化的铬化膜,在进行一定深度的清洗与腐蚀之前,会不断地生成氧化铬膜进行保护,需要透过腐蚀的作用,有效地移除薄膜,以利进行后续的工艺。

(2)微型结构制备。

本工艺动作主要是在上述移除原始膜层或是不需移除原始膜层后,对待接合工件的接合面进行表面微型结构的制备,该微型结构的制备可以采取湿式压印刻蚀或是干式的压印转印进行,使其表面产生致密排列的有序化阵列图案,以利后续可以将镀层处理的过程,按照图案的基础形状,将镀层披覆于图案表面。

湿式刻蚀压印图案化(适用于金属材料或半导体材料):利用精密加工的微结构阵列,制定适用于待接合工件材料可以进行催化腐蚀的电解反应,可以将精密模具的图案直接反向刻蚀复印于待接合工件的接合面,即可形成欲形成的阵列微结构图案。

具体操作如下:

1.采用一超精密模具,其配置的金字塔结构为0.1-0.3um,间距为0.05-0.1um ,其材质为不锈钢、硅基、钨钢等高刚性材质;

2.制备专属刻蚀液,配置氢氟酸、双氧水、异丙醇、水,比例控制为1:5:0.5:10;

3.形成一电化学刻蚀反应,配置刻蚀用电极(模具)、碳电极(加工工件)、参比电极;

4.进行湿法微纳米压印,在工件与模具间持压,并且通以导通电流,形成电化学刻蚀反应;

5.调整电压0.01-1.37-2.0V,0.05-0.1A,参考电化学工作站,观察电位输出到一下降趋势,其操作时间可为0-60秒;

6.完成反应后进行清洗动作,以纯净水/IPA/纯净水依序进行超声波震荡清洗分别为1分钟、1分钟、5分钟,后进行干燥。

干式压印转印(适用于高分子材料):利用精密加工的微结构阵列,施加电解击溃待接合工件的接合面,形成一个可暂时溶解扩散的两相介面,利用干式电解压印,在接合面形成阵列微结构图案。

利用精密加工的微结构阵列,制定适用于待接合工件材料可以进行热塑行为的物理性接触表面软化进行固化的压印,可以将精密模具的图案直接反向刻蚀复印于待接合工件的接合面,即可形成欲形成的阵列微结构图案。

具体操作如下:

1.采用一超精密模具,其配置的金字塔结构为0.1-0.3um,间距为0.05-0.1um ,其材质为不锈钢、硅基、钨钢等高刚性材质;

2.进行模具清洁,配置异丙醇以超声波震荡清洗1分钟,后以超纯水进行超声波震荡清洗1分钟;

3.进行模具真空干燥,确保去除表面水分无残留;

4.将模具进行加热反应,配置保持温度于欲压印的材料的大于熔点的5-10度的范围;

5.进行干法微纳米压印,在工件与模具间持压,并且通以加温,形成热塑压印反应;

6.调整温度持温10-30秒后,进行降温固化定型,其操作时间可为300秒;

7.完成反应后进行清洗动作,以纯净水/IPA/纯净水依序进行超声波震荡清洗分别为1分钟、1分钟、5分钟,后进行干燥。

(3)复合镀层制备。

本工艺对待接合工件制备完成的微结构阵列进行镀膜,以利后续进行异质接合,所述复合镀层需要依次进行三个步骤:

置换层生长:将待接合工件已经制备完成的微结构阵列进行清洁后,置入活性的催化电解金属络合物液,其通常为二氧化锡与特定氨基酸的络合物溶液,使工件微结构阵列浸入液体中,使该金属络合物(如铜甘氨酸络合物 Cu-Gly,铜丝氨酸络合物 Cu-Ser,铜半胱氨酸络合物 Cu-Cys)可以在微结构阵列表面形成一具有活性的催化离子层,即预成膜。具体操作如下:

1.将脱除表面硬化膜的工件在纯净水中超声波清洗5分钟,确保微结构阵列清洁;

2.置入IPA 清洗液超声波清洗槽清洗5分钟,确保有机物去除;

3.置入纯净水超声波清洗槽清洗5分钟,清洗确保IPA去除;

4.以二氧化锡SnCl

晶种层替换:将上述进行置换层生长的微结构阵列浸入具有贵重金属如金、银、钯、铂等的氯化物溶液,使该类金属源离子受到催化离子层的催化进行置换,直接在表面进行吸附置换为纯金属镀层,该镀层通常选择与下一步骤配适的晶相,此晶种层的选择主要是对应于需要披覆上的金属薄膜,具有可催化镀膜的基底层,产生有效的镀层接合力与催化生长的效果。

具体操作如下:

1.以铂镀层施作为案例,以氯铂酸 稀盐酸 配置0.1M溶液;

2.将工件微结构阵列表面的置换层置入于其中,进行置换反应,工件表面的Sn离子会跟铂离子产生置换还原反应,直接在表面形成铂金属镀层;

3.确保稳定的镀层可以采取后续的铂电镀工艺;

4.配置0.1N-0.5N的氯铂酸/稀盐酸/水的电解液;

5.配置镀物电极(工件),碳电极,参比电极;

6.调整电压0.01-1.10V,0.05-0.1A,参考电化学工作站,观察电位输出到一下降趋势即可以完成铂镀层工艺。该镀层工艺可以选择蒸镀或是溅镀工艺。

中间层镀层:将所得金属镀层如金、银、钯、铂等的相关镀层完成后,进行中间层的镀膜生成工艺,该镀层的选择通常可以选择匹配于晶种层与下一层的接合层的晶相选择,基于强度与刚性、韧度的选择上,通常选择以下相关的金属离子源,如镍、铜、锌、铬、钛等相关金属源的选择,本镀层反应可直接利用纯电镀反应。配置三相电极,阴极、阳极与参比电极,于含有金属源的电解液,电极配置一为夹持欲镀物之工件,另一电极为碳电极,选择镀层适合的电化学氧化还原电位为基础电压,调试适当的电流输入,进行镀层的阶段性镀膜,镀层趋近完成之时,提高调节电流的输入,稳固镀层的强力与接合力,后进行缓慢的调节电流,进行镀层品质的控制(电镀不需烧结)。

具体制备过程如下:

1.以铂镀层施作为案例,以硝酸镍、硝酸铬、稀盐酸、稀硝酸配置0.1M-0.5M溶液;

2.将工件置入于其中进行置换反应,工件表面的贵金属层如铂会跟镍离子产生置换还原反应,直接在表面形成镍金属镀层;

3.确保稳定的镀层可以采取后续的镍电镀工艺;

4.配置0.1N-0.5N的硝酸镍/硝酸铬/稀盐酸/氨基酸/水的电解液;

5.配置镀物电极(工件),碳电极,参比电极;

6.调整电压0.01-1.10V,0.05-0.1A,参考电化学工作站,观察电位输出到一下降趋势即可以完成铂镀层工艺。

(4)超声波接合。

将待接合的工件通过夹具固定,施加一定的压力并进行超声波探头快速接触即可形成接合。

具体操作如下:

1.采用两需要进行接合的工件;

2.进行模具清洁,配置异丙醇以超声波震荡清洗1分钟,后以超纯水进行超声波震荡清洗1分钟;

3.进行模具真空干燥,确保去除表面水分无残留;

4.将一工件置放于装置平台,另一工件接上超声波探头治具,调整适合的功率与振幅输出;

5.进行干法微纳米压印,在工件与模具间持压0.3-1.0秒,并且通过保压时间0.5秒,形成超声波接合反应;

6.置放两工件放置10-30秒后,进行应力释放定型;

7.完成反应后进行清洗动作,以纯净水/IPA/纯净水依序进行超声波震荡清洗分别为1分钟、1分钟、5分钟,后进行干燥。

针对金属-金属的接合压强设置在0.7-0.8Mpa;超声波处理功率4200-5000kw;振幅范围15-40khz;HORN功率扩大比5:2;延迟时间0.6-1秒。

针对金属-高分子材料的接合压强设置在0.3-0.5Mpa;超声波处理功率2500-3200kw;振幅范围15-40khz;HORN功率扩大比3:2;延迟时间0.2-0.5秒。

相关技术
  • 一种适用于内窥镜结构的异质接合方法
  • 一种适用于内窥镜结构的化学接合方法
技术分类

06120113056829