掌桥专利:专业的专利平台
掌桥专利
首页

基于波导光栅的双参数原位传感器、传感系统及制备方法

文献发布时间:2023-06-19 16:11:11



技术领域

本发明涉及传感技术领域,具体为基于波导光栅的双参数原位传感器及制备方法。

背景技术

在石油开采、核能源开发等领域涉及到的一些大型仪器设备,其工作过程均伴随有高温高压等极端和复杂环境,因此其内部的工作部件容易受到热、声等多种因素的干扰,进而极大地影响着设备工作的稳定性。众多设备在高温、噪声等多种因素的综合作用下会出现工作不正常、数据不准确的问题,严重的情况下甚至会造成爆炸解体的后果。综上所述,实现温-声双参数的原位同步测试,对很多领域大型设备的工作过程内部能量转换的规律掌握及安全事故的预防具有重要意义。

目前,研究人员对高温高压环境下单一物理量的测试研究较多,但在高温高压极端环境和复杂条件下的多参数同步测试方面的研究成果仍比较缺乏。单一物理量测试的传感器,例如温度传感器多采用热电偶作为敏感单元,难以满足高温高压等极端恶劣环境下多参量测试需求。部分传感器利用光纤光栅进行温度传感,波导光栅与光纤光栅的传感原理类似,具有尺寸小、可靠性高、灵敏度高、不受电磁干扰等优点。光纤声传感器的结构应用较多的是马赫-曾德尔干涉结构和法布里-珀罗干涉结构,基于法布里-珀罗干涉腔制备的声传感器是近年来的研究热点。常用的光纤法布里-珀罗干涉仪结构有光栅和光纤端面、腐蚀纤芯形成空气腔、光纤端面-空气-光纤端面、光纤端面-空气-膜片等。这些结构常使用光纤端面作为反射面,其形成的法布里-珀罗腔精细度较低,传感灵敏度较差,难以满足高温高压恶劣环境下的声信号测量需求。而且一些传感器用单一结构进行多参量的传感时多存在交叉敏感现象,难以进行准确的测量。

因此,需要发明一种可以应用于高温高压环境的温-声双参数传感器,以适应大型设备领域的实际需求。

发明内容

本发明克服现有技术存在的不足,所要解决的技术问题为:提供一种基于波导光栅的双参数原位传感器,以实现温-声的时空同步原位测量,提高测量精度。

为了解决上述技术问题,本发明采用的技术方案为:一种基于波导光栅的双参数原位传感器,包括:光波导基片,所述光波导基片内平行设置有第一直型光波导和第二直型光波导,第一直型光波导的两端分别与第一传输光纤和第二传输光纤连接,所述第二直型光波导的两端分别与第三传输光纤和第四传输光纤连接,所述第一直型光波导上设置有第一布拉格光栅,所述第二直型光波导上分离设置有第二布拉格光栅和第三布拉格光栅,所述光波导基片上表面设置有微型空气槽,所述微型空气槽位于第二布拉格光栅和第三布拉格光栅之间。

第一直型光波导和第二直型光波导为固态掺锗二氧化硅晶体。

所述光波导基片的材料为二氧化硅。

所述第二布拉格光栅和第三布拉格光栅的反射率大于60%。

所述第一布拉格光栅的反射率大于60%。

此外,本发明还提供了一种基于波导光栅的双参数传感系统,包括光源、第一光谱仪、第二光谱仪、信号处理器和所述的一种基于波导光栅的双参数原位传感器;

所述光源用于向所述第一传输光纤和第四传输光纤提供光信号,所述第一光谱仪用于接收第二传输光纤输出光信号,并得到第一光谱;所述第二光谱仪用于接收第三传输光纤输出光信号,并得到第二光谱;

所述信号处理器用于根据所述第一光谱,计算得到温度信号,以及用于根据所述第二光谱,计算得到声音信号。

此外,本发明还提供了一种基于波导光栅的双参数原位传感器的制备方法,用于制备所述的一种基于波导光栅的双参数原位传感器,包括以下步骤:

S1、在硅衬底上生长二氧化硅形成二氧化硅层,在二氧化硅层上生长掺锗二氧化硅形成掺锗二氧化硅层;

S2、在掺锗二氧化硅层上设置掩膜版,通过反应离子刻蚀法刻蚀掉多余的掺锗二氧化硅,在二氧化硅层形成第一直型光波导和第二直型光波导;

S3、使用等离子体增强化学气相沉积法在二氧化硅层上生长二氧化硅形成上包层;

S4、设置套刻版,通过反应离子刻蚀法在上包层的上表面刻蚀形成微型空气槽;

S5、在第一直型光波导和第二直型光波导两端耦合传输光纤;

S6、利用飞秒激光逐行扫描的方法分别在第一直型光波导和第二直型光波导上刻写,形成第一布拉格光栅、第二布拉格光栅和第三布拉格光栅。

所述步骤S1中,二氧化硅层的厚度为15±3μm,掺锗二氧化硅层的厚度为6.5±2μm。

所述微型空气槽的深度小于所述上包层的厚度。

本发明与现有技术相比具有以下有益效果:

1、本发明的整体结构全部采用二氧化硅单晶制作,为同质材料一体化结构,可以消除高温应力失配,保证传感器在高温条件下的高可靠性工作,此外,其不局限于高温高压环境,在常温常压等其它温度和压强环境下,也具有适用性。

2、本发明中,温度传感结构为固态直型光波导上的布拉格光栅,噪声传感结构为在法布里-珀罗腔上端开口的结构,不存在密封的空腔结构,保证了传感器在高压条件下的高可靠性工作。

3、本发明中,温度和声音两种传感结构中的布拉格光栅,均采用飞秒激光逐层扫描刻写,具有高反射率的特性,代替传统构成法布里-珀罗腔的高反射率介质膜或金属膜,保证高温环境下光的高反射率。

4、本发明中,两传感结构相互独立,可以避免两参数交叉耦合问题;同时,双参量集成的一体化结构,体积小,可以实现温-声的时空同步原位测量。

附图说明

图1为本发明实施例一提供的一种基于波导光栅的双参数原位传感器的俯视图;

图2为图1的剖视图;

图3为图1的左视图;

图4为本发明实施例一中光场在温度传感结构中传输的光强分布图;

图5为本发明实施例一中第一直型波导中输出的光谱线的示意图;

图6为本发明实施例一中光场在声传感结构中传输的光强分布图;

图7为本发明实施例一中第二直型波导中输出的光谱线的示意图;

图8为本发明实施例二提供的一种基于波导光栅的双参数传感系统的结构示意图;

图9为本发明实施例三提供的一种基于波导光栅的双参数原位传感器的制备方法的流程示意图;

图中:1-温度传感结构,2-噪声传感结构,3-第一传输光纤,4-光波导基片,5-第一直型光波导,6-第一布拉格光栅,7-第二传输光纤,8-第三传输光纤,9-第二直型光波导,10-第二布拉格光栅,11-上包层空气槽,12-第三布拉格光栅,13-第四传输光纤,14-二氧化硅层,15-掺锗二氧化硅层,16-上包层,17-硅衬底,18-掩膜版,19-光源、20-第一光谱仪、21-第二光谱仪、22-信号处理器、23-基于波导光栅的双参数原位传感器,24-套刻版。

具体实施方式

为使本发明实施例的目的、技术方案和优点更加清楚,下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例;基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

实施例一

如图1~3所示,本发明实施例一提供了一种基于波导光栅的双参数原位传感器,包括:光波导基片4,所述光波导基片4内平行设置有第一直型光波导5和第二直型光波导9,第一直型光波导5的两端分别与第一传输光纤3和第二传输光纤7连接,所述第二直型光波导9的两端分别与第三传输光纤8和第四传输光纤13连接,所述第一直型光波导5上设置有第一布拉格光栅6,所述第二直型光波导9上分离设置有第二布拉格光栅10和第三布拉格光栅12,所述光波导基片4上表面设置有微型空气槽11,所述微型空气槽11位于第二布拉格光栅10和第三布拉格光栅12之间。

具体地,本实施例中,第一直型光波导5和第二直型光波导9为固态掺锗二氧化硅晶体形成的直线型结构,所述光波导基片4的材料为二氧化硅。

具体地,本实施例中,所述第二布拉格光栅10和第三布拉格光栅12的反射率大于60%。

具体地,本实施例中,所述第一布拉格光栅6的反射率大于60%。

本实施例提供的一种基于波导光栅的双参数原位传感器,具有一体化的整体结构,包括温度传感结构和声传感结构两部分,各部分的工作原理如下:

1)温度传感结构:设置在光波导基片内的第一直型光波导5和刻蚀在第一直型光波导5上的第一布拉格光栅6形成温度传感结构1,光通过传输光纤从第一直型光波导5的一端输入,另一端输出;当光的波长在布拉格光栅的中心波长附近被扫描时,大部分光在布拉格光栅处被反射,少部分光从另一端透射经第二传输光纤输出。当温度改变时,布拉格光栅反射光的中心波长会发生变化,以此来传感温度。在此过程中,通过布拉格光栅获得大带宽高反射光谱,实现在高温环境下的传感检测。传感器由温度传感结构构成,整体为,各部分只对特定物理量敏感,温度传感结构对于声信号传感具有温度补偿作用。

如图4所示,为光场在温度传感结构中传输的光强分布图,如图5所示,为第一直型波导5中输出的光谱线的示意图,当温度发生改变时,第一直型波导5中输出的光谱线有一定的波长移动,根据光谱线的波长移动量,可以实现温度的传感。

2)声传感结构:第二直型光波导9,设置在第二直型光波导9上的第二布拉格光栅10和第三布拉格光栅12,以及微型空气槽11形成声传感结构2。具有高反射率的第二布拉格光栅和第三布拉格光栅构成法布里-珀罗腔结构。当法布里-珀罗腔的上包层受声压影响空气密度发生变化时,会引起空气折射率的变化,通过对光波导法布里-珀罗腔的谐振波长进行监测实现声音信号的检测。其中,光通过传输光纤从第二直型光波导9一端输入,然后经过第二布拉格光栅进入法布里-珀罗腔中,并在第三布拉格光栅12与第二布拉格光栅10之间经多次反射多光束干涉形成谐振谱,即与法布里-珀罗腔发生共振。同时在第二直型光波导9与空气槽11的临界处产生的消逝波沿着空气槽的底端传播,消逝波的幅值随着与分界面相垂直深度的增大而呈指数式衰减。当外界声信号作用于微型空气槽11时,空气介质密度的改变会引起空气折射率的变化,这一变化由消逝波反馈到法布里-珀罗腔的谐振效应中,从而影响法布里-珀罗腔内谐振光束的传播,最终导致法布里-珀罗腔谐振频率的漂移,以此来检测声音信号。两端高反射率的布拉格光栅用于增强光在法布里-珀罗腔中的反射,提高法布里-珀罗腔的精细度,增加声音检测的灵敏度。

如图6所示,为光场在声传感结构中传输的光强分布图,如图7所示,为第二直型波导9中输出的光谱线的示意图,当环境存在声压噪声时,第二直型波导9中输出的光谱线有一定的波长移动,根据光谱线的波长移动量,可以实现声音大小的传感。

综上所示,本实施例提供的一种基于波导光栅的双参数原位传感器,其结构为一体化设置,而且,全部采用二氧化硅晶体制作,其具有一定的耐高温特性,可以实现500℃以下高温的传感。另外,双参量信号传输和传感均为二氧化硅晶体同质材料,可以消除不同材料在高温下的热应力失配,保证传感器在高温条件下的高可靠性工作。同时,温度传感结构为固态二氧化硅晶体上的第一布拉格光栅;噪声传感结构为第二布拉格光栅和第三布拉格光栅构成的法布里-珀罗结构,在上方设置了微型空气槽11。两种传感结构均不存在密封的空腔结构,因此,保证了传感器在高压条件下的高可靠性工作。此外,温度和声音传感结构相互独立,温度传感结构对于声信号传感具有温度补偿的作用,也可以避免双参数交叉耦合问题;同时,双参量集成的一体化结构,体积小,可以实现温-声的时空同步原位测量。

实施例二

如图8所示,本发明实施例二提供了一种基于波导光栅的双参数传感系统,包括光源19、第一光谱仪20、第二光谱仪21、信号处理器22和实施例一的一种基于波导光栅的双参数原位传感器23。所述光源19用于向所述第一传输光纤3和第四传输光纤13提供光信号,所述第一光谱仪20用于接收第二传输光纤7输出的光信号,并得到第一光谱;所述第二光谱仪21分别用于接收第三传输光纤8输出的光信号,并得到第二光谱;所述信号处理器22用于根据所述第一光谱,计算得到温度信号,以及用于根据所述第二光谱,计算得到声音信号。

实施例三

如图9所示,本发明实施例三提供了一种基于波导光栅的双参数原位传感器的制备方法,用于制备所述的一种基于波导光栅的双参数原位传感器,包括以下步骤:

S1、在硅衬底上17生长二氧化硅形成二氧化硅层14,在二氧化硅层14上生长掺锗二氧化硅形成掺锗二氧化硅层15,如图9中(a)所示。

具体地,所述步骤S1中,二氧化硅层14的厚度为15±3μm,掺锗二氧化硅层15的厚度为6.5±2μm。生长完成后对整个结构进行高温退火,温度为900℃-1100℃,时间为35小时。

S2、在掺锗二氧化硅层15上设置掩膜版18,通过反应离子刻蚀法刻蚀掉多余的掺锗二氧化硅,在二氧化硅层14形成第一直型光波导5和第二直型光波导9,如图9中(b)和(c)所示。

具体地,首先使用带有芯层图形的掩膜版在掺锗二氧化硅表面形成掩膜层,然后在掩膜层上涂覆光刻胶,采用光刻工艺将掩膜版上的几何形状转移到光刻胶上;再采用反应离子刻蚀法刻蚀掩膜层的未覆盖光刻胶处,然后去除光刻胶,再采用反应离子刻蚀法刻蚀掺锗二氧化硅,得到芯层,即第一直型光波导5和第二直型光波导9。

S3、使用等离子体增强化学气相沉积法在二氧化硅层14上生长二氧化硅形成上包层16,然后进行高温回流处理,如图9中(c)所示,上包层16与二氧化硅层14将第一直型光波导5和第二直型光波导9包覆,形成光波导基片4。

S4、设置套刻版,通过反应离子刻蚀法在上包层16的上表面刻蚀形成微型空气槽11。

具体地,首先使用带有微槽图形的套刻版在掺锗二氧化硅表面形成掩膜层,然后在掩膜层上涂覆光刻胶,采用光刻工艺将套刻版上的几何形状转移到光刻胶上;再使用反应离子刻蚀法刻蚀掩膜层,然后除去光刻胶,再使用反应离子刻蚀法刻蚀二氧化硅,形成微型空气槽11。所述微型空气槽11的深度小于所述上包层16的厚度。

S5、在第一直型光波导5和第二直型光波导9两端耦合传输光纤。

具体地,将光纤接头放置在光波导两端,并使光纤接头与光波导都固定在六维电动位移平台的夹具上,先将光波导调节至水平位置,再调节光波导一端的光纤,使得透过光波导的激光功率达到最大,即光的耦合损耗最小,然后用耐高温紫外光胶进行耦合,光胶固化24小时;接着调节光波导另一端的光纤位置,同样使其透过光波导的光达到最大,然后用耐高温紫外光胶进行耦合,光胶固化24小时。这样就使得传输光纤与波导的耦合达到最佳。

S6、利用飞秒激光逐行扫描的方法分别在第一直型光波导5和第二直型光波导9上刻写,形成第一布拉格光栅6、第二布拉格光栅10和第三布拉格光栅12。

在完成传输光纤与波导的耦合之后,利用飞秒激光逐行扫描的方法在直波导上刻写满足反射率要求的光栅,形成了折射率调制区域。温度传感单元中刻制一组光栅;而声传感单元中两个高反射率的光栅区构成法布里-珀罗腔,形成多光束干涉,这样就制备成了标准化的温-声双参数集成的原位传感器。

最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

相关技术
  • 基于波导光栅的双参数原位传感器、传感系统及制备方法
  • 一种基于双阵列波导光栅的光纤光栅传感器解调装置
技术分类

06120114731578