掌桥专利:专业的专利平台
掌桥专利
首页

振冲碎石桩机施工垂直度控制的方法

文献发布时间:2023-06-19 18:35:48


振冲碎石桩机施工垂直度控制的方法

技术领域

本发明涉及桩机施工技术领域,尤其涉及一种振冲碎石桩机施工垂直度控制的方法。

背景技术

在传统的振冲工程中,通常起吊设备悬吊振冲器并使振冲器贯入到设计深度的要求来进行施工,并根据设计深度确定起吊设备的起吊吨位和起吊高度。常用的起吊设备有汽车吊、桩架、履带吊三类。采用传统的起吊设备进行振冲施工,与振冲器顶部连接的导杆上部是通过卷扬与起吊设备相连接,这是一种柔性连接。当振冲器处于悬吊状态时,振冲器和导杆靠重力作用呈垂直状态,在水平方向没有任何约束。在振冲过程中,靠操作手的个人能力和责任心保持振冲器的悬垂状态,遇到相对软层时垂直度尚可,但是在遇到相对硬层或较大砾石时,很容易发生偏斜,此时振冲器已不能保持悬垂,继续振冲极易发生桩孔偏斜,严重影响工程质量和进度。为解决这个问题,在工程实践中,有时按如下两个步骤进行操作:

第一,操作手立即上提振冲器,而后轻打轻提,一点一点突破硬层或将砾石挤到桩孔边缘,使振冲器继续钻进成孔。此方法适用于硬层较薄或砾石不是很大的情况,对于常规的20m以内地层相对均一地层来说,基本可以解决。但是,对于50m以上复杂地层的振冲碎石桩而言,该方法在上软下硬且大粒径砾石较多的交界部位往往效果不好。在振冲器底部遇到硬层特别是较大砾石时,往往发生“侧滑”现象,这是导致桩孔偏斜的关键原因之一。而偏斜轻则影响工效,重则整桩废弃,对质量和进度都造成了重大影响。如在某项目中,曾采取导杆+振冲器高举高打强行突破的方式,对设备造成了严重损坏,且多次发生严重偏斜。

第二,如上述方法不能奏效,则移开振冲桩机,改用旋挖机进行扩孔,掏出砾石或硬层,或采用冲击钻机进行冲击作业,将硬层钻透或破碎后再进行振冲造孔作业。但这种方法增加施工成本,影响施工进度。

此外,现有技术对于孔深超过50米的深层较软地基施工时,还可采用多节伸缩导杆连接振冲器方法进行振冲施工。由于伸缩导杆系统采用刚性连接,使得导杆+振冲器系统在遇到较软地层时仍然能保持垂直,从而避免振冲器因侧滑造成的桩孔偏斜。但是,在遇到硬层特别是较大砾石时,采用上述结构的振冲器还是不可避免地发生“侧滑”现象,导致桩孔偏斜。偏斜轻时,若不对倾斜桩孔进行修整,将使振冲碎石桩桩径的均匀性和密实性的保证系数受到影响,使得后续形成的振冲碎石桩安全性差;若对倾斜桩孔进行修整,需要振冲器停止振冲施工、及时修孔,势必导致施工工期延长,增加施工成本。而若偏斜重,则只能整桩废弃,严重影响施工进度与成本。

综上所述,对孔深超过50米的较硬地层特别是带有较大砾石地层进行振冲施工时,如何保证振冲器垂直度是急需解决的问题。

发明内容

本发明的目的就是为了解决上述问题,提供一种振冲碎石桩机施工垂直度控制的方法,使得振冲器系统能以符合要求的垂直度对施工地层向下振冲并形成振冲碎石桩孔,确保形成的振冲碎石桩桩径的均匀性和密实性,提高振冲碎石桩安全性,且有效缩短施工工期,降低施工成本。

为实现本发明的上述目的,本发明提供一种振冲碎石桩机施工垂直度控制的方法,所述振冲碎石桩机包括吊装系统、钻杆系统及振冲器系统,其中,所述方法包括:

将钻杆系统与吊装系统的桅杆平行安置,以便与钻杆系统底部连接的振冲器系统与桅杆平行;

在通过振冲器系统进行振冲施工时,对桅杆相对位于水平面上主机的垂直度进行实时检测,以获得桅杆垂直度的偏差数据;

根据获得的桅杆垂直度的实时偏差数据,判断是否需要对桅杆垂直度进行调节;

若需要对桅杆垂直度进行调节,则调节桅杆垂直度,以便振冲器系统以符合要求的垂直度对施工地层向下振冲并形成振冲碎石桩孔。

其中,对桅杆相对安置在水平面上主机的垂直度进行实时检测,以获得桅杆垂直度的偏差数据包括:

通过对桅杆相对安置在水平面上主机的倾角进行实时检测,获得桅杆相对主机的倾斜角度;

获得桅杆相对主机的倾斜角度后,将该角度减去90度,以获得桅杆相对主机垂直度偏差值。

或者,对桅杆相对安置在水平面上主机的垂直度进行实时检测,以获得桅杆垂直度的偏差数据包括:

通过对桅杆相对安置在水平面上主机的倾角进行实时检测,获得桅杆相对主机的倾斜角度;

获得桅杆相对主机的倾斜角度后,将该角度减去90度后取绝对值,以获得桅杆相对主机垂直度偏差值的绝对值。

其中,根据获得的桅杆垂直度的实时偏差数据,判断是否需要对桅杆垂直度进行调节包括:

获取桅杆垂直度的实时偏差数据后,判断该偏差数据是否处于预设阈值区间内;

若偏差数据超出预设阈值区间,则需要对桅杆垂直度进行调节;

若偏差数据未超出预设阈值区间,则不需对桅杆垂直度进行调节。

优选的,若需要对桅杆垂直度进行调节,则调节桅杆垂直度至符合要求包括:

当需要对桅杆垂直度进行调节时,振冲器系统停止振冲施工,并通过吊装系统上提振冲器系统;

振冲器系统被上提后,通过控制桅杆角度调节机构执行相应动作,以调节桅杆垂直度至符合要求。

优选的,控制桅杆角度调节机构执行相应动作,以调节桅杆垂直度至符合要求包括:

通过控制用于纠偏的比例阀的开度,以控制与比例阀连接的纠偏油缸执行相应动作;

通过纠偏油缸的动作,带动与纠偏油缸连接的桅杆相对主机偏转,以使桅杆垂直度符合要求。

优选的,将钻杆系统与吊装系统的桅杆平行安置,以便与钻杆系统底部连接的振冲器系统与桅杆平行包括:

在利用吊装系统下放钻杆系统及振冲器系统的过程中,对钻杆系统相对主机的垂直度进行控制,以便随钻杆系统下放的振冲器系统与桅杆平行。

优选的,对钻杆系统的垂直度进行控制,是通过对钻杆系统施加水平方向约束力与竖直方向导向力的方法。

优选的,对钻杆系统施加水平方向约束力与竖直方向导向力,是对钻杆系统的连接段施加水平方向约束力与竖直方向导向力。

优选的,对钻杆系统的连接段施加水平方向约束力与竖直方向导向力,是通过钻杆垂直度保持装置对连接段施加水平方向约束力与竖直方向导向力的方法。

其中,对垂直度进行实时检测,是通过将角度检测模块安装于桅杆上,以通过角度检测模块对垂直度进行实时检测的方法。

优选的,所述角度检测模块安装于桅杆内部且靠近桅杆下端的位置处。

优选的,所述角度检测模块安装于桅杆内部下端的1/5位置处。

与现有技术相比,本发明振冲碎石桩机施工垂直度控制的方法具有如下优点:

本发明振冲碎石桩机施工垂直度控制的方法,在通过振冲器系统对深度超过50米深的强震地带深厚复杂地基进行振冲施工的过程中,可以及时调节超出垂直度要求的桅杆的垂直度,使得振冲器系统能以符合要求的垂直度对施工地层向下振冲并形成振冲碎石桩孔,确保形成的振冲碎石桩桩径的均匀性和密实性,提高振冲碎石桩安全性,且有效缩短施工工期,降低施工成本。

下面结合附图对本发明进行详细说明。

附图说明

图1是本发明振冲碎石桩机一个视角的透视图;

图2是本发明振冲碎石桩机另一个视角的透视图;

图3是本发明钻杆垂直度保持装置抱紧连接段的局部放大视图;

图4是本发明钻杆垂直度保持装置的第一种结构示意图;

图5是本发明钻杆垂直度保持装置的第二种结构示意图;

图6是本发明钻杆系统的结构示意图;

图7是本发明钻杆系统的部分示意图;

图8是本发明钻杆系统的工作段与振冲器系统连接的结构示意图;

图9是本发明垂直度调节原理的第一种示意性框图;

图10是本发明垂直度调节原理的第二种示意性框图;

图11是本发明桅杆垂直度保持装置的示意性框图;

图12是本发明垂直度检测机构的示意性框图;

图13是本发明振冲碎石桩机的振冲器垂直保持系统的流程图。

具体实施方式

如图1、图2所示,分别为本发明提供的振冲碎石桩机两个视角的透视图,由图可知,本发明振冲碎石桩机包括吊装系统100、钻杆系统200、振冲器系统400及自动进给系统500。此外,还包括用于确保振冲器以符合要求的垂直度进行振冲施工的振冲器垂直保持系统300。

具体的,吊装系统100包括振冲碎石桩机的主机101、与主机连接的桅杆102、安装在主机101后端的主卷扬装置501,通过主卷扬装置501的钢丝绳及桅杆102吊装钻杆系统200,以使钻杆系统在自重作用下竖直安置。

此外,在主机101上安置有自动进给系统500,该自动进给系统安装于吊装系统100主机101的后部,可用作主机101的配重。自动进给系统500包括气管卷扬装置502、电缆卷扬装置503和水管卷扬装置504,且这三个装置与主卷扬装置501被设置为同步进给。

钻杆系统200具有位于上部的用于与主卷扬装置501的钢丝绳连接的连接段201、位于中间的支撑段202和位于下部的用于与振冲器系统400连接的工作段203(通常,如图8所示,在工作段203与振冲器系统400之间安置减震组件)。该钻杆系统200采用现有技术的伸缩式导杆,使得钻杆系统200的轴向长度可调,以便改变振冲器系统相对地面的下放或上提位置。如图6、图7所示,钻杆系统200具有由内向外依次套接的多层套管,连接段201为顶层套管,工作段203为底层套管,支撑段202包括一层或多层中间套管。其中,相邻两层套管可采用现有技术的连接结构连接在一起,即可使相邻两层套管轴向滑动顺利,又可防止相互之间发生扭转。工作时,钻杆系统中多层套管的数量与长度可以根据使用需要而确定,如可采用4层以上的套管,每层套管的长度可为18—25米(顶层套管的长度还可更长些)。使用时,钻杆系统的多层套管的长度可伸长或缩短,当伸缩式导杆的多层套管全部伸出时,伸缩式导杆的总长度可达到72米甚至更长,因此,采用本发明的振冲碎石桩机可以对深度大于50米的地层进行振冲造孔。需要说明的是,每相邻两层套管连接时的同轴度相同,即,多层套管长度伸长后同轴,使得振冲施工过程中,各层套管与桩孔呈垂直状态。

而在振冲器系统200的振冲器对深度大于50米的强震地带复杂地层进行振冲造孔的过程中,由于振冲器是在碎石、砂、泥浆环境下工作,如果再遇到坚硬地层,振冲器在振冲过程中极易发生偏斜,使得桩孔发生偏斜,这将导致施工失败,并造成巨大损失。

为了避免出现振冲器在振冲过程中发生偏斜的情况,本发明将钻杆系统与吊装系统的桅杆平行安置,这样可使与钻杆系统底部连接的振冲器系统与桅杆平行,通过保证桅杆的垂直度可确保振冲器系统的垂直度;而在通过振冲器进行振冲造孔施工时,对桅杆相对位于水平面上主机的垂直度进行实时检测,并根据检测结果对桅杆垂直度进行相应调整,确保桅杆垂直度符合要求,从而使得与桅杆平行安置的振冲器能以符合要求的垂直度对施工地层向下振冲并形成振冲碎石桩孔。

具体的,本发明通过振冲器垂直保持系统300确保振冲器能以符合要求的垂直度对施工地层向下振冲并形成振冲碎石桩孔。

如图1-图5所示,本发明振冲器垂直保持系统300包括:用于使振冲器振冲造孔施工时的桅杆相对位于水平面上主机的垂直度符合要求,以便振冲器以符合要求的垂直度对施工地层向下振冲形成振冲碎石桩孔的桅杆垂直度保持装置;用于使钻杆系统与吊装系统的桅杆平行安置,以便与钻杆系统底部连接的振冲器系统与桅杆平行的钻杆垂直度保持装置。

其中,如图11所示,桅杆垂直度保持装置包括:用于在通过振冲器进行振冲造孔施工时,对桅杆相对位于水平面上主机的垂直度进行实时检测与处理的垂直度检测机构;用于根据垂直度检测机构的检测结果对桅杆垂直度进行相应调整以使桅杆垂直度符合要求的桅杆角度调节机构。

本发明采用的垂直度检测机构如图12所示,包括如下模块:通过对桅杆相对安置在水平面上主机的倾角进行实时检测,获得桅杆相对主机的倾斜角度的倾角检测模块;在获得桅杆相对主机的倾斜角度后,通过计算以获得桅杆相对主机垂直度(简称为桅杆垂直度)的偏差数据的偏差数据计算模块;通过获得的桅杆垂直度的偏差数据,确定是否需要对桅杆垂直度进行调节的比较结果的垂直度比较模块;用于将比较结果发送给控制器,以便控制器根据比较结果控制桅杆角度调节机构执行相应动作调节桅杆垂直度的发送模块。

其中,倾角检测模块安置在桅杆内部(图中未示出),优选的,倾角检测模块安置在桅杆内部靠近下端的1/5处,以更加精确地检测桅杆倾斜角度。该倾角检测模块可以采用倾角传感器,也可以采用现有技术的其它可以检测倾角并对数据进行处理的元件。

其中,偏差数据计算模块可以通过如图9所示的方式获得偏差数据,即,通过倾角检测模块实时检测桅杆垂直度后,获得桅杆相对主机的倾斜角度,然后,将该倾斜角度减去90度,获得桅杆相对主机垂直度偏差值。

或者,偏差数据计算模块还可以通过如图10所示的方式获得偏差数据,即,通过倾角检测模块实时检测桅杆垂直度后,获得桅杆相对主机的倾斜角度,然后,将该倾斜角度减去90度后取绝对值,获得桅杆相对主机垂直度偏差值的绝对值。

而在获得桅杆垂直度的偏差数据后,通过比较模块确定是否需要对桅杆垂直度进行调节,该比较模块将获得的桅杆垂直度的偏差数据与提前设定好的桅杆垂直度的预设阈值区间进行比较,并得到相应比较结果,比较过程如下:在获取桅杆垂直度的实时偏差数据后,判断该偏差数据是否处于预设阈值区间内;若偏差数据超出预设阈值区间,则需要对桅杆垂直度进行调节,且确定出需对桅杆调节方向与大小的相关信息;若偏差数据未超出预设阈值区间,则不需对桅杆垂直度进行调节。该预设阈值区间代表桅杆相对竖直面所能倾斜的最大角度与最小角度的范围。上述数据处理过程由预先存储的程序进行。

比较模块获得比较结果后,通过发送模块将比较结果发送给控制器,控制器根据比较结果控制桅杆角度调节机构执行相应动作以调节桅杆垂直度。即,当垂直度检测机构的检测结果表明需要对桅杆垂直度进行相应调整以使桅杆垂直度符合要求时,即偏差数据超出预设阈值区间,需要对桅杆垂直度进行调整以符合要求时,控制器将控制桅杆角度调节机构执行相应动作以调节桅杆垂直度至符合要求。控制器为PLC控制器。

需要说明的是,当需要对桅杆垂直度进行调节时,控制器首先控制振冲器系统停止振冲施工,并通过吊装系统上提振冲器系统,然后,通过控制桅杆角度调节机构执行相应动作,以调节桅杆垂直度至符合要求。

其中,本发明的桅杆角度调节机构包括:其活塞杆与桅杆连接的纠偏油缸,其缸体安装在主机上;与纠偏油缸连接的比例阀。设计时,可以通过一个纠偏油缸调节桅杆的垂直度,也可以通过一对纠偏油缸调节桅杆的垂直度,还可以通过多对纠偏油缸调节桅杆的垂直度。由比例阀控制纠偏油缸动作,比例阀连接PLC控制器,PLC控制器反馈信号闭环控制比例阀开口大小和方向,从而控制纠偏油缸对桅杆进行倾斜方向与倾斜大小的调节,保持桅杆的垂直度在符合要求的预设阈值区间内。

由于桅杆的垂直度符合要求,可使振冲器振冲造孔施工时的振冲器以符合要求的垂直度对施工地层向下振冲,并形成符合垂直度要求的振冲碎石桩孔。

本发明除了在振冲器振冲造孔施工时,通过桅杆垂直度保持装置确保桅杆垂直度符合要求,从而使振冲器以符合要求的垂直度对施工地层向下振冲形成振冲碎石桩孔外,还通过钻杆垂直度保持装置使钻杆系统与吊装系统的桅杆平行安置,从而使与钻杆系统底部连接的振冲器系统与桅杆平行,进而在桅杆垂直度符合要求的情况下,可使振冲器系统的垂直度始终符合要求,以便施工出符合垂直度要求的桩孔。

其中,对钻杆系统施加水平方向约束力与竖直方向导向力的钻杆垂直度保持装置包括:与钻杆系统连接的用于对钻杆系统的连接段施加水平方向约束力与竖直方向导向力的支撑架;与支撑架和桅杆分别连接的用于将支撑架固定于桅杆上的固定架。

具体的,支撑架可以采用如图4所示的第一种结构,具有沿竖直方向平行安置的一对立柱303、与一对立柱303顶端垂直连接且朝一侧伸出的水平架301、两端分别与一对立柱303和水平架301底端面两侧连接的一对加强柱302。水平架301上开设圆形通孔,圆形通孔与钻杆系统连接段201连接。设计时,可在圆形通孔内壁上开设沿竖直方向延伸的多条卡槽306,相应的,钻杆系统连接段201外壁设置沿连接段长度延伸方向延伸的多条连接筋204,水平架上的卡槽306与连接段201外壁上的连接筋204配合连接,连接时为间隙配合,以便钻杆系统连接段在穿过通孔后可沿竖直方向在通孔内上下滑动。这样,钻杆系统连接段201的下部穿过水平架301上通孔,连接段外壁的连接筋204安置在卡槽306内,通过水平架301上通孔、卡槽对连接段施以水平方向约束力和竖直方向导向力,从而对连接段的连接处施以一定刚性约束,使得钻杆系统始终与桅杆平行,进而使与钻杆系统连接的振冲器系统与桅杆平行。在振冲器系统振冲施工的过程中,通过钻杆垂直度保持装置,使得桅杆垂直度符合要求时,振冲器系统能振冲造出符合垂直度要求的桩孔。

当然,也可在圆形通孔内壁设置沿竖直方向延伸的多条连接筋,在钻杆系统连接段201外壁固定安置与多条连接筋配合的卡槽(图中未示出),通过连接筋与卡槽配合的方式,使水平架对连接段施以一定刚性约束力。

进一步的,本发明支撑架还可以采用如图5所示的第二种结构,该结构在第一结构的基础上,在水平架301上表面两侧靠近边缘处还分别设置挡拦308,以为维护人员维护钻杆垂直度保持装置及钻杆系统时提供安全防护。

本发明的水平架301可为一体结构,进一步的,为了方便将钻杆系统的连接段与水平架301连接在一起及维修,水平架301还可设置成由两个部分构成(如图4所示)的结构,这两部分各具有半个通孔,两部分通过铰链与锁扣305连接在一起并拼成一个完整圆形通孔。

而与支撑架和桅杆102分别连接的固定架307具有与桅杆102配合连接的竖直连接架和与竖直连接架的上下两端分别固定连接且与竖直连接架垂直的一对上连接耳和一对下连接耳,相应的,在支撑架的上下两端也分别设置一对上连接耳、一对下连接耳,如图4所示,支撑架的一对上连接耳设置在水平架301的远离通孔一端的两侧,支撑架的一对下连接耳设置在一对立柱303上,支撑架的上、下连接耳分别通过销轴304与固定架307上的上、下连接耳连接在一起,从而使得支撑架与固定架连接在一起。当然,为提高固定架与支撑架的连接强度,也可以多设置一些连接耳或连接板等。

相对于现有技术具有伸缩导杆的振冲碎石桩机来说,虽然现有技术的振冲碎石桩机在桅杆上设置环形架,但其环形架的作用是通过环形架护在伸缩导杆外围(环形架与伸缩导杆最大外径之间具有较大间隙)以防止伸缩导杆及振冲器下设过程中与桅杆相撞而导致构件损坏,并防止振冲器振冲施工中因晃动幅度过大而与桅杆相撞,可见,其环形架不能解决振冲器在振冲施工时产生的桩孔倾斜问题。而本发明采用钻杆垂直度保持装置,对钻杆系统的连接段提供水平面内的刚性约束力和竖直方向的导向力,可以确保钻杆系统与桅杆平行,从而在桅杆垂直度得到保证的条件下,使得钻杆系统及振冲器系统的垂直度得到保证,能振冲施工出垂直度符合要求的桩孔。

进一步的,为了根据钻杆系统连接段的长度确定抱紧连接段的位置,本发明吊装系统还在桅杆102上安置用于调节钻杆垂直度保持装置相对桅杆位置的调节油缸103(如图3所示),该调节油缸103活塞杆与桅杆平行并朝下竖直延伸,末端与固定架307固定连接。固定架307的竖直连接架与桅杆102通过滑动配合的方式连接,从而通过调节油缸103的伸缩而调节固定架307在桅杆上的位置,进而可以调节钻杆垂直度保持装置对钻杆系统连接段的约束位置,使得振冲器系统在振冲时可以保持更好的垂直度要求。

图13显示了本发明提供的振冲碎石桩机施工垂直度控制的方法,该振冲碎石桩机包括上述各装置,其中,本发明方法包括:

将钻杆系统与吊装系统的桅杆平行安置,以便与钻杆系统底部连接的振冲器系统与桅杆平行;

在通过振冲器系统进行振冲施工时,对桅杆相对位于水平面上主机的垂直度进行实时检测,以获得桅杆垂直度的偏差数据;

根据获得的桅杆垂直度的实时偏差数据,判断是否需要对桅杆垂直度进行调节;

若需要对桅杆垂直度进行调节,则调节桅杆垂直度至符合要求,以便振冲器系统以符合要求的垂直度对施工地层向下振冲并形成振冲碎石桩孔。

具体的,本发明方法包括如下步骤:

S01、将钻杆系统与吊装系统的桅杆平行安置,以便与钻杆系统底部连接的振冲器系统与桅杆平行;

在利用吊装系统下放钻杆系统及振冲器系统的过程中,对钻杆系统相对主机的垂直度进行控制,以便随钻杆系统下放的振冲器系统与桅杆平行。而对钻杆系统的垂直度进行控制,是通过对钻杆系统施加水平方向约束力与竖直方向导向力的方法。

需要说明的是,振冲碎石桩机的主机应安置在水平的地面上,且地面具有足够承载力,可使振冲碎石桩机的主机保持水平,而确保主机保持水平的方式,可以采用经纬仪辅助校准使主机处于水平和竖直状态。

由于钻杆系统包括连接段、支撑段和工作段,而连接段通过第一根钢丝绳悬吊在桅杆上,因此,对钻杆系统施加水平方向约束力与竖直方向导向力时,是将该约束力施加在钻杆系统的连接段上。施加水平方向约束力与竖直方向导向力,是通过钻杆垂直度保持装置对连接段施加水平方向约束力与竖直方向导向力的方法。

通过钻杆垂直度保持装置对连接段施加水平方向约束力与竖直方向导向力包括:

通过多根销轴将钻杆垂直度保持装置的固定架与支撑架连接在一起;

将固定架安装在桅杆上,并使钻杆系统的连接段穿过支撑架的通孔,以通过支撑架对连接段施加水平方向约束力与竖直方向导向力。

其中,当支撑架的水平架由两部分对接而成时,可打开锁扣,使支撑架的远离桅杆的一部分相对靠近桅杆的另一部分处于打开状态,当钻杆系统连接段一部分穿过支撑架的通孔后,再将两部分对接,并通过锁扣锁紧,从而对连接段提供刚性约束。优选的,连接段被约束的位置靠近连接段与支撑段连接处。

或者,当钻杆垂直度保持装置在桅杆上的位置可调时,通过钻杆垂直度保持装置对连接段施加水平方向约束力与竖直方向导向力还包括:

在通过多根销轴将钻杆垂直度保持装置的固定架与支撑架连接在一起之前或之后,还包括:

将固定架与调节油缸活塞杆连接;

根据钻杆系统连接段所需抱紧的位置,控制调节油缸的活塞杆伸缩,以通过活塞杆调节固定架在桅杆上的竖直位置,直至钻杆垂直度保持装置到达所需位置。

通过钻杆垂直度保持装置,可使钻杆系统与吊装系统的桅杆平行安置,从而使与钻杆系统底部连接的振冲器系统与桅杆平行。当桅杆垂直度符合要求时,振冲器系统可以符合要求的垂直度对地层振冲施工以形成桩孔。

S02、在通过振冲器系统进行振冲施工时,使桅杆相对位于水平面上主机的垂直度符合要求,以便振冲器以符合要求的垂直度对施工地层向下振冲形成振冲碎石桩孔

在通过钻杆垂直度保持装置使钻杆系统、振冲器系统与吊装系统的桅杆平行之后,利用振冲器系统对地层进行振冲施工,振冲施工时,需使桅杆相对位于水平面上主机的垂直度符合要求,以便振冲器以符合要求的垂直度对施工地层向下振冲形成振冲碎石桩孔,其包括如下步骤:

S021、在通过振冲器系统进行振冲施工时,对桅杆相对位于水平面上主机的垂直度进行实时检测,以获得桅杆垂直度的实时偏差数据;

在通过振冲器进行振冲造孔施工过程中,对桅杆相对位于水平面上主机的垂直度进行实时检测与处理,包括:通过对桅杆相对安置在水平面上主机的倾角进行实时检测,获得桅杆相对主机的倾斜角度;在获得桅杆相对主机的倾斜角度后,通过计算以获得桅杆相对主机垂直度(简称为桅杆垂直度)的实时偏差数据。

其中,在获得桅杆相对主机的倾斜角度(即桅杆与主机之间的夹角)后,通过计算获得桅杆垂直度偏差数据可以通过如下方法:通过倾角检测模块实时检测桅杆垂直度后,获得桅杆相对主机的倾斜角度,然后,将该倾斜角度减去90度,获得桅杆相对主机垂直度偏差值,该偏差值就为桅杆垂直度的实时偏差数据。或者,还可以通过如下方法:通过倾角检测模块实时检测桅杆垂直度后,获得桅杆相对主机的倾斜角度,然后,将该倾斜角度减去90度后取绝对值,获得桅杆相对主机垂直度偏差值的绝对值,该偏差值的绝对值就为桅杆垂直度的实时偏差数据。

S022、根据获得的桅杆垂直度的实时偏差数据,判断是否需要对桅杆垂直度进行调节;

通过计算获得桅杆垂直度实时偏差数据后,根据该实时偏差数据,判断是否需要对桅杆垂直度进行调节,即,判断该偏差数据是否处于预设阈值区间内,若偏差数据超出预设阈值区间,则需要对桅杆垂直度进行调节,若偏差数据未超出预设阈值区间,则不需对桅杆垂直度进行调节。

具体的,在获得桅杆垂直度的实时偏差数据后,通过比较模块确定是否需要对桅杆垂直度进行调节,该比较模块将获得的桅杆垂直度的偏差数据与提前设定好的桅杆垂直度的预设阈值区间进行比较,并得到相应比较结果,比较过程如下:在获取桅杆垂直度的实时偏差数据后,判断该偏差数据是否处于预设阈值区间内;若偏差数据超出预设阈值区间,则需要对桅杆垂直度进行调节,且确定出需对桅杆调节方向(即桅杆需前倾还是后仰)与大小的相关信息;若偏差数据未超出预设阈值区间,则不需对桅杆垂直度进行调节。该预设阈值区间代表桅杆相对竖直面所能倾斜的最大角度与最小角度的范围。

S023、若需要对桅杆垂直度进行调节,则调节桅杆垂直度至符合要求,以便振冲器系统以符合要求的垂直度对施工地层向下振冲并形成振冲碎石桩孔。

获得的比较结果是桅杆垂直度的偏差数据超出预设阈值区间,需要对桅杆垂直度进行调整以符合要求时,该比较结果被发送给PLC控制器,控制器根据比较结果控制桅杆角度调节机构执行相应动作以调节桅杆垂直度,使桅杆垂直度符合要求。

具体的,若需要对桅杆垂直度进行调节,控制器首先控制振冲器系统停止振冲施工,并通过吊装系统上提振冲器系统;然后,通过控制桅杆角度调节机构执行相应动作,以调节桅杆垂直度至符合要求:PLC控制器控制比例阀开口大小和方向,从而通过纠偏油缸带动桅杆相对主机偏转进行倾斜方向与倾斜大小的调节,以使桅杆的垂直度在符合要求的预设阈值区间内。最后,下放被上提的振冲器系统,并利用振冲器系统继续对地层进行振冲施工。

采用本发明方法,伸缩导杆系统是刚性连接,其垂直度由桅杆垂直机制直接保证,桅杆的垂直度符合要求,就使得与桅杆平行安置的钻杆系统及振冲器振冲施工时的垂直度符合要求,导杆+振冲器系统在遇到硬层或较大砾石时仍然会保持垂直。在工程实践中,对孔深超过50米的较硬地层特别是强震地带的带有较大砾石地层进行振冲施工,既保持了对硬层和砾石的冲击力,又保证了桩孔垂直度,施工中改用旋挖或冲击的概率远低于传统方法(几乎不需改用旋挖或硬砸冲击),在质量和工效上远优于传统方法,确保后续形成的振冲碎石桩孔及振冲碎石桩的桩径均匀性和密实性得到保证,使得振冲碎石桩安全性能好。另外,通过本方法施工出的桩孔填料后形成的振冲碎石桩还可构成地层中良好的竖向排水通道,大幅度缩减了地层中超静孔隙水的排水距离,使孔隙水压力数倍甚至数十倍的加速消散,对控制或抑制超静孔隙水压力的上升起到至关重要的作用,从根本上提高了复合地基抗地震液化能力和抗震效果。

尽管上文对本发明作了详细说明,但本发明不限于此,本技术领域的技术人员可以根据本发明的原理进行修改,因此,凡按照本发明的原理进行的各种修改都应当理解为落入本发明的保护范围。

相关技术
  • 一种水上承台围堰锁口钢管桩垂直度控制的施工方法及限位装置
  • 一种水泥粉煤灰碎石桩垂直度控制装置及施工方法
  • 振冲成桩属具、振冲碎石桩机及振冲桩施工方法
技术分类

06120115624093