掌桥专利:专业的专利平台
掌桥专利
首页

综合能源系统的优化调度方法

文献发布时间:2023-06-19 18:37:28


综合能源系统的优化调度方法

技术领域

本发明涉及综合能源系统技术领域,具体涉及一种综合能源系统的优化调度方法。

背景技术

综合能源服务业务已逐渐成为功能企业的主营业务。氢是一种清洁无碳的优质二次能源和重要的工业过程清洁原料,过去工商业用户大多自行电解制氢,成本较高。相对于供热,电网企业供氢的经济效益更好。在电网负荷低谷时段或利用高渗透风/光待消纳电量,进行电解制氢,所得氢气可直接供应用户,也可进行氢存储在电网高峰时段发电。因此,氢能对于电网企业不仅是极具竞争优势的能源供给形式,而且氢储能对于电网的调峰和风光清洁能源消纳亦具有重要作用。

对于包含氢储能的综合能源系统,如何对系统中的各个环节进行运行调度成为目前亟需解决的问题。

发明内容

本发明为解决上述技术问题,提供了一种综合能源系统的优化调度方法,能够大大降低综合能源系统的综合运行成本。

本发明采用的技术方案如下:

一种综合能源系统的优化调度方法,所述综合能源系统包括电力子系统、氢储能子系统、天然气子系统和耦合单元,所述耦合单元包括设置于所述氢储能子系统与所述天然气子系统之间的氢转天然气单元、设置于所述天然气子系统与所述电力子系统之间的燃气机发电单元、设置于所述电力子系统与所述氢储能子系统之间的电解制氢单元和燃料电池单元,所述优化调度方法包括以下步骤:构建以所述综合能源系统的综合运行成本最小为目标的目标函数,构建调度模型;确定约束条件,其中,所述约束条件包括所述氢储能子系统约束、天然气子系统约束和耦合单元约束;根据所述约束条件求解所述目标函数,并以求解结果对所述综合能源系统进行优化调度。

所述目标函数为:

其中,f为所述综合能源系统的综合运行成本,f

所述综合能源系统的系统运行成本为:

f

其中,f

其中,所述电运行成本为:

其中,f

其中,所述燃气机发电单元的发电成本为:

其中,T为调度周期的总时间段数;C

所述电力子系统的购电成本为:

其中,λ

所述氢运行成本为:

其中,f

其中,所述氢储能子系统充电、放电及所述氢转天然气单元在合成天然气过程中的能量损失成本为:

其中,α

所述氢转天然气单元合成的天然气带来的收益为:

其中,C

所述综合能源系统的环境成本为:

其中,

所述氢储能子系统约束包括氢储能容量约束和充放电功率约束,其中,

所述氢储能容量约束为:

其中,

所述充放电功率约束为:

其中,

所述天然气子系统约束包括气压约束、质量守恒约束和节点压强约束,其中,

所述气压约束为:

其中,

所述质量守恒约束为:

其中,

所述节点压强约束为:

其中,

所述耦合单元约束包括氢转天然气单元和燃气机发电单元约束,其中,

所述氢转天然气单元约束为:

所述燃气机发电单元约束为:

本发明的有益效果:

本发明通过以综合能源系统的综合运行成本最小为目标的目标函数,构建调度模型,并确定氢储能子系统约束、天然气子系统约束和耦合单元约束等约束条件,最后求解目标函数并以求解结果对综合能源系统进行优化调度,由此,能够大大降低综合能源系统的综合运行成本。

附图说明

图1为本发明实施例的综合能源系统的优化调度方法的流程图;

图2为本发明一个实施例的分段线性化示意图。

具体实施方式

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

本发明实施例的综合能源系统包括电力子系统、氢储能子系统、天然气子系统和耦合单元,电力子系统包括主网和风力发电等新能源微网,氢储能子系统包括储氢装置,天然气子系统包括由管道构成的管网,耦合单元包括设置于氢储能子系统与天然气子系统之间的氢转天然气单元、设置于天然气子系统与电力子系统之间的燃气机发电单元、设置于电力子系统与氢储能子系统之间的电解制氢单元和燃料电池单元。另外,该综合能源系统还包括用电负荷(如家用电器)、用氢负荷(如氢燃料电池车)和用气负荷(如燃气灶)。

如图1所示,本发明实施例的综合能源系统的优化调度方法包括以下步骤:

S1,构建以综合能源系统的综合运行成本最小为目标的目标函数,构建调度模型。

在本发明的一个实施例中,综合能源系统的综合运行成本包括系统运行成本和环境成本。

其中,系统运行成本为:

f

其中,f

其中,电运行成本为:

其中,f

其中,燃气机发电单元的发电成本为:

其中,T为调度周期的总时间段数;C

电力子系统的购电成本为:

其中,λ

氢运行成本为:

其中,f

其中,氢储能子系统充电、放电及氢转天然气单元在合成天然气过程中的能量损失成本为:

其中,α

氢转天然气单元合成的天然气带来的收益为:

其中,C

环境成本为:

其中,

本发明同时考虑系统运行成本和环境成本,采用权重系数法对系统运行成本和环境成本进行加权,从而化为单目标优化问题进行有效快速求解。并且,考虑到碳排放与系统运行成本是两个量纲不同的参数,无法直接进行加权。利用标幺值概念对系统运行成本和环境成本归一化处理,将原来有量纲的碳排放与系统运行成本统一折算成无量纲的参数。以综合能源系统的综合运行成本最小为目标的目标函数为:

其中,f为综合能源系统的综合运行成本,f

S2,确定约束条件,其中,约束条件包括氢储能子系统约束、天然气子系统约束和耦合单元约束。

在本发明的一个实施例中,氢储能子系统约束包括氢储能容量约束和充放电功率约束。

其中,氢储能容量约束为:

其中,式(10)为假定在一个调度周期内,氢储能子系统充放电功率恒定,氢储能子系统剩余电量计算式,

充放电功率约束为:

其中,

在本发明的一个实施例中,天然气子系统约束包括气压约束、质量守恒约束和节点压强约束。

其中,气压约束为:

其中,

当气体用体积衡量时,质量守恒定律约束相当于对任意节点气体总的流进量等于流出量,因此质量守恒约束为:

其中,

节点压强约束为:

其中,

在本发明的一个实施例中,耦合单元约束包括氢转天然气单元和燃气机发电单元约束,其中,

氢转天然气单元约束为:

燃气机发电单元约束为:

S3,根据约束条件求解目标函数,并以求解结果对综合能源系统进行优化调度。

在本发明的一个实施例中,可利用求解器求解上述目标函数,得到综合能源系统最优化的调度方案。

在本发明的另一个实施例中,在求解上述目标函数前,可先分别采用分段线性化和二阶锥松弛方法对非线性的约束进行线性化处理,将MINLP转化为MISOCP问题,然后采用成熟的商业软件包,理论如CPLEX进行快速可靠求解。

以采用分段线性化对天然气子系统约束进行线性化处理为例,首先定义辅助变量u

u

则式

s

现对式(16)等式两边进行平方,并添加式(20)进行潮流流向约束,有:

由式(19)-(22)得,当u

其中,

其中,μ'

根据本发明实施例的综合能源系统的优化调度方法,通过以综合能源系统的综合运行成本最小为目标的目标函数,构建调度模型,并确定氢储能子系统约束、天然气子系统约束和耦合单元约束等约束条件,最后求解目标函数并以求解结果对综合能源系统进行优化调度,由此,能够大大降低综合能源系统的综合运行成本。

在本发明的描述中,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。“多个”的含义是两个或两个以上,除非另有明确具体的限定。

在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。

在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。

在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必针对相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。

流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本发明的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本发明的实施例所属技术领域的技术人员所理解。

在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,“计算机可读介质”可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。

应当理解,本发明的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。例如,如果用硬件来实现,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。

本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。

此外,在本发明各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。

尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

技术分类

06120115631213