掌桥专利:专业的专利平台
掌桥专利
首页

一种各向异性的高强高韧有机水凝胶及其制备方法和应用

文献发布时间:2023-06-19 09:49:27


一种各向异性的高强高韧有机水凝胶及其制备方法和应用

技术领域

本发明涉及一种能够应用在应变传感器的具有各向异性结构的高强韧化有机水凝胶,属于高分子材料领域。

背景技术

作为下一代可穿戴和可植入电子基体之一,水凝胶可以提供非常好的生物相容性和柔软性,从而可将人体与电子器件连接起来。近年来,有许多学者通过在水凝胶中引入导电粒子或者离子的形式制备导电水凝胶,作为应变传感器应用在可穿戴和可植入电子设备中。然而,传统水凝胶中的聚合物网络一般是稀疏且不均匀的微米级三维网络。这种稀疏、不均匀的微米级三维网络给水凝胶带来了许多缺点,比如水凝胶的水分极易挥发、半透明性和脆性大等。

一般而言,常见的水凝胶如聚丙烯酸(PAA)、聚丙烯酰胺(PAM)等由于网络结构松散、孔径结构不均匀,导致其力学性能很差,断裂能只有10J/m

发明内容

针对上述缺陷,本发明提供一种导电有机水凝胶,所得水凝胶具有各向异性结构,并且兼具优异的导电性和高力学性能,可以作为生物应变传感器在非常宽的温度范围反复使用。

本发明的技术方案:

本发明要解决的第一个技术问题是提供一种导电有机水凝胶的制备方法,所述制备方法为:以聚乙烯醇(PVA)或聚乙烯醇/其他可溶性聚合物共混物作为基体,在溶剂和导电粒子的作用下,通过冷冻-熔融的方式先制得水凝胶;再将该水凝胶通过拉伸定型制得具有各向异性结构的导电有机水凝胶;其中,所述溶剂为水和不挥发性溶剂的混合溶剂。

进一步,所述拉伸定型的方法为:将水凝胶先在5~70℃下拉伸取向,拉伸比为0.5~8;然后定型,定型时间为0~100分钟。

优选的,所述拉伸比为1.6~8。

进一步,所述拉伸采用单轴拉伸的方法,即沿水凝胶的任意一个中心轴方向拉伸使其具有各向异性结构即可;水凝胶可以制备成任意形状,如长方形、正方形、圆形、三角形、五角形等,只要沿水凝胶的任意一个中心轴的两个对称方向进行拉伸定型处理均可获得各向异性结构。

优选的,所述拉伸定型的方法中,拉伸前先将水凝胶制成矩形样条,然后沿其长度方向均匀拉伸。

进一步,所述水凝胶的基体中,PVA与其他可溶性聚合物的质量比为:PVA:其他可溶性聚合物=1:3~3:1。

进一步,所述其他可溶性聚合物选自:海藻酸钠、可溶性纤维素、多糖类大分子、聚乙二醇或聚氧乙烯等。

优选的,所述可溶性纤维素为羟丙基纤维素、羟甲基纤维素或木质素等。

优选的,所述多糖类大分子为壳聚糖或甲壳素等。

进一步,所述混合溶剂中,水和不挥发性溶剂的质量比为0.2~2。

进一步,所述不挥发性溶剂选自:乙二醇、丙三醇、二甲基亚砜、二甲基甲酰胺、四氢呋喃、乙胺、乙二胺、六甲基磷酰三胺、二甲胺或N-二甲基苯胺中的至少一种。

进一步,所述导电粒子选自:无机盐、碳纳米管、碳纤维或石墨烯等导电粒子。

进一步,所述无机盐为氯化锂、氯化钠或氯化钾等可溶解的无机盐。

进一步,所述导电有机水凝胶的制备方法包括如下步骤:

a、将PVA或PVA/其他可溶性聚合物共混物加入到溶剂中,再加入导电粒子,于80~120℃下搅拌使其充分溶解得共混液;其中,PVA的质量含量(即PVA占共混液的质量比)为5~20wt%,导电媒介的质量含量为0.1~5wt%;

b、将上述充分溶解的共混液倒入模具中,于-40~0℃下进行多次冷冻-熔融处理;

c、将经过多次冻融处理的样品和模具分离得到具有纳米纤维化结构的水凝胶;

d、将水凝胶制成矩形样条,然后在5~70℃下沿样条的长度方向拉伸取向,然后定型得到具有各向异性结构的导电有机水凝胶;其中,拉伸比为0.5~8,定型时间为0~100分钟。

本发明要解决的第二个技术问题是提供一种导电有机水凝胶,其采用上述方法制得。

进一步,所述导电有机水凝胶具有各向异性结构。

本发明要解决的第三个技术问题是指出上述导电水凝胶可用于应变传感器、压力传感器、电容器、离子导体或致动器等。

本发明要解决的第四个技术问题是提供一种应变传感器,所述应变传感器为导电有机水凝胶,所述导电有机水凝胶具有各向异性结构,其采用下述方法制得:以PVA或PVA/其他可溶性聚合物共混物作为基体,在溶剂和导电粒子的作用下,通过冷冻-熔融的方式先制得水凝胶;再将该水凝胶通过拉伸定型处理制得具有各向异性结构的导电有机水凝胶;其中,所述溶剂为水和不挥发性溶剂的混合溶剂。

本发明要解决的第五个技术问题是提供一种呼吸系统连续监测设备,包括监测电路和传感器,所述传感器为上述方法制得的导电有机水凝胶。

本发明的有益效果:

本发明以PVA或在PVA中加入其他可溶性聚合物作为基体,以水/不挥发溶剂(乙二醇、丙三醇等)作为共溶剂,以无机盐等导电粒子作用导电媒介,通过冷冻-熔融的方式制备纳米纤维化结构的有机水凝胶,再将该水凝胶在一定温度下进行拉伸取向定型制备具有各向异性结构的强韧化导电有机水凝胶,这种各向异性结构的有机水凝胶具有导电性和高力学性能,可以作为应变传感器在临床医学、健康监测等领域使用。

附图说明

图1为实施例1~实施例4得到的不同拉伸比定型处理的有机水凝胶的AFM结构图;由图1中可知,不同牵伸比处理下,PVA有机水凝胶的各向异性网络得到不同程度的固定,随着牵伸比的增加,取向程度不断提高,当牵伸比达到3.2时,取向结构最为明显。

图2为实施例1~实施例4得到的不同拉伸比的导电有机水凝胶的断裂强度和断裂伸长率;由图2可知:随着牵伸比的提高,凝胶材料的弹性模量随之提高,断裂应变下降;其中,G32//指:样条测试过程中的拉伸方向沿矩形样条的长度方向;G08、G16指实施例2、实施例3所得最终样品沿样条长度方向拉伸测试后的结果。

图3为未拉伸定型处理(实施例1)和拉伸处理后(实施例4)所得样品的疲劳阈值对比图;由图3可知:相较于未拉伸的试样,牵伸比为3.2的试样疲劳断裂能阈值显著提高。

图4为实施例1~实施例4所得最终产品的断裂能结果,测试时沿实施例1-4所得最终样品的长度方向进行拉伸测试;由图4可知:牵伸比越高,断裂能越高;其中,G32//指:实施例4(牵伸比为3.2)最终样条测试断裂能的过程中的拉伸方向沿矩形样条的长度方向;G32⊥指:实施例4所得最终样品测试断裂能的过程中的拉伸方向沿矩形样条的宽度方向进行拉伸。

图5为本发明实施例4拉伸处理后的导电有机水凝胶的应变传感性能随时间(图5A)、频率(图5B)、应变量(图5C)的变化图;由图5可知:该凝胶的应变传感性能良好,随着拉伸应变的提高,电阻变化率呈现线性关系;凝胶传感器在不同拉伸频率下的电阻变化率没有频率依赖性;凝胶传感器在不同拉伸应变条件下的电阻变化率展现出不同的行为,随着应变的提高电阻变化率随之提高。

图6为本发明实施例和对比例在进行拉伸处理定型后试样的固定率;由图6可知,实施例中的样品在处理之后仍能保持较高水平的固定率,说明各向异性的结构得到很好的保持;而对比例中的样品在处理之后结构无法固定,说明各向异性的结构没有保持下来。

具体实施方式

本发明要解决的第一个技术问题是提供一种导电有机水凝胶的制备方法,所述制备方法为:以PVA或PVA/其他可溶性聚合物共混物作为基体,在溶剂和导电粒子的作用下,通过冷冻-熔融的方式先制得具有纳米纤维化结构的有机水凝胶;再将该有机水凝胶通过拉伸定型制得具有各向异性结构的导电有机水凝胶;其中,所述溶剂为水和不挥发性溶剂的混合溶剂。本发明中,必须选用水和不挥发性溶剂的混合溶剂,否则拉伸后得到的水凝胶无法得到固定的各向异性结构。

本发明要解决的第二个技术问题是提供一种导电有机水凝胶,其采用上述方法制得。

本发明要解决的第三个技术问题是指出上述导电水凝胶可用于应变传感器、压力传感器、电容器、离子导体或致动器等。

本发明要解决的第四个技术问题是提供一种应变传感器,所述应变传感器为导电有机水凝胶,所述导电有机水凝胶具有各向异性结构,其采用下述方法制得:以PVA或PVA/其他可溶性聚合物共混物作为基体,在溶剂和导电粒子的作用下,通过冷冻-熔融的方式先制得水凝胶;再将该水凝胶通过拉伸定型制得具有各向异性结构的导电有机水凝胶。

本发明要解决的第五个技术问题是提供一种呼吸系统连续监测设备,包括监测电路和传感器,所述传感器为上述方法制得的导电有机水凝胶。

下面结合实施例对本发明的具体实施方式做进一步的描述,并不因此将本发明限制在所述的实例范围之中。

实施例1

步骤一:在带有搅拌子的50mL圆底烧瓶中分别加入20mL去离子水和20mL丙三醇,再向其中加入0.2g的PVA粉末和0.1g的氯化锂粉末,在90℃下搅拌并溶解。随后将该溶液倒入矩形玻璃模具中,放置于-20℃的冰箱24小时,再放置于室温下融化6小时,反复该过程5次成型得到最终产品。

实施例2

步骤一:在带有搅拌子的50mL圆底烧瓶中分别加入20mL去离子水和20mL丙三醇,再向其中加入0.2g的PVA粉末和0.1g的氯化锂粉末,在90℃下搅拌并溶解。随后将该溶液倒入矩形玻璃模具中,放置于-20℃的冰箱24小时,再放置于室温下融化6小时,反复该过程5次成型。

步骤二:将制备得到的矩形样条在37℃条件下沿长度方向进行拉伸定型处理,牵伸比设定为0.8,固定20分钟得到最终产品。

实施例3

步骤一:在带有搅拌子的50mL圆底烧瓶中分别加入20mL去离子水和20mL丙三醇,再向其中加入0.2g的PVA粉末和0.1g的氯化锂粉末,在90℃下搅拌并溶解。随后将该溶液倒入矩形玻璃模具中,放置于-20℃的冰箱24小时,再放置于室温下融化6小时,反复该过程5次成型。

步骤二:将制备得到的矩形样条在37℃条件下沿长度方向进行拉伸定型处理,牵伸比设定为1.6,固定20分钟得到最终产品。

实施例4

步骤一:在带有搅拌子的50mL圆底烧瓶中分别加入20mL去离子水和20mL丙三醇,再向其中加入0.2g的PVA粉末和0.1g的氯化锂粉末,在90℃下搅拌并溶解。随后将该溶液倒入矩形玻璃模具中,放置于-20℃的冰箱24小时,再放置于室温下融化6小时,反复该过程5次成型。

步骤二:将制备得到的矩形样条在37℃条件下沿长度方向进行拉伸定型处理,牵伸比设定为3.2,固定20分钟得到最终产品。

对比例1

步骤一:在带有搅拌子的50mL圆底烧瓶中分别加入20mL去离子水,再向其中加入0.2g的PVA粉末和0.1g的氯化锂粉末,在90℃下搅拌并溶解。随后将该溶液倒入矩形玻璃模具中,放置于-20℃的冰箱24小时,再放置于室温下融化6小时,反复该过程5次成型。

步骤二:将制备得到的矩形样条在37℃条件下进行拉伸定型处理,牵伸比设定为2.0,固定20分钟得到最终产品,结果发现该水凝胶的固定率低于10%,无法固定住各向异性结构(如图6所示)。

对比例2

步骤一:在带有搅拌子的50mL圆底烧瓶中分别加入20mL去离子水和20mL丙三醇,再向其中加入0.2g的海藻酸钠粉末,在60℃下搅拌并溶解。随后将该溶液倒入矩形玻璃模具中,再向模具中加入5mL浓度为0.5mol/L的氯化钙水溶液,静置一段时间使其充分交联,然后得到的预制海藻酸钠水凝胶。

步骤二:将制备得到的矩形样条在37℃条件下沿长度方向进行拉伸定型处理,牵伸比设定为2.5,固定20分钟得到最终产品,结果发现该水凝胶的固定率低于10%(如图6所示),无法固定住各向异性结构。

相关技术
  • 一种各向异性的高强高韧有机水凝胶及其制备方法和应用
  • 一种高强高韧纳米复合水凝胶及其制备方法和应用
技术分类

06120112317629