掌桥专利:专业的专利平台
掌桥专利
首页

嵌套式系统操作

文献发布时间:2023-06-19 09:29:07


嵌套式系统操作

本申请是申请日为2015年12月03日,发明名称为“嵌套式系统操作”,申请号为201580066518.8的专利申请的分案申请。

交叉引用

本专利申请享有以下申请的优先权:由Luo等人于2015年12月2日递交的标题为“Nested System Operation”的美国专利申请No.14/957,417;由Luo等人于2015年1月16日递交的标题为“Nested System Operation”的美国临时专利申请No.62/104,629;以及由Luo等人于2014年12月9日递交的标题为“Nested System Operation”的美国临时专利申请No.62/089,792;上述申请中的每一个都已转让给本申请的受让人。

技术领域

本公开内容涉及无线通信系统,更具体地说,涉及用于无线通信系统中的不同服务的资源调度的技术。

背景技术

无线通信系统被广泛地部署以提供各种类型的通信内容,诸如语音、视频、分组数据、消息传送、广播等。这些系统可以是能够通过共享可用的系统资源(例如,时间、频率和功率)来支持与多个用户的通信的多址系统。这种多址系统的示例可以包括码分多址(CDMA)系统、时分多址(TDMA)系统、频分多址(FDMA)系统和正交频分多址(OFDMA)系统。

举例而言,无线多址通信系统可以包括多个基站,每个基站同时支持针对多个通信设备(也称为用户设备(UE))的通信。基站可以在下行链路信道(例如,用于从基站到UE的传输)和上行链路信道(例如,用于从UE到基站的传输)上与UE进行通信。

随着技术进步,无线通信网络内的一些更先进的移动设备可以具有这样的能力,其中通信是根据不同的定时特性来发送的,或者传输相对于在网络内操作的传统移动设备(例如,根据先前工业标准操作的设备)而言具有不同的控制信息。网络内的资源可以用于向先进的移动设备以及传统移动设备提供服务,或者可以用于向先进的移动设备提供不同类型的服务。在某些情况下,可能期望在基于不同移动设备而分配无线通信网络的资源时提供灵活性,以便支持先进的移动设备以及为传统移动设备提供向后兼容性。

发明内容

描述了用于无线通信系统中的资源调度和利用的系统、方法和设备。在无线通信系统内操作的基站或用户设备(UE)可以例如使用资源(例如,符号)持续时间的两个或多个不同配置来进行通信,同时保持共同的音调间隔、带宽、传输时间间隔(TTI)指定等等。例如,可以对正交频分复用(OFDM)符号进行细分或分段,并且可以使用每个段(其可以包括循环前缀)作为资源单元。

描述了一种在无线设备处的通信的方法。所述方法可以包括:配置具有小于符号周期的第一持续时间的第一资源段;配置具有小于所述符号周期的第二持续时间的第二资源段,其中,所述第一持续时间和所述第二持续时间的总持续时间小于或等于所述符号周期;以及利用所配置的第一资源段和第二资源段来进行通信。

描述了一种用于在无线设备处的通信的装置。所述装置可以包括:用于配置具有小于符号周期的第一持续时间的第一资源段的单元;用于配置具有小于所述符号周期的第二持续时间的第二资源段的单元,其中,所述第一持续时间和所述第二持续时间的总持续时间小于或等于所述符号周期;以及利用所配置的第一资源段和第二资源段来进行通信。

描述了用于在无线设备处的通信的另外装置。所述装置可以包括处理器、与所述处理器进行电子通信的存储器、以及存储于所述存储器中的指令。所述指令可以由所述处理器执行以使得所述装置进行以下操作:配置具有小于符号周期的第一持续时间的第一资源段;配置具有小于所述符号周期的第二持续时间的第二资源段,其中,所述第一持续时间和所述第二持续时间的总持续时间小于或等于所述符号周期;以及利用所配置的第一资源段和第二资源段来进行通信。

描述了一种存储用于无线通信的代码的非暂时性计算机可读介质。所述代码可以包括可执行以进行以下操作的指令:配置具有小于符号周期的第一持续时间的第一资源段;配置具有小于所述符号周期的第二持续时间的第二资源段,其中,所述第一持续时间和所述第二持续时间的总持续时间小于或等于所述符号周期;以及利用所配置的第一资源段和第二资源段来进行通信。

上述方法、装置或非暂时性计算机可读介质的一些示例还可以包括用于进行以下操作的过程、特征、单元或指令:配置具有所述符号周期的符号,其中,与所述无线设备进行通信包括:利用所配置的符号、所配置的第一资源段和第二资源段来进行通信。另外地或替代地,在一些示例中,进行通信包括:在公共子帧中利用所配置的符号以及所配置的第一资源段和第二资源段来进行通信。

在上述方法、装置或非暂时性计算机可读介质的一些示例中,所述第一资源段包括第一循环前缀(CP),并且所述第二资源段包括第二CP。在一些示例中,进行通信包括:在所述第一资源段、所述第二资源段以及具有所述符号周期的符号中发送控制或数据信号。所述控制或数据信号跨越所述第一持续时间和所述第二持续时间以及所述符号周期。

上述方法、装置或非暂时性计算机可读介质的一些示例还可以包括用于进行以下操作的过程、特征、单元或指令:配置具有小于所述符号周期的第三持续时间的第三资源段,其中,所述第一持续时间、所述第二持续时间和所述第三持续时间的总持续时间大于所述符号周期;以及利用所配置的第一资源段、第二资源段和第三资源段来进行通信。另外地或替代地,在一些示例中,进行通信包括:在所述第一资源段、所述第二资源段和所述第三资源段中发送控制或数据信号,其中,所述控制或数据信号跨越所述第一持续时间、所述第二持续时间和所述第三持续时间。

在上述方法、装置或非暂时性计算机可读介质的一些示例中,所述第一资源段、所述第二资源段、或其组合包括解调参考信号(DMRS)。另外地或替代地,在一些示例中,符号包括所述DMRS的一部分,所述符号具有所述符号周期,其中,所述DMRS跨越所述第一持续时间和所述第二持续时间以及所述符号周期。

在上述方法、装置或非暂时性计算机可读介质的一些示例中,所述第一资源段、所述第二资源段、或其组合包括特定于小区的参考信号(CRS)。另外地或替代地,在一些示例中,符号包括所述CRS的一部分,所述符号具有所述符号周期,其中,所述CRS跨越所述第一持续时间和所述第二持续时间以及所述符号周期。

所述第一资源段和所述第二资源段可以包括第一分量载波的频率资源,并且上述方法、装置或非暂时性计算机可读介质的一些示例还可以包括用于进行以下操作的过程、特征、单元或指令:利用第二分量载波的频率资源来调度所述第一分量载波的频率资源。另外地或替代地,一些示例,用于进行以下操作的过程、特征、单元或指令:在所述第二分量载波的频率资源上接收与所述第一资源段或所述第二资源段相关的反馈。

在上述方法、装置或非暂时性计算机可读介质的一些示例中,所述第一资源段、所述第二资源段或其组合包括信道状态信息(CSI)参考信号。另外地或替代地,在一些示例中,符号包括所述CSI参考信号的一部分,所述符号具有所述符号持续时间,并且其中,所述CSI参考信号跨越所述第一持续时间和所述第二持续时间以及所述符号周期。

还描述了在无线设备处的通信的另外方法。所述方法可以包括:识别具有小于符号周期的第一持续时间的第一资源段;识别具有小于所述符号周期的第二持续时间的第二资源段,其中,所述第一持续时间和所述第二持续时间的总持续时间小于或等于所述符号周期;以及利用所述第一资源段和所述第二资源段来与节点进行通信。

还描述了用于在无线设备处的通信的另外装置。所述装置可以包括:用于识别具有小于符号周期的第一持续时间的第一资源段的单元;用于识别具有小于所述符号周期的第二持续时间的第二资源段的单元,其中,所述第一持续时间和所述第二持续时间的总持续时间小于或等于所述符号周期;以及用于利用所述第一资源段和所述第二资源段来与节点进行通信的单元。

还描述了用于在无线设备处的通信的另外装置。所述装置可以包括处理器、与所述处理器进行电子通信的存储器、以及存储于所述存储器中的指令。所述指令可以由所述处理器执行以使得所述装置进行以下操作:识别具有小于符号周期的第一持续时间的第一资源段;识别具有小于所述符号周期的第二持续时间的第二资源段,其中,所述第一持续时间和所述第二持续时间的总持续时间小于或等于所述符号周期;以及利用所述第一资源段和所述第二资源段来与节点进行通信。

还描述了存储用于在无线设备处的通信的代码的另外非暂时性计算机可读介质。所述代码可以包括可执行以进行以下操作的指令:识别具有小于符号周期的第一持续时间的第一资源段;识别具有小于所述符号周期的第二持续时间的第二资源段,其中,所述第一持续时间和所述第二持续时间的总持续时间小于或等于所述符号周期;以及利用所述第一资源段和所述第二资源段来与节点进行通信。

上述方法、装置或非暂时性计算机可读介质的一些示例还可以包括用于进行以下操作的过程、特征、单元或指令:识别具有所述符号周期的符号,其中,进行通信包括:利用所述符号以及所述第一资源段和所述第二资源段来进行通信。另外地或替代地,在一些示例中,与所述节点进行通信包括:在公共子帧中利用所述符号以及所述第一资源段和所述第二资源段来进行通信。

在上述方法、装置或非暂时性计算机可读介质的一些示例中,所述第一资源段包括第一CP,并且所述第二资源段包括第二CP。另外地或替代地,在一些示例中,与所述节点进行通信包括:在所述第一资源段、所述第二资源段以及具有所述符号周期的符号中接收控制或数据信号,其中,所述控制或数据信号跨越所述第一持续时间和所述第二持续时间以及所述符号周期。

上述方法、装置或非暂时性计算机可读介质的一些示例还可以包括用于进行以下操作的过程、特征、单元或指令:识别具有小于所述符号周期的第三持续时间的第三资源段,其中,所述第一持续时间、所述第二持续时间和所述第三持续时间的总持续时间大于所述符号周期;以及利用所述第一资源段、所述第二资源段和所述第三资源段来进行通信。另外地或替代地,在一些示例中,与所述节点进行通信包括:在所述第一资源段、所述第二资源段和所述第三资源段中接收控制或数据信号,其中,所述控制或数据信号跨越所述第一持续时间、所述第二持续时间和所述第三持续时间。

在上述方法、装置或非暂时性计算机可读介质的一些示例中,所述第一资源段、所述第二资源段、或其组合包括DMRS。另外地或替代地,在一些示例中,符号包括所述DMRS的一部分,所述符号具有所述符号周期,并且所述DMRS跨越所述第一持续时间和所述第二持续时间以及所述符号周期。

在上述方法、装置或非暂时性计算机可读介质的一些示例中,所述第一资源段、所述第二资源段、或其组合包括CRS。另外地或替代地,在一些示例中,符号包括所述CRS的一部分,所述符号具有所述符号周期,并且所述CRS跨越所述第一持续时间和所述第二持续时间以及所述符号周期。

在上述方法、装置或非暂时性计算机可读介质的一些示例中,所述第一资源段、所述第二资源段、或其组合包括CSI参考信号。另外地或替代地,在一些示例中,符号包括所述CSI参考信号的一部分,所述符号具有所述符号周期,并且所述CSI参考信号跨越所述第一持续时间和所述第二持续时间以及所述符号周期。

所述第一资源段和所述第二资源段可以包括第一分量载波的频率资源,并且上述方法、装置或非暂时性计算机可读介质的一些示例还可以包括用于进行以下操作的过程、特征、单元或指令:利用第二分量载波的频率资源来接收针对所述第一分量载波的频率资源的准许。另外地或替代地,一些示例,用于进行以下操作的过程、特征、单元或指令:在所述第二分量载波的频率资源上发送与所述第一资源段或所述第二资源段相关的反馈。

上文已经相当广泛地概括了根据本公开内容的示例的特征和技术优点,以便可以更好地理解以下的详细描述。下文将描述其它特征和优点。所公开的概念和特定示例可以容易地用作为用于修改或设计用于实现与本公开内容相同目的的其它结构的基础。这些等同结构并不脱离所附权利要求的范围。当结合附图考虑时,通过以下描述,将更好地理解本文所公开的概念的特点(其组织和操作方法)以及相关联的优点。附图中的每一个仅仅是为了描绘和说明的目的而提供的,并非旨在作为对权利要求的限制的定义。

附图说明

对本发明的性质和优势的进一步的理解可以参考以下附图来实现。在附图中,相似的组件或特征可以具有相同的参考标记。此外,相同类型的各种组件可以通过在参考标记后跟有破折号和第二标记进行区分,所述第二标记用于在相似组件之间进行区分。如果在说明书中仅使用了第一参考标记,则描述内容可应用到具有相同的第一参考标记的相似组件中的任何一个,而不考虑第二参考标记。

图1根据本公开内容的各个方面,示出了支持嵌套式(nested)系统操作的无线通信系统的示例;

图2根据本公开内容的各个方面,示出了可以在无线通信系统中用于支持嵌套式系统操作的帧结构的示例;

图3A根据本公开内容的各个方面,示出了概念性地描绘可以发送或接收的无线帧和不同子帧的示例的框图的示例;

图3B根据本公开内容的各个方面,示出了概念性地描绘跨载波调度的示例的框图的示例;

图4A、图4B和图4C根据本公开内容的各个方面,示出了概念性地描绘可以发送或接收的无线子帧的示例的框图的示例;

图5根据本公开内容的各个方面,示出了支持嵌套式系统操作的设备的框图;

图6根据本公开内容的各个方面,示出了支持嵌套式系统操作的设备的框图;

图7根据本公开内容的各个方面,示出了支持嵌套式系统操作的符号自适应模块的框图;

图8根据本公开内容的各个方面,示出了包括支持嵌套式系统操作的移动设备的系统的框图;

图9根据本公开内容的各个方面,示出了包括支持嵌套式系统操作的基站的系统的框图;

图10根据本公开内容的各个方面,示出了用于嵌套式系统操作的方法的流程图;

图11根据本公开内容的各个方面,示出了用于嵌套式系统操作的方法的流程图;

图12根据本公开内容的各个方面,示出了用于嵌套式系统操作的方法的流程图;

图13根据本公开内容的各个方面,示出了用于嵌套式系统操作的方法的流程图;

图14根据本公开内容的各个方面,示出了用于嵌套式系统操作的方法的流程图;以及

图15根据本公开内容的各个方面,示出了用于嵌套式系统操作的方法的流程图。

具体实施方式

描述了用于不同类型通信的资源调度以及用于支持根据通信标准的不同版本来操作的设备的技术。这通常可以被描述为嵌套式系统操作。在一些示例中,基站和一个或数个用户设备(UE)可以被配置为使用资源(例如,符号)持续时间的不同配置在无线通信系统内操作。系统内的资源可以被配置为支持通信(例如,对某些设备的低时延要求),同时保持与传统设备的兼容性(例如,根据通信标准的先前版本来操作的设备)。为了对诸如支持低时延操作或增强型分量载波的新设备提供益处,可以配置资源来补充具有明确定义的音调间隔、符号持续时间、带宽、传输时间间隔(TTI)等的系统。因此,根据一个数字方案而配置的物理资源可以嵌套在通常被配置为根据不同数字方案来操作的系统中。

下面的描述提供了示例,并且不对权利要求书中阐述的范围、适用性或示例进行限制。可以在不脱离本公开内容的范围的情况下,对论述的元素的功能和布置做出改变。各个示例可以酌情省略、替代或添加各种过程或组件。例如,所描述的方法可以以与所描述的次序不同的次序来执行,并且可以添加、省略或组合各种步骤。此外,可以将关于一些示例描述的特征组合到其它示例中。

首先参考图1,该图根据本公开内容的方面示出了无线通信系统100的示例。无线通信系统100包括多个基站(例如,eNB或WLAN接入点)105(其也可以被称为接入点)、多个用户设备(UE)115以及核心网络130。基站105中的一些基站可以在基站控制器(未示出)的控制下与UE 115进行通信,在各个示例中,基站控制器可以是核心网络130或某些基站105(例如,eNB或其它接入点)的部分。基站105可以通过回程链路132与核心网络130传输控制信息和/或用户数据。在示例中,基站105可以在回程链路134上彼此直接或间接地进行通信,回程链路134可以是有线或无线通信链路。无线通信系统100可以支持多个载波(不同频率的波形信号)上的操作。多载波发射机可以在多个载波上同时发射调制信号。例如,每个通信链路125可以是根据上述各种无线电技术来调制的多载波信号。每个调制信号可以在不同的载波上进行发送,并且可以携带控制信息(例如,参考信号、控制信道等)、开销信息、数据等。

基站105可以经由一个或多个接入点天线与UE 115无线地通信。每个基站105站点可以为相应的覆盖区域110提供通信覆盖。在一些示例中,基站105可以被称为基站收发机、无线基站、无线收发机、基本服务集(BSS)、扩展服务集(ESS)、节点B、eNodeB、家庭节点B、家庭eNodeB或某种其它适当的术语。基站的覆盖区域110可以被划分为仅构成覆盖区域的一部分(未示出)的扇区。无线通信系统100可以包括不同类型的基站105(例如,宏基站、微基站和/或微微基站)。基站105还可以利用诸如蜂窝和/或WLAN无线接入技术之类的不同无线电技术,并且因此可以被称为接入点。基站105可以与相同或不同的接入网络或运营商部署相关联。不同基站105(包括相同或不同类型的基站105的覆盖区域、使用相同或不同无线电技术、和/或属于相同或不同的接入网络)的覆盖区域可能重叠。

在LTE/LTE-A网络通信系统中,术语演进型节点B(eNodeB或eNB)通常可以用于描述基站105。无线通信系统100可以是异构LTE/LTE-A网络,其中在异构LTE/LTE-A网络中,不同类型的接入点为各种地理区域提供覆盖。例如,每个基站105可以为宏小区、微微小区、毫微微小区和/或其它类型的小区提供通信覆盖。诸如微微小区、毫微微小区和/或其它类型的小区之类的小型小区可以包括低功率节点或LPN。宏小区通常覆盖相对大的地理区域(例如,半径为几公里),并且可以允许具有与网络提供商的服务订制的UE 115进行不受限制的访问。小型小区通常覆盖相对较小的地理区域,并且可以允许例如具有与网络提供商的服务订制的UE 115进行不受限制的访问,并且除了不受限制的访问之外,还可以提供具有与该小型小区的关联的UE 115(例如,封闭用户组(CSG)中的UE、用于家庭中的用户的UE等)进行受限制的访问。用于宏小区的eNB可以被称为宏eNB。用于小型小区的eNB可以称为小型小区eNB。eNB可以支持一个或多个(例如,两个、三个、四个等等)小区。

核心网络130可以经由回程链路132(例如,S1接口等)与基站105(例如,eNB或其它接入点)进行通信。基站105还可以例如经由回程链路134(例如,X2接口等)和/或经由回程链路132(例如,通过核心网络130)直接或间接地进行通信。无线通信系统100可以支持同步或异步操作。对于同步操作,基站105可以具有相似的帧定时,并且来自不同基站105的传输可以在时间上大致对齐。对于异步操作,基站105可以具有不同的帧定时,并且来自不同基站105的传输可以不在时间上对齐。本文描述的技术可以用于同步或异步操作。

UE 115散布在整个无线通信系统100中,并且每个UE 115可以是固定的或移动的。UE 115还可以被本领域技术人员称为移动站、用户站、移动单元、用户单元、无线单元、远程单元、移动设备、无线设备、无线通信设备、远程设备、移动用户站、接入终端、移动终端、无线终端、远程终端、手机、用户代理、移动客户端、客户端或某种其它适当的术语。UE 115可以是蜂窝电话、个人数字助理(PDA)、无线调制解调器、无线通信设备、手持设备、平板计算机、膝上型计算机、无绳电话、诸如手表或眼镜之类的可穿戴物品、无线本地环路(WLL)站等。UE 115能够与宏eNodeB、小型小区eNodeB、中继器等进行通信。UE 115还能够通过不同的接入网络(例如蜂窝或其它WWAN接入网络或WLAN接入网络)进行通信。系统100内的各种UE 115可以根据不同的无线标准或根据特定无线标准的不同版本(例如,“发行版”)来操作。例如,某些UE 115可以根据LTE标准的版本特定版本(例如,LTE发行版11或更早发行版)来操作。这些设备可以被称为传统UE,因为它们利用现有标准的传统或先前发行版。同样地,其它UE 115可以根据LTE标准的不同版本(例如,后发行版11)来操作,或者这样的设备可以采用超出在LTE标准中规定的特征之外的特征。这样的UE 115可以被称为非传统UE、先进的UE、增强型UE、低时延UE、混合UE等。

在无线通信系统100中示出的通信链路125可以包括从UE 115到基站105的上行链路(UL)传输或从基站105到UE 115的下行链路(DL)传输。下行链路传输还可以被称为前向链路传输,而上行链路传输还可以被称为反向链路传输。每个通信链路125可以包括一个或多个载波,其中每个载波可以是由根据上述各种无线电技术来调制的多个子载波(例如,不同频率的波形信号)组成的信号。每个调制信号可以在不同的子载波上进行发送,并且可以携带控制信息(例如,参考信号、控制信道等)、开销信息、用户数据等。通信链路125可以使用频分双工(FDD)(例如,使用成对的频谱资源)或时分双工(TDD)操作(例如,使用不成对的频谱资源)来发送双向通信。可以定义用于FDD的帧结构(例如,帧结构类型1)和用于TDD的帧结构(例如,帧结构类型2)。

在系统100的一些示例中,基站105或UE 115可以包括用于采用天线分集方案来提高基站105与UE 115之间的通信质量和可靠性的多个天线。另外或替代地,基站105或UE115可以采用多输入多输出(MIMO)技术,其可以利用多径环境来发送携带相同或不同编码数据的多个空间层。

无线通信系统100可以支持多个小区或载波上的操作,这一特征可以被称为载波聚合(CA)或多载波操作。载波还可以被称为分量载波(CC)、层、信道等。术语“载波”、“分量载波”、“小区”和“信道”在本文中可以互换地使用。UE 115可以被配置有多个下行链路CC和一个或多个上行链路CC以用于载波聚合。载波聚合可以结合FDD和TDD分量载波两者来使用。

术语“分量载波”可以是指在CA操作中由UE使用的多个载波中的每个载波,并且可以不同于系统带宽的其它部分。例如,分量载波可以是易于独立地或结合其它分量载波来使用的相对窄带宽的载波。例如,每个分量载波可以提供与基于LTE标准的发行版8或发行版9的分离的载波相同的能力。多个分量载波可以被聚合或同时使用,以向某些UE 115提供更大的带宽和例如更高的数据速率。因此,单独的分量载波可以与传统UE 115向后兼容,而其它UE 115可以在多载波模式中被配置有多个分量载波。

用于DL的载波可以被称为DL CC,而用于UL的载波可以被称为UL CC。UE 115可以被配置有多个DL CC和一个或多个UL CC以用于载波聚合。每个载波可以用于发送控制信息(例如,参考信号、控制信道等)、开销信息、数据等。UE 115可以利用多个载波与单个基站105进行通信,并且还可以同时在不同的载波上与多个基站进行通信。基站105的每个小区可以包括UL分量载波(CC)和DL CC。基站105的每个服务小区的覆盖区域110可以是不同的(例如,不同频带上的CC可能经历不同的路径损耗)。

在一些示例中,一个载波被指定成可以用于UE 115的主载波或主分量载波(PCC),其可以由主小区(PCell)服务。主小区可以在每UE的基础上由较高层(例如,无线资源控制(RRC)等)半静态地配置。某些上行链路控制信息(UCI)和在物理上行链路控制信道(PUCCH)上发送的调度信息由主小区携带。另外的载波可以被指定成辅助载波或辅助分量载波(SCC),其可以由辅助小区(SCell)服务。辅助小区同样可以在每UE的基础上被半静态地配置。在某些情况下,辅助小区可以不包括与主小区相同的控制信息或者可以不被配置为与主小区发送相同的控制信息。在一些示例中,并且如下所述,可以配置增强分量载波(eCC),例如,作为SCell。eCC可以利用嵌套式系统操作,其可以根据系统内的UE 115的业务状况或时延需求而动态地调整。在一些示例中,可以利用第二分量载波(例如,PCC)的频率资源来向UE 115分配第一CC(例如,SCC)的资源。例如,第二CC的子帧的一个或多个OFDM符号可以被配置为以信号形式发送针对第一CC的资源段的控制信息。另外地或替代地,UE 115可以利用一个CC向基站105发送诸如信道质量信息(CQI)、混合自动重传请求(HARQ)反馈(例如,ACK/NACK)等的控制信息。如下所述,第一CC的资源段可以具有小于第二CC的符号周期的持续时间。

在一些情况下,UE 115可以由来自两个或更多个基站105的小区服务,这些基站105在双连接操作中通过非理想回程链路134来连接。例如,服务基站105之间的连接可能不足以促进精确的定时协调。因此,在一些情况下,对UE 115进行服务的小区可以被划分为多个定时调整组(TAG)。每个TAG可以与不同的定时偏移相关联,以使得UE 115可以针对不同的UL载波而有所不同地同步UL传输。

在一些示例中,一个小区可以利用经许可的频谱,而另一个小区可以利用未经许可的频谱。例如,eCC可以被配置用于未经许可的频谱。广义地说,某些辖区中的未经许可的频谱范围可以从600兆赫兹(MHz)到6千兆赫兹(GHz)。如本文所使用的,术语“未经许可的频谱”或“共享频谱”因此可以指工业、科学和医学(ISM)无线电频带,而不管这些频带的频率如何。在一些示例中,未经许可的频谱是U-NII无线电频带,其还可以被称为5GHz或5G频带。相比之下,术语“经许可的频谱”或“蜂窝频谱”在本文中可以用于指代由无线网络运营商根据管理机构的行政许可使用的无线频谱。

图2是示出了可以在无线通信系统(包括上文参照图1描述的无线通信系统100)中使用的帧结构200的示例的图。例如,帧结构200可以用于支持嵌套式系统操作。帧210(其可以具有10ms持续时间)可以被划分成十(10)个相等大小的子帧(例如,子帧225、230、235、240、245等)。

OFDMA分量载波(CC)250可以被描绘为表示两个时隙262、264的资源网格,对于常规循环前缀来说,每个时隙包括七个OFDM符号266。每个OFDM符号266可以具有被定义为符号周期的持续时间。如下文进一步详细讨论的,每个子帧225以及因此一个或两个时隙262或264也可以包括具有小于符号周期的持续时间的资源段。因此,在一些示例中,CC 250是被配置为支持低时延操作的eCC。

资源网格可以被划分成多个资源元素252。与LTE/LTE-A系统一样,资源块256可以包含频域中12个连续子载波268,并且对于每个OFDM符号266中的常规循环前缀,包含时域中7个连续OFDM符号266,或者说84个资源元素252。子载波268的音调间隔可以是15kHz,并且OFDM符号266的有用符号持续时间可以是66.67μs。OFDM符号266还可以包括循环前缀,对于常规的LTE循环前缀来说,对于每个时隙262、264中的第一OFDM符号266,其为5.1μs,或对于其它OFDM符号266,其为4.69μs。

在一些示例中,子帧230结构内的一个或多个OFDM符号266可以被划分成具有不同持续时间的若干资源段(如图3所示出)。例如,可以在子帧225内配置具有小于符号周期的持续时间的一个资源段;并且还可以在子帧225内配置具有小于符号周期的持续时间的第二资源段。这些资源段可以具有小于或等于符号周期的总持续时间。在某些情况下,一个或两个资源段被配置有循环前缀(CP)。子帧225还可以具有与资源段相邻配置的OFDM符号,以使得可以利用符号和资源段来发送控制或数据信号,其中信号持续时间跨越符号周期和资源段的持续时间。

如图2所示,标示为R的资源元素(例如,RS资源元素254)中的一些可以包括DL参考信号(DL-RS)。在图1的系统100中,例如,基站105可以例如插入周期性DL-RS或导频符号,例如公共参考信号(CRS),以帮助UE 115进行信道估计和相干解调。CRS可以包括504个不同的小区标识中的一个。它们可以使用正交相移键控(QPSK)和功率提升(例如,以比周围数据元素高6dB来传输)进行调制,以使其抵御噪声和干扰。基于接收UE 115的天线端口或层的数量(多达4个),CRS可以嵌入在每个资源块中的4至16个资源元素中。另外地或替代地,可以利用资源段来发送CRS,如下所述。在一些示例中,一个或多个子帧(例如,225、230、235、240、245)可以被分配用于由某些UE 115(例如先进的UE 115)使用,并且因此可以具有针对这些UE 115调度的资源。在这种情况下,虽然可能在子帧中没有资源被调度用于传统UE115,但传统UE 115仍可以针对CRS监测子帧。在一些情况下,为了使对传统UE 115的干扰最小化,可以维持一致的OFDM数字方案(例如,音调间隔、OFDM符号等)以支持与先进的UE 115和传统UE 115两者的通信。

除了可以由基站105的覆盖区域110中的所有UE 115使用的CRS之外,解调参考信号(DMRS)可以指向特定UE 115,并且可以仅在分配给那些UE 115的资源块或资源段上进行发送。DMRS可以包括在其中它们被发送的每个资源块中的6个资源元素上的信号。在其它示例中,DMRS可以在单个资源段上或在多个资源段上进行发送。在某些情况下,可以在毗邻的资源元素或在资源元素(例如,符号)和资源段的组合中发送两个DMRS集合。在一些情况下,可以包括被称为信道状态信息(CSI)参考信号的另外参考信号以帮助生成CSI。在UL上,UE115可以发送分别用于链路自适应和解调的周期性探测参考信号(SRS)和UL DMRS的组合。

图3A是根据本公开内容的方面,概念性地示出可以在无线通信系统内发送的无线帧305的示例的框图300。例如,可以使用参照图1描述的无线通信系统100的部分在一个或多个基站105与一个或多个UE 115之间发送无线帧305。无线帧305可以是eCC的帧,如上所述。无线帧305可以包括不同地被配置用于上行链路和下行链路通信的十(10)个1ms子帧,包括下行链路子帧310、特殊子帧315、上行链路子帧320或自适应子帧323或其组合。下行链路子帧310、特殊子帧315、上行链路子帧320和自适应子帧323可以包括如上文关于图2所论述的帧结构,包括每个1ms子帧内的十四(14)个符号325。在一些示例中,下行链路子帧310可以包括下行链路OFDM符号,上行链路子帧320可以包括SC-FDM符号,并且特殊子帧315和自适应子帧323可以包括上行链路SC-FDM符号和下行链路OFDM符号两者。

在一些示例中,某些子帧被配置有具有小于符号周期的持续时间的资源段。例如,自适应子帧323可以包括若干OFDM符号325,其可以被进一步细分为资源段330、335、340和345。虽然每个段可以具有不同的长度(例如,持续时间),但资源段330、335、340和345的总持续时间可以等于OFDM符号325的符号周期。因此,基站或UE可以利用资源段330、335、340和345来发送或接收控制或数据信号、或二者。在一些示例中,控制或数据信号可以跨越资源段(例如,段345)的一些或全部以及符号(例如,OFDM符号325)的符号周期的一些或全部。在一些情况下,子帧323的一部分被分配用于先进的UE 115(例如,OFDM符号2),并且该子帧的剩余部分(例如,OFDM符号0-1或3-13)可以被分配给传统UE 115。另外地或替代地,资源段330、335、340、345可以包括循环前缀350和355。

因此,在一些示例中,某些UE(例如先进的UE)可以被配置为使用配置成OFDM符号(例如,OFDM符号325)的资源或细分成资源段的资源(例如,资源段335)或两者来进行通信。这种灵活的资源配置可以被用于支持较低时延通信。例如,自适应子帧323可以被配置用于时分复用,以使得各个资源段或符号可以被用于上行链路和下行链路通信。替代地,下行链路子帧(例如,子帧310)可以被配置有资源段(例如,资源段335、340或345)。这些段可以利用宽频频带和短的持续时间(相对于OFDM符号325的符号周期而言),以提供下行链路突发。上行链路子帧(例如,子帧320)可以类似地被配置为利用资源段。

在一些示例中,一个或多个段的持续时间或这样的段的OFDM数字方案设计(例如,音调间隔或OFDM符号长度)可以基于多个因素,包括例如延迟扩展、多普勒频移等等。另外,由于被配置用于先进的UE的某些资源段的配置可能影响传统UE的资源分配,因此可以关于传统LTE系统数字方案定义资源段的持续时间。

具有循环前缀的LTE OFDM符号(例如,325)可以具有71.4μs(例如,66.67μs OFDM符号与4.76μs CP)符号周期(例如,持续时间)。因此,在一些情况下,71.4μs可以表示在其内该资源段可能需要进行同步以进行操作的持续时间。例如,如果一个资源段的持续时间是16.67μs,则四(4)个这样的段可以被配置在LTE符号周期内,留下1.2μs用于循环前缀,其可能在某些情况下太短。替代地,如果三(3)个16.67μs资源段被配置在LTE符号周期内,则循环前缀可以是7.1μs,其可能在某些情况下太长。因此,在一些示例中,三(3)个16.67μs资源段和一(1)个8.33μs资源段可以被配置在LTE符号周期内,允许3.27μs的循环前缀长度,其可能是在某些情况下是优选的。

在其它示例中,资源段可以被配置在若干LTE符号的持续时间内。例如,具有3.73μs的循环前缀的七(7)个16.67μs资源段可以被配置在两(2)个LTE符号的持续时间内。这些资源段可以因此不能均匀地通过LTE符号周期来划分,但是这样的配置可能仍然支持与适当的资源分配的向后兼容性。例如,如果自适应子帧323的OFDM符号2和3被配置有如所描述的资源段,这两个符号可能不被分配给传统UE,但符号0、1、和4-13仍可以由传统UE使用。

在一些示例中,一个或多个自适应子帧323可以是用于向某些UE 115提供多媒体多播或广播服务的多播广播单频网络(MBSFN)子帧。可以将这种子帧的配置以信号形式通知给系统内的先进的UE和传统UE两者,例如,在PBCH中。传统UE 115可以不监测MBSFN子帧的MBSFN部分,并且因此可以不尝试对MBSFN部分进行解码,因为传统UE可能不能够例如接收多播或广播服务。结果,一个MBSFN子帧的MBSFN部分的资源可以被分配给先进的UE 115,而没有不利地影响传统UE,因为传统UE可能不会尝试对这种信息进行解码。因此,在采用多播广播服务的系统中,未使用的MBSFN子帧或MBSFN子帧的部分可以被配置有具有小于LTE符号周期的持续时间的资源段。该配置可以提供与传统UE的现成向后兼容性。

图3B是根据本公开内容的方面,概念性地示出可以在无线通信系统内发送的无线帧305-a和360的示例的框图302。例如,可以使用参照图1描述的无线通信系统100的部分在一个或多个基站105与一个或多个UE115之间发送无线帧305-a或360。无线帧305-a可以是eCC的帧,如上所述,并且可以是上文参照图3A描述的无线帧305的示例。

如上所述,无线帧305-a可以包括不同地被配置用于上行链路和下行链路通信的十(10)个1ms子帧,包括下行链路子帧310-a、特殊子帧315-a、上行链路子帧320-a或自适应子帧323或其组合。一个或多个自适应子帧可包括如上文关于图2所论述的子帧结构,包括每个1ms子帧内的十四(14)个符号325,其可以被进一步配置有多个资源段。

无线帧360可以是用于UE 115的另一分量载波(其可以是PCC)的帧。无线帧360还可以包括多个子帧(例如,子帧365),并且可以被进一步划分成符号周期,例如,子帧365可以具有每个1ms子帧内的十四(14)个OFDM符号。子帧的OFDM符号中的一些可以包括控制信息,并且可以被称为控制区域370,并且剩余符号可以包括或者被分配用于数据,并且可以被称为数据区域372。在一些示例中,无线帧360(例如,一个CC的无线帧)的OFDM符号375(或OFDM符号的一部分)可以被用于调度无线帧305-a(例如,eCC的无线帧)的资源。在一些示例中,可以利用子帧365的数据区域372的资源来执行该跨载波调度。因此,一个CC的频率资源可以被用于调度另一CC的自适应子帧323的一个或若干资源段330-a或335-a的频率资源。另外或替代地,可以在无线帧360的频率资源(例如,OFDM符号375)上发送(和接收)与资源段330-a或335-a相关的反馈(例如,CQI、ACK/NACK等)。

无线帧305-a和360的时间线可以进行同步。例如,资源段330-a可以与OFDM符号375的符号周期同步。在一些示例中,资源段330-a和335-a与子帧365的若干符号周期同步。该同步可以支持跨载波调度,如上所述,因此允许无线帧360的资源子集被用于无线帧305-a的资源子集的控制。这可以适用于上行链路控制信令或下行链路控制信令或两者。

如所提到的,参考信号(例如,DMRS、CRS、CSI参考信号等或测量参考信号)可以在一个或多个段330、335、340或345中进行发送,或者可以跨越图3A的OFDM符号325或图3B的OFDM符号325-a的整个周期。

图4A、图4B和图4C是分别示出示例性子帧结构400、402和404以及可以在无线通信系统(包括上文参照图1描述的无线通信系统100)中使用的各种参考信号配置的图。例如,子帧结构400、402和404可以用于嵌套式系统配置。子帧结构400、402和404可以例如是参照图2或图3描述的子帧的示例。

根据本公开内容,子帧结构400、402和404可以包括具有不同的持续时间的一个或若干资源段405、410,以及具有符号周期的若干符号(例如,图3中示出的符号325-a)。在一些示例中,资源段可以跨越OFDM符号周期(例如,资源段405可以等于OFDM符号)。另外地或替代地,子帧结构400、402和404可以包括资源段410,所述资源段410具有小于常规OFDM符号周期的持续时间。

资源段可以被配置为包括DMRS、CRS、CSI参考信号等等。例如,如图4A中所示,参考信号可以在具有符号周期的OFDM符号中进行发送(例如,405-a至405-c)。在一些示例中,参考信号可以在一个或若干资源段410-a至410-c上发送,如图4B中所示。在其它示例中,一个或多个参考信号可以跨越子帧404的若干资源段415-a,如图4C中所示。换句话说,参考信号可以在符号内、在若干符号上、在单个资源段内、在若干资源段上、或者在符号和资源段的组合上进行发送。在各个示例中,参考信号分配中的这种灵活性可以允许任一传统UE或非传统UE或两者利用在子帧结构400、402、404内发送的参考信号。

图5根据本公开内容的各个方面,示出了支持嵌套式系统操作的无线设备500的框图。无线设备500可以是参照图1-图4描述的UE 115或基站105的方面的示例。无线设备500可以包括接收机505、符号自适应模块510或发射机515。无线设备500还可以包括处理器。这些组件中的每一个可以彼此相通信。

接收机505可以接收诸如分组、用户数据或与各种信息信道相关联的控制信息(例如,控制信道、数据信道以及与嵌套式系统操作相关的信息等)之类的信息。信息可以被传递给符号自适应模块510以及无线设备500的其它组件。

符号自适应模块510可以配置具有小于符号周期的第一持续时间的第一资源段,并且其可以配置具有小于该符号周期的第二持续时间的第二资源段。第一持续时间和第二持续时间的总持续时间可以例如小于或等于该符号周期,以及利用所配置的第一资源段和第二资源段来进行通信。

发射机515可以发送从无线设备500的其它组件接收的信号。在一些示例中,发射机515可以与接收机505共置于收发机中。发射机515可以包括单个天线,或者其可以包括多个天线。

图6根据本公开内容的各个方面,示出了支持嵌套式系统操作的无线设备600的框图。无线设备600可以是参照图1-图5描述的无线设备500、UE 115或基站105的方面的示例。无线设备600可以包括接收机505-a、符号自适应模块510-a或发射机515-a。无线设备600还可以包括处理器。这些组件中的每一个可以彼此相通信。符号自适应模块510-a还可以包括符号段模块605以及通信管理模块610。

接收机505-a可以接收可以被传递给符号自适应模块510-a以及UE 115或基站105的其它组件的信息。符号自适应模块510-a可以执行上文参照图5描述的操作。发射机515-a可以发送从无线设备600的其它组件接收的信号。

符号段模块605可以配置具有小于符号周期的第一持续时间的第一资源段,如上文参照图2-图4所描述的。符号段模块605还可以配置具有小于该符号周期的第二持续时间的第二资源段,以使得第一持续时间和第二持续时间的总持续时间小于或等于该符号周期。在一些示例中,第一资源段可以被配置为利用第一资源段模块615。类似地,可以利用第二资源段模块620来配置第二资源段。在一些示例中,第一资源段可以包括第一CP,并且第二资源段可以包括第二CP。符号段模块605还可以配置具有小于该符号周期的第三持续时间的第三资源段,以使得第一持续时间、第二持续时间和第三持续时间的总持续时间大于该符号周期。可以利用第三资源段模块625来配置第三资源段。

在一些示例中,符号段模块605还可以识别具有小于符号周期的第一持续时间的第一资源段。符号段模块605还可以识别具有小于该符号周期的第二持续时间的第二资源段,其中,第一持续时间和第二持续时间的总持续时间小于或等于该符号周期。符号段模块605还可以识别具有小于该符号周期的第三持续时间的第三资源段,其中,第一持续时间、第二持续时间和第三持续时间的总持续时间大于该符号周期。

通信管理模块610可以利用所配置的第一资源段和第二资源段来进行通信,如上文参照图2-图4所描述的。在一些示例中,进行通信可以包括:在公共子帧中利用所配置的符号、所配置的第一资源段、所配置的第二资源段、或其组合来进行通信。

在一些示例中,进行通信可以包括:在第一资源段、第二资源段以及具有该符号周期的符号中发送控制或数据信号。该控制或数据信号可以因此跨越第一持续时间和第二持续时间以及该符号周期。

通信管理模块610还可以利用所配置的第一资源段、第二资源段和第三资源段来进行通信。在一些示例中,进行通信包括:在第一资源段、第二资源段和第三资源段中发送控制或数据信号,该控制或数据信号可以跨越第一持续时间、第二持续时间和第三持续时间。通信管理模块610还可以利用第一资源段和第二资源段来与节点进行通信。在一些示例中,与节点进行通信包括:在公共子帧中利用该符号以及第一资源段和第二资源段来进行通信。

在一些示例中,与节点进行通信包括:在第一资源段、第二资源段以及具有该符号周期的符号中接收控制或数据信号。该控制或数据信号可以因此跨越第一持续时间和第二持续时间以及该符号周期。通信管理模块610还可以利用第一资源段、第二资源段和第三资源段来进行通信。在一些示例中,与节点进行通信包括:在第一资源段、第二资源段和第三资源段中接收控制或数据信号,其中,该控制或数据信号跨越第一持续时间、第二持续时间和第三持续时间。

在一些示例中,第一资源段和第二资源段可以是第一分量载波的频率资源。通信管理模块610可以因此使用第二分量载波的频率资源来调度第一分量载波的频率资源。在一些情况下,接收机505-a结合通信管理模块可以在第二分量载波的频率资源上接收与第一资源段或第二资源段相关的反馈。替代地,接收机505-a结合通信管理模块610可以在第二分量载波的频率资源上接收针对第一分量载波的频率资源的准许。在一些示例中,发射机515-a可以在第二分量载波的频率资源上发送与第一资源段或第二资源段相关的反馈。

图7根据本公开内容的各个方面,示出了符号自适应模块510-b的框图700,符号自适应模块510-b可以是支持嵌套式系统操作的无线设备500或无线设备600的组件。符号自适应模块510-b可以是参照图5-图6描述的符号自适应模块510的方面的示例。符号自适应模块510-b可以包括符号段模块605-a以及通信管理模块610-a。这些模块中的每一个可以执行上文参照图6描述的功能。符号自适应模块510-b还可以包括符号配置模块705、RS分配模块710以及符号识别模块715。

符号配置模块705可以配置具有符号周期的符号,其中,与无线设备进行通信包括:利用所配置的符号以及所配置的第一资源段和第二资源段来进行通信,如上文参照图2-图4所描述的。

可以配置RS分配模块710,以使得第一资源段、第二资源段或其组合可以包括DMRS,如上文参照图2-图4所描述的。在一些示例中,符号包括DMRS的一部分,其中,该符号具有该符号周期的持续时间,并且其中,DMRS跨越第一持续时间和第二持续时间以及该符号周期。在一些示例中,第一资源段、第二资源段或其组合可以包括CRS。符号可以因此包括CRS的一部分,其中,其中,该符号具有该符号周期的持续时间,并且其中,该CRS跨越第一持续时间和第二持续时间以及该符号周期。在一些示例中,第一资源段、第二资源段或其组合包括CSI参考信号。在一些示例中,诸如符号之类的资源包括CSI参考信号的一部分,其中,该符号具有该符号周期的持续时间,并且其中,该CSI参考信号跨越第一持续时间和第二持续时间以及该符号周期。

符号识别模块715可以识别具有该符号周期的符号,以使得进行通信可以包括:利用该符号以及第一资源段和第二资源段来进行通信,如上文参照图2-图4所描述的。

无线设备500、无线设备600或符号自适应模块510-b的组件均可以单独地或共同地利用适于在硬件中执行可应用的功能中的一些或全部功能的至少一个专用集成电路(ASIC)来实现。替代地,可以在至少一个IC上由一个或多个其它处理单元(或内核)来执行这些功能。在其它示例中,可以使用其它类型的集成电路(例如,结构化/平台ASIC、现场可编程门阵列(FPGA)以及另一半定制IC),其中这些集成电路可以用本领域已知的任何方式进行编程。还可以利用体现在存储器中的、被格式化以由一个或多个通用或专用处理器执行的指令来全部地或部分地实现每个单元的功能。

图8根据本公开内容的各个方面,示出了包括支持嵌套式系统操作的UE 115的系统800的图。系统800可以包括UE 115-a,其可以是上文参照图1和图5-图7描述的无线设备500或无线设备600的示例。UE 115-a可以包括符号自适应模块810,其可以是参照图5-图7描述的符号自适应模块510的示例。UE 115-a还可以包括RS识别模块825。UE 115-a还可以包括用于双向语音和数据通信的组件,其包括用于发送通信的组件和用于接收通信的组件。例如,UE 115-a可以与基站105-a或UE 115-b双向地通信。UE 115-a可以是非传统UE的示例。

可以配置RS识别模块825,以使得第一资源段、第二资源段或其组合可以包括DMRS,如上文参照图2-图4所描述的。在一些示例中,符号包括DMRS的一部分,该符号具有符号周期,并且其中,该DMRS跨越第一持续时间和第二持续时间以及该符号周期。在一些示例中,第一资源段、第二资源段或其组合包括CRS。在一些示例中,符号包括CRS的一部分,该符号具有符号周期,并且其中,该CRS跨越第一持续时间和第二持续时间以及该符号周期。在一些示例中,第一资源段、第二资源段或其组合包括CSI参考信号。在一些示例中,符号包括CSI参考信号的一部分,该符号具有符号周期,并且其中,该CSI参考信号跨越第一持续时间和第二持续时间以及该符号周期。

UE 115-a还可以包括处理器805、存储器815(其包括软件(SW)820)、收发机835以及一个或多个天线840,这些组件中的每一个可以直接或间接地彼此相通信(例如,经由一个或多个总线845)。收发机835可以经由天线840或者有线或无线链路来与一个或多个网络双向地通信,如上文所描述的。例如,收发机835可以与基站105或另一个UE 115双向地通信。收发机835可以包括调制解调器,该调制解调器用于对分组进行调制并且将调制分组提供给天线840以进行传输,以及用于对从天线840接收的分组进行解调。尽管UE 115-a可以包括单个天线840,但是UE 115-a还可以具有能够同时发送或接收多个无线传输的多个天线840。

存储器815可以包括随机存取存储器(RAM)和只读存储器(ROM)。存储器815可以存储包括指令的计算机可读、计算机可执行软件/固件代码820,所述指令在被执行时使得处理器805执行本文所描述的各种功能(例如,嵌套式系统操作等)。或者,软件/固件代码820可以不直接由处理器805执行,而是使得计算机(例如,当被编译和执行时)执行本文所描述的功能。处理器805可以包括智能硬件设备(例如,中央处理单元(CPU)、微控制器、ASIC等)。

图9根据本公开内容的各个方面,示出了包括支持嵌入式系统操作的基站105的系统900的图。系统900可以包括基站105-b,其可以上文参照图1和图5-图7描述的无线设备500、无线设备600、符号自适应模块510-b或基站105的示例。基站105-b可以包括基站符号自适应模块910,其可以是参照图6-图8描述的基站符号自适应模块910的示例。基站105-b还可以包括用于双向语音和数据通信的组件,其包括用于发送通信的组件和用于接收通信的组件。在一些示例中,基站105-b还可以包括参考信号识别模块945。

在一些情况下,基站105-b可以具有一个或多个有线回程链路。基站105-b可以具有至核心网130的有线回程链路(例如,S1接口等)。基站105-b还可以经由基站间回程链路(例如,X2接口)与其它基站105(例如基站105-c和基站105-d)通信。基站105中的每一个可以使用相同或不同的无线通信技术与UE 115进行通信。在一些情况下,基站105-b可以利用基站通信模块925与其它基站(例如105-c或105-d)进行通信。在一些情况下,基站通信模块925可以提供LTE/LTE-A无线通信网络技术内的X2接口以提供基站105中的一些基站之间的通信。在一些实施例中,基站105-b可以通过核心网130与其它基站进行通信。在一些情况下,基站105-b可以通过网络通信模块930与核心网130进行通信。

基站105-b可以包括处理器905、存储器915(其包括软件(SW)920)、收发机935以及天线940,这些组件中的每一个可以直接或间接地彼此相通信(例如,在一个或多个总线947上)。收发机935可以被配置为经由天线940与UE 115(其可以是多模式设备)双向地通信。收发机935(或基站105-b的其它组件)还可以被配置为经由天线940与一个或多个其它基站(未示出)双向地通信。收发机935可以包括调制解调器,该调制解调器被配置为对分组进行调制并且将所调制的分组提供给天线940以进行传输,以及对从天线940接收的分组进行解调。基站105-b可以包括多个收发机935,每一个收发机935具有一个或多个相关联的天线940。收发机935可以是图5的组合的接收机505和发射机515。

存储器915可以包括RAM和ROM。存储器915还可以存储包含指令的计算机可读、计算机可执行软件代码920,所述指令被配置为在被执行时使得处理器905执行或使得基站105-b执行本文所描述的各种功能(例如,嵌套式系统操作等)。或者,软件代码920可以不直接由处理器905执行,而是被配置为使得计算机(例如,当被编译和执行时)执行本文所描述的功能。处理器905可以包括智能硬件设备(例如,CPU、微控制器、ASIC等)。处理器905可以包括各种专用处理器,诸如编码器、队列处理模块、基带处理器、无线电头控制器、数字信号处理器(DSP)等。基站通信模块925可以管理与其它基站105的通信。通信管理模块可以包括用于与其它基站105合作控制与UE 115的通信的控制器或调度器。例如,基站通信模块925可以针对各种干扰减轻技术(例如波束成形或联合传输)协调针对去往UE 115的传输的调度。

可以配置RS识别模块945,以使得第一资源段、第二资源段或其组合可以包括DMRS,如上文参照图2-图4所描述的。在一些示例中,符号包括DMRS的一部分,该符号具有符号周期,并且其中,该DMRS跨越第一持续时间和第二持续时间以及该符号周期。在一些示例中,第一资源段、第二资源段或其组合包括CRS。在一些示例中,符号包括CRS的一部分,该符号具有符号周期,并且其中,该CRS跨越第一持续时间和第二持续时间以及该符号周期。在一些示例中,第一资源段、第二资源段或其组合包括CSI参考信号。在一些示例中,符号包括CSI参考信号的一部分,该符号具有符号周期,并且其中,该CSI参考信号跨越第一持续时间和第二持续时间以及该符号周期。

图10根据本公开内容的各个方面,示出了描绘支持嵌入式系统操作的用于无线通信的方法1000的流程图。方法1000的操作可以由如参照图1-图9所描述的UE 115或基站105或其组件来实现。例如,方法1000的操作可以由符号自适应模块510、符号自适应模块810或基站符号自适应模块910执行,如参照图5-图9所描述的。在一些示例中,设备(例如,基站105或UE 115)可以执行一组代码来控制功能单元以执行下文描述的功能。另外地或替代地,该设备可以使用专用硬件来执行下文描述的功能的方面。

在框1005处,该设备可以配置具有小于符号周期的第一持续时间的第一资源段,如上文参照图2-图4所描述的。在某些示例中,框1005的操作可以由如上文参照图6描述的符号段模块605执行。

在框1010处,该设备可以配置具有小于该符号周期的第二持续时间的第二资源段,其中,第一持续时间和第二持续时间的总持续时间小于或等于该符号周期,如上文参照图2-图4所描述的。在某些示例中,框1010的操作可以由如上文参照图6所描述的符号段模块605执行。

在框1015处,该设备可以利用所配置的第一资源段和第二资源段来进行通信,如上文参照图2-图4所描述的。在某些示例中,框1015处的操作可以由如上文参照图6所描述的通信管理模块610执行。

图11根据本公开内容的各个方面,示出了支持嵌入式系统操作的用于无线通信的方法1100的流程图。方法1100的操作可以由如参照图1-图9所描述的UE 115、基站105或其组件来实现。例如,方法1100的操作可以由符号自适应模块510、符号自适应模块810或基站符号自适应模块910执行,如参照图5-图9所描述的。在一些示例中,设备(例如,基站105或UE 115)可以执行一组代码来控制该设备的功能单元以执行下文描述的功能。另外地替代地,该设备可以使用专用硬件来执行下文描述的功能的方面。方法1100还可以并入图10的方法1000的方面。

在框1105处,该设备可以配置具有小于符号周期的第一持续时间的第一资源段,如上文参照图2-图4所描述的。在某些示例中,框1105的操作可以由如上文参照图6所描述的符号段模块605执行。

在框1110处,该设备可以配置具有小于该符号周期的第二持续时间的第二资源段,其中,第一持续时间和第二持续时间的总持续时间小于或等于该符号周期,如上文参照图2-图4所描述的。在某些示例中,框1110的操作可以由如上文参照如6所描述的符号段模块605执行。

在框1115处,该设备可以配置具有该符号周期的符号。在某些示例中,框1115的操作可以由如上文参照图7所描述的符号配置模块705执行。

在框1120处,该设备可以利用所配置的符号、所配置的第一资源段和第二资源段、或其组合来进行通信,如上文参照图2-图4所描述的。在某些示例中,框1120的操作可以由如上文参照图6所描述的通信管理模块610执行。在一些示例中,第一资源段和第二资源段包括第一分量载波的频率资源,并且该设备可以利用第二分量载波的资源来调度第一分量载波的频率资源。另外地或替代地,该设备可以在第二分量载波的频率资源上接收与第一资源段或第二资源段相关的反馈。

图12根据本公开内容的各个方面,示出了支持嵌入式系统操作的用于无线通信的方法1200的流程图。方法1200的操作可以由如参照图1-图9所描述的UE 115、基站105或其组件来实现。例如,方法1200的操作可以由符号自适应模块510、符号自适应模块810或基站符号自适应模块910执行,如参照图5-图9所描述的。在一些示例中,设备(例如,基站105或UE 115)可以执行一组代码来控制功能单元以执行下文描述的功能。另外地或替代地,该设备可以使用专用硬件来执行下文描述的功能的方面。方法1200还可以并入图10-图11的方法1000和1100的方面。

在框1205处,该设备可以配置具有小于符号周期的第一持续时间的第一资源段,如上文参照图2-图4所描述的。在某些示例中,框1205的操作可以由如上文参照图6所描述的符号段模块605执行。

在框1210处,该设备可以配置具有小于该符号周期的第二持续时间的第二资源段,其中,第一持续时间和第二持续时间的总持续时间小于或等于该符号周期,如上文参照图2-图4所描述的。在某些示例中,框1210的操作可以由如上文参照如6所描述的符号段模块605执行。

在框1215处,该设备可以配置具有小于该符号周期的第三持续时间的第三资源段,其中,第一持续时间、第二持续时间和第三持续时间的总持续时间大于该符号周期,如上文参照图2-图4所描述的。在某些示例中,框1215的操作可以由如上文参照如6所描述的符号段模块605执行。

在框1220处,该设备可以利用所配置的第一资源段、第二资源段和第三资源段来进行通信,如上文参照图2-图4所描述的。在某些示例中,框1220的操作可以由如上文参照如6所描述的通信管理模块610执行。

图13根据本公开内容的各个方面,示出了支持嵌入式系统操作的用于无线通信的方法1300的流程图。方法1300的操作可以由如参照图1-图9所描述的UE 115、基站105或其组件来实现。例如,方法1300的操作可以由符号自适应模块510、符号自适应模块810或基站符号自适应模块910执行,如参照图5-图9所描述的。在一些示例中,设备(例如,基站105或UE 115)可以执行一组代码来控制功能单元以执行下文描述的功能。另外地或替代地,该设备可以使用专用硬件来执行下文描述的功能的方面。方法1300还可以并入图10-图12的方法1000、1100和1200的方面。

在框1305处,该设备可以识别具有小于符号周期的第一持续时间的第一资源段,如上文参照图2-图4所描述的。在某些示例中,框1305的操作可以由如上文参照图6所描述的符号段模块605执行。

在框1310处,该设备可以识别具有小于该符号周期的第二持续时间的第二资源段,其中,第一持续时间和第二持续时间的总持续时间小于或等于该符号周期,如上文参照图2-图4所描述的。在某些示例中,框1310的操作可以由如上文参照如6所描述的符号段模块605执行。

在框1315处,该设备可以利用第一资源段和第二资源段来与节点进行通信,如上文参照图2-图4所描述的。在某些示例中,框1315处的操作可以由如上文参照图6所描述的通信管理模块610执行。

图14根据本公开内容的各个方面,示出了支持嵌入式系统操作的用于无线通信的方法1400的流程图。方法1400的操作可以由如参照图1-图9所描述的UE 115、基站105或其组件来实现。例如,方法1400的操作可以由符号自适应模块510、符号自适应模块810或基站符号自适应模块910执行,如参照图5-图9所描述的。在一些示例中,设备(例如,基站105或UE 115)可以执行一组代码来控制功能单元以执行下文描述的功能。另外地或替代地,该设备可以使用专用硬件来执行下文描述的功能的方面。方法1400还可以并入图10-图13的方法1000、1100、1200和1300的方面。

在框1405处,该设备可以识别具有小于符号周期的第一持续时间的第一资源段,如上文参照图2-图4所描述的。在某些示例中,框1405的操作可以由如上文参照图6所描述的符号段模块605执行。

在框1410处,该设备可以识别具有小于该符号周期的第二持续时间的第二资源段,其中,第一持续时间和第二持续时间的总持续时间小于或等于该符号周期,如上文参照图2-图4所描述的。在某些示例中,框1410的操作可以由如上文参照如6所描述的符号段模块605执行。

在框1415处,该设备可以识别具有该符号周期的符号,如上文参照图2-图4所描述的。在某些示例中,框1415处的操作可以由如上文参照图7所描述的符号识别模块715执行。

在框1420处,该设备可以利用该符号、第一资源段、第二资源段、或其组合来与节点进行通信,如上文参照图2-图4所描述的。在某些示例中,框1420的操作可以由如上文参照图6所描述的通信管理模块610执行。在一些示例中,第一资源段和第二资源段包括第一分量载波的频率资源,并且该设备可以在第二分量载波的资源上接收针对第一分量载波的频率资源的准许。另外地或替代地,该设备可以在第二分量载波的频率资源上发送与第一资源段或第二资源段相关的反馈。

图15根据本公开内容的各个方面,示出了支持嵌入式系统操作的用于无线通信的方法1500的流程图。方法1500的操作可以由如参照图1-图9所描述的UE 115、基站105或其组件来实现。例如,方法1500的操作可以由符号自适应模块510、符号自适应模块810或基站符号自适应模块910执行,如参照图5-图9所描述的。在一些示例中,设备(例如,基站105或UE 115)可以执行一组代码来控制功能单元以执行下文描述的功能。另外地或替代地,该设备可以使用专用硬件来执行下文描述的功能的方面。方法1500还可以并入图10-图14的方法1000、1100、1200、1300和1400的方面。

在框1505处,该设备可以识别具有小于符号周期的第一持续时间的第一资源段,如上文参照图2-图4所描述的。在某些示例中,框1505的操作可以由如上文参照图6所描述的符号段模块605执行。

在框1510处,该设备可以识别具有小于该符号周期的第二持续时间的第二资源段,其中,第一持续时间和第二持续时间的总持续时间小于或等于该符号周期,如上文参照图2-图4所描述的。在某些示例中,框1510的操作可以由如上文参照如6所描述的符号段模块605执行。

在框1515处,该设备可以识别具有小于该符号周期的第三持续时间的第三资源段,其中,第一持续时间、第二持续时间和第三持续时间的总持续时间大于该符号周期,如上文参照图2-图4所描述的。在某些示例中,框1515的操作可以由如上文参照如6所描述的符号段模块605执行。

在框1520处,该设备可以利用第一资源段、第二资源段和第三资源段来进行通信,如上文参照图2-图4所描述的。在某些示例中,框1520的操作可以由如上文参照如6所描述的通信管理模块610执行。

因此,方法1000、1100、1200、1300、1400和1500可以提供嵌套式系统操作。应当注意,方法1000、1100、1200、1300、1400和1500描述了可能的实现方式,并且可以重新排列或以其它方式修改操作和步骤,以使得其它实现方式是可能的。在一些示例中,可以对来自方法1000、1100、1200、1300、1400和1500中的两种或更多种方法的方面进行组合。

上文结合附图所阐述的详细描述描述了示例性实施例,且并不表示可以实现的或在权利要求书的范围内的所有实施例。贯穿该描述使用的术语“示例性”意指“充当示例、实例或说明”而非“优选的”或“比其它实施例具优势”。详细描述包括具体细节以便提供对所描述的技术的理解。然而,可以在不使用这些具体细节的情况下实施这些技术。在一些实例中,以框图形式示出公知的结构和设备以便避免混淆所描述的实施例的概念。

可以使用多种不同的技艺和技术中的任何一种来表示信息和信号。例如,可贯穿上文描述所提及的数据、指令、命令、信息、信号、比特、符号和码片可以由电压、电流、电磁波、磁场或磁性粒子、光场或光学粒子、或者其任意组合来表示。

结合本文公开内容描述的各种说明性的框和模块可以利用被设计为执行本文描述的功能的通用处理器、DSP、ASIC、FPGA或其它可编程逻辑器件、分立门或晶体管逻辑、分立硬件组件、或者其任意组合来实现或执行。通用处理器可以是微处理器,但是在替代的方式中,该处理器可以是任何常规的处理器、控制器、微控制器或者状态机。处理器还可以被实现为计算设备的组合(例如,DSP和微处理器的组合、多个微处理器、一个或多个微处理器与DSP内核的结合,或者任何其它这样的配置)。

本文描述的功能可以用硬件、由处理器执行的软件、固件、或其任意组合来实现。如果用由处理器执行的软件来实现,则所述功能可以作为一个或多个指令或代码存储在计算机可读介质上或者通过计算机可读介质进行传输。其它示例和实现方式在本公开内容和所附的权利要求书的范围和精神内。例如,由于软件的性质,可以使用由处理器执行的软件、硬件、固件、硬连线、或这些项中的任意项的组合来实现上文描述的功能。实现功能的特征还可以物理地位于各个位置,包括被分布为使得在不同的物理位置实现功能的部分。此外,如本文所使用的(包括在权利要求书中),当在具有两个或更多个项目的列表中使用术语“和/或”时,其意指所列出的项目中的任何一个项目可以本身被采用,或者所列出的项目中的两个或更多个项目的任意组合可以被采用。例如,如果将组成描述为包含组成部分A、B和/或C,则该组成可以包含:仅A;仅B;仅C;A和B的组合;A和C的组合;B和C的组合;或者A、B和C的组合。此外,如本文所使用的(包括在权利要求书中),如在项目列表(例如,以诸如“中的至少一个”或“中的一个或多个”之类的短语为结束的项目列表)中所使用的“或”指示分离性列表,使得例如,列表“A、B或C中的至少一个”意指A或B或C或AB或AC或BC或ABC(即,A和B和C)。

计算机可读介质包括计算机存储介质和通信介质二者,所述通信介质包括有助于计算机程序从一个地方传送到另一个地方的任何介质。存储介质可以是能够由通用或专用计算机存取的任何可用的介质。通过举例而非限制性的方式,计算机可读介质可以包括RAM、ROM、EEPROM、闪存、CD-ROM或其它光盘存储、磁盘存储或其它磁存储设备、或者能够用于以指令或数据结构的形式携带或存储期望的程序代码单元以及能够由通用或专用计算机或者通用或专用处理器来存取的任何其它介质。此外,任何连接可以被适当地称为计算机可读介质。例如,如果使用同轴电缆、光纤光缆、双绞线、数字用户线(DSL)或无线技术(例如红外线、无线电和微波)从网站、服务器或其它远程源传输软件,则同轴电缆、光纤光缆、双绞线、DSL或无线技术(例如红外线、无线电和微波)包括在介质的定义中。如本文所使用的,磁盘和光盘包括压缩盘(CD)、激光光盘、光盘、数字多功能光盘(DVD)、软盘和蓝光光盘,其中磁盘通常磁性地再现数据,而光盘则利用激光来光学地再现数据。上述的组合也包括在计算机可读介质的范围内。

提供本公开内容的以上描述,以使得本领域技术人员能够实施或使用本公开内容。对本公开内容的各种修改对于本领域技术人员来说将是显而易见的,并且在不脱离本公开内容的范围的情况下,本文所定义的总体原理可以应用于其它变型。因此,本公开内容不应受限于本文所描述的示例和设计,而是要符合与本文所公开的原理和新颖特征相一致的最广的范围。

技术分类

06120112180176