掌桥专利:专业的专利平台
掌桥专利
首页

一种深海声场干涉结构建模方法

文献发布时间:2023-06-19 10:00:31


一种深海声场干涉结构建模方法

技术领域

本发明涉及水声信号处理技术,具体涉及一种深海声场干涉结构技术领域。

背景技术

干涉现象是自然界中存在的普遍现象,产生的机理是从同一目标发出的信号经不同路径到达接收点,各路径信号是相干的,因而在接收点产生干涉现象。水下声场由于海面海底界面对声信号传播的影响,产生多途效应的同时也会引起干涉现象。干涉频率和干涉周期及其时变特性用以描述声场干涉结构,声场干涉结构中含有声源位置和运动信息,深入挖掘并加以有效利用可大幅度提高水下探测性能和探测距离,是近年来水声领域的研究热点。

简正波理论和射线声学理论是目前深海声场干涉结构研究常用的两种方法,两者对声场干涉结构的表述不同,简正波理论给出了频率—距离声场干涉结构,射线理论给出了声场时频干涉结构,后者更具普遍性和应用价值;简正波理论能够给出分层介质中深海声场干涉结构的精确解,但不便于分析声场干涉结构的时频特性。射线理论只能给出深海干涉声场的近似解,对于深海直达声区、影区和会聚区,由于产生干涉的本征声线路径不同,难以给出声场干涉结构的统一表述。

发明内容

发明目的:为了克服现有技术中存在的不足,本发明提供一种深海声场干涉结构建模方法,旨在建立深海直达声区、影区和会聚区声场干涉结构干涉频率和干涉周期的统一表述。

技术方案:为实现上述目的,本发明采用的技术方案为:

一种深海声场干涉结构建模方法,通过计算简正波行波的传播时间,以及相位相同的两组简正波行波的传播时延差,建立深海声场干涉结构干涉频率和干涉周期模型。本发明将简正波理论和射线理论相结合,利用相位相同的两组简正波行波产生相长干涉,产生干涉的简正波行波即射线理论中的本征声线,建立了浅海以及深海直达声区、影区和会聚区声场干涉结构的完整统一表述,以解决射线理论只能给出深海干涉声场的近似解,简正波理论能够给出分层介质中深海干涉声场的精确解,但不便于分析声场时频干涉结构的问题,具体包括以下步骤:

步骤1,对于给定的信号和海洋环境参数,利用Kraken声场模型得到水平波数。

步骤2,根据简正波的水平波数建立简正波的水平群慢度模型。

步骤3,根据简正波的水平波数建立简正波的反转深度模型。

步骤4,根据简正波的垂直波数建立垂直群慢度模型。

步骤5,根据简正波的水平群慢度、简正波的反转深度、简正波的垂直群慢度建立简正波行波的传播时间模型:

其中,

步骤6,确定产生干涉的简正波行波,根据产生干涉的简正波行波的传播时间建立简正波行波传播时延差模型:

其中,Δt(z

步骤7,根据产生干涉的简正波行波的传播时延差建立声场干涉结构干涉频率和干涉周期模型,由于相位相同的两组简正波的行波产生相长干涉,产生干涉的简正波行波即射线理论中的本征声线,因此干涉频率和干涉周期模型为:

其中,f

优选的:步骤2中简正波的水平群慢度模型:

其中,ω为信号角频率,k

优选的:步骤3中简正波的反转深度模型:第m阶简正波的反转深度为满足

优选的:步骤4中垂直群慢度模型为:

其中,

本发明相比现有技术,具有以下有益效果:

本发明将简正波理论和射线理论相结合,通过计算简正波行波的传播时间,以及相位相同的两组简正波行波的传播时延差,得到干涉周期。该方法适用于浅海以及深海直达声区、影区和会聚区声场干涉结构的干涉频率和干涉周期的计算,建立了浅海以及深海直达声区、影区和会聚区声场干涉结构的完整统一表述,为深海干涉声场时变特性分析奠定了理论基础。

附图说明

图1为本发明中的深海会聚区干涉谱。

图2为本发明计算的深海会聚区干涉谱的干涉周期。

具体实施方式

下面结合附图和具体实施例,进一步阐明本发明,应理解这些实例仅用于说明本发明而不用于限制本发明的范围,在阅读了本发明之后,本领域技术人员对本发明的各种等价形式的修改均落于本申请所附权利要求所限定的范围。

一种深海声场干涉结构建模方法,通过计算简正波行波的传播时间,以及相位相同的两组简正波行波的传播时延差,建立深海声场干涉结构干涉频率和干涉周期模型。本发明将简正波理论和射线理论相结合,利用相位相同的两组简正波行波产生相长干涉,产生干涉的简正波行波即射线理论中的本征声线,建立了浅海以及深海直达声区、影区和会聚区声场干涉结构的完整统一表述,以解决射线理论只能给出深海干涉声场的近似解,简正波理论能够给出分层介质中深海干涉声场的精确解,但不便于分析声场时频干涉结构的问题。以一组深海会聚区干涉谱的干涉周期计算为例,本发明所述的方法具体实施过程如下:

步骤1,给定信号和海洋环境参数,利用Kraken声场模型计算水平波数:水下运动声源辐射噪声信号,频带为200Hz-2000Hz,采样频率为8kHz,声源匀速运动,速度5m/s,航向60度。典型深海Munk声速分布,海底介质声速为1600m/s,密度为1.8g/cm

步骤2,根据简正波的水平波数建立简正波的水平群慢度模型:

其中,ω为角频率,k

步骤3,根据简正波的水平波数建立简正波的反转深度模型:第m阶简正波的反转深度为满足

步骤4,根据简正波的垂直波数建立垂直群慢度模型:

其中,

步骤5,根据简正波的水平群慢度、简正波的反转深度、简正波的垂直群慢度建立简正波行波的传播时间模型:

其中,

步骤6,确定产生干涉的简正波行波,根据产生干涉的简正波行波的传播时间建立简正波行波传播时延差模型:

其中,Δt(z

步骤7,根据产生干涉的简正波行波的传播时延差建立声场干涉结构干涉频率和干涉周期模型,由于相位相同的两组简正波的行波产生相长干涉,产生干涉的简正波行波即射线理论中的本征声线,因此干涉频率和干涉周期模型为:

其中,f

如图1-2所示,其中图1为用bellhop声场模型仿真生成多途接收信号,计算得到的深海会聚区干涉谱,随着目标由近及远运动,干涉频率和干涉周期变小。图2为本发明针对图1低频端两条干涉频率条纹,理论计算得到的不同时刻的干涉周期,图中同时给出了直接从图1中获取的低频端两条干涉频率条纹在不同时刻的干涉周期,二者基本吻合,表明了深海声场干涉结构建模的正确性。

以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

相关技术
  • 一种深海声场干涉结构建模方法
  • 基于宽带声场干涉结构的深海直达声区目标深度估计方法
技术分类

06120112380423