掌桥专利:专业的专利平台
掌桥专利
首页

一种体外模拟和评价血液接触类医疗器械内血小板粘附的方法

文献发布时间:2023-06-19 10:46:31



技术领域

本发明涉及一种体外模拟和评价血液接触类医疗器械内血小板粘附的方法,属于血液接触类医疗器械的测试与评价技术领域。

背景技术

血液接触类医疗器械(例如血管支架、机械瓣膜、人工心脏等)研发过程中会面临很多挑战,其中血液流经血液接触类医疗器械时,往往会因为非生理性血流剪切力、低速流、流动滞止等流动因素和非自体的机械结构因素造成的血小板粘附于器械表面直至形成血栓等一系列问题,从而限制了血液接触类医疗器械在临床上的应用。血液接触类医疗器械内的血小板黏附和血栓形成位置与该位置的结构密切相关,以人工心脏为例,在已经临床应用的人工心脏中,泵内血栓一直是不良事件之一。在目前已经临床应用的人工心脏中,几乎所有的人工心脏内血栓都发生于人工心脏内固定的几个位置,研究发现人工心脏内血小板激活是普遍性、全局性的,血小板激活、大量聚集后并不一定粘附于人工心脏内形成血栓,而人工心脏内血小板粘附和血栓形成却是概率性、局部的。

血液接触类医疗器械的过流部件的结构决定了该器械内的血流流场及流动分布情况,而涡流、高剪切力、滞止流动等又会导致器械内血栓形成。目前,在血液接触类医疗器械的设计和测试过程中,缺少直观、有效的办法评价器械内与血液相接触表面上的血小板粘附至形成血栓的缺陷。目前的血液接触类医疗器械基本都是通过大规模的动物实验和临床试验统计血液接触类医疗器械血栓形成位置和发生率,即,首先采用数值计算和流场显示的方法获得器械内的血液流动情况,通过分析血液流动情况判断器械内是否容易产生血小板粘附,然后在大量且昂贵的动物实验和临床试验中统计出器械的血小板粘附形成血栓情况以及高发位置,以致需要花费巨大的人力物力来发现器械设计的缺陷。

因此,通过大规模的动物实验和临床试验统计血液接触类医疗器械血栓形成位置和发生率不仅周期长、代价高昂,会导致器械优化改进的周期过长,而且通过临床试验来获得缺陷的统计数据对患者没有做到最大程度的负责。

发明内容

本发明的目的在于提供一种体外模拟和评价血液接触类医疗器械内血液接触表面上由于结构缺陷或流动因素而引发的血小板粘附的方法。通过该方法能够定位出器械内容易形成血小板粘附和血栓的位置,用于分析该位置的结构缺陷并及时加以改进优化,通过该方法能够在临床应用前评价出器械的缺陷以及能否进一步改进。

为实现上述目的,本发明采用以下技术方案:

一种体外模拟和评价血液接触类医疗器械内血小板粘附的方法,包括以下步骤:

(1)在体外循环回路中使用质量百分比浓度为40%的甘油水溶液模拟血液的粘度和流体力学特性,在溶液中加入直径3-5微米的荧光粒子模拟血小板;

(2)溶液在回路中循环24小时后将所测器械的过流部件拆卸下来通过肉眼及拍照的方式观察器械内血液接触表面上的荧光粒子沉积情况;

(3)用激光诱导荧光技术在荧光粒子沉积的、与血液接触的器械表面打上激光,用电荷耦合器件(CCD)照相机成像的方法拍摄激光诱导荧光粒子聚集和粘附情况。

其中,在所述步骤(1)中,溶液中荧光粒子的体积百分比浓度范围在5%-30%之间。

在该方法中,如果一直未出现荧光粒子沉积现象则在试验进行3天后拆除实验装置,判定器械内没有可明显形成血小板粘附的结构缺陷。

所述人工器官或医疗器械为人工心脏、血管支架、机械瓣膜等。对于血管支架和机械瓣膜等非动力器械,采用传统的旋转泵来实现循环回路中溶液的流动;对于人工心脏等动力机械直接依靠其自身的动力实现循环回路中溶液的循环流动。

本发明的有益效果是:

本发明采用激光诱导荧光粒子沉积效果来体外模拟血小板在血液接触类医疗器械内表面粘附的方法,既能定位器械内容易形成血小板粘附以及血栓的位置和结构特征,又能填补血小板粘附生成血栓的数值模型与动物实验之间体外测试环节的缺失。该方法可用于预测器械内的血小板粘附情况,评估器械内某个局部结构的血小板粘附和血栓形成风险,既可在器械设计优化阶段指导器械的结构优化和改进,又可成为器械注册检验阶段评价器械血液相容性的检测方法,可极大降低此类器械研发周期并降低研发成本。

附图说明

图1为本发明中所用循环回路的结构示意图。

图2为实施例中所用3型轴流血泵模型的结构示意图。

图3为实验后通过拍照观察到的粒子在部件表面上的粒子附着效果图。

图4(a-f)为激光诱导后转子的各个角度表面上的粒子附着效果图。

图5(a-d)为激光诱导后进口段定子的各个角度表面上的粒子附着效果图。

图6(a-d)为激光诱导后出口段定子和壁面的不同角度表面上的粒子附着效果图。

具体实施方式

以下通过实施例对本发明作进一步说明,但本发明的保护范围并不受这些实施例的限定。

如图1所示,本发明的方法中使用一循环回路,该循环回路由储液槽1和硅胶管道2构成,硅胶管道2上设置有人工器官或医疗器械3,还设有流量计4和阀门 5,并根据需要设置提供动力的旋转泵。储液槽1中装有模拟人体血液的溶液,人工器官或医疗器械3置于溶液内,本发明使用浓度为40%的甘油水溶液作为循环介质。

本发明的实验方法是:将血液接触类医疗器械接入体外循环回路中,然后向溶液中加入直径3-5微米的荧光粒子模拟血小板,荧光粒子在溶液中的浓度范围在 5%-30%之间。对于血管支架和机械瓣膜等非动力器械,采用传统的旋转泵来实现循环回路中溶液的流动;对于人工心脏等动力机械直接依靠其自身的动力实现循环回路中溶液的流动。溶液在回路中循环一定时间后观察血液接触表面的荧光粒子沉积情况,出现明显沉积现象则将所测器械的过流部件拆卸下来通过肉眼及拍照的方式观察器械内血液接触表面的荧光粒子沉积情况,然后用激光诱导荧光技术在荧光粒子沉积的与血液接触的器械表面打上激光,通过激光诱导荧光粒子观察电荷耦合器件照相机成像中荧光颗粒的聚集和粘附情况。如果一直未出现荧光粒子沉积现象则在试验进行3天后拆除实验装置,判定器械内没有可明显形成血小板粘附的结构缺陷。

在血液接触类医疗器械应用于临床时,在人体内由于器械的某些结构形成的流动因素而产生的血小板粘附现象。而采用本发明的方法可以定位器械内最容易形成血小板粘附的位置和结构,既可用于指导器械的结构改进,也可用于器械上市前对其性能评价的注册检验,为分析器械内哪些局部结构缺陷会导致血小板粘附和血栓形成提供指导性方法,对血液接触类医疗器械的开发有着重要的意义。

实施例

以人工心脏为例,对3型轴流血泵模型进行模拟血液流动实验,评价血泵模型的定子、转子、壳体表面粒子沉积附着效果。如图2所示,本实施例中所使用的3 型轴流血泵模型由前导1、转子2及后导3三部分构成。

实验中所使用的设备及材料如下表所示。

实验过程:1)模拟血液粘度,采用甘油及水按4∶6浓度配置溶液;2)在配置的溶液内加入体积比20%的荧光粉,并进行充分搅拌混合至粒子均匀分布;3)连接循环水泵及血泵模型,通电使溶液充分循环,在溶液内循环水泵驱动泵转子转动。 4)循环水泵带动溶液流经血泵,粒子会在模型壁面及粒子壁面形成沉积效果;5) 溶液在回路中循环24小时后将所测器械的过流部件拆卸下来通过肉眼及拍照的方式观察器械内血液接触表面上的荧光粒子沉积情况;6)为了显示模型壁面及定子转子表面沉积效果,采用激光诱导荧光方法,用激光体光照射模型表面,拍摄粒子在模型表面的沉积效果。表面附着的荧光粒子受激光诱导产生特定波段的光通过荧光滤色片在CCD相机成像,从而观察到转子表面液体附着情况。

实验结果:如图3所示,为实验后通过拍照观察到的粒子在部件表面的粘附情况,可以看出,粒子在位置A、B、C处有明显的附着。图4(a-f)为激光诱导后转子的各个角度表面上的粒子附着效果图,拍摄到粒子在血泵模型转子表面的粘附情况,其中白色位置是粒子聚集的地方。图5(a-d)为激光诱导后进口段定子的各个角度表面上的粒子附着效果图,其中白色位置是粒子聚集的地方。图6(a-d)为激光诱导后出口段定子和壁面的不同角度表面上的粒子附着效果图,其中白色位置是粒子聚集的地方。

从以上结果可以看出,通过本发明的方法能够定位器械内最容易形成血小板粘附的位置和结构,从而为分析器械内哪些局部结构缺陷会导致血小板粘附和血栓形成提供指导性方法。

相关技术
  • 一种体外模拟和评价血液接触类医疗器械内血小板粘附的方法
  • 一种体外模拟和评价血液接触类医疗器械内血小板粘附的方法
技术分类

06120112676913