掌桥专利:专业的专利平台
掌桥专利
首页

半导体装置的制造方法、半导体装置、电力转换装置以及移动体

文献发布时间:2023-06-19 11:21:00


半导体装置的制造方法、半导体装置、电力转换装置以及移动体

技术领域

本发明涉及将电极与金属图案接合的半导体装置的制造方法、半导体装置、电力转换装置以及移动体。

背景技术

如果通过冲裁而形成电极(例如,参照专利文献1(第0012段、图2)),则电极的塌角面的相反侧成为毛刺面。在将电极的塌角面超声波接合于金属图案时,将光照射于电极的毛刺面,通过超声波接合装置的照相机进行图像识别、对位。

专利文献1:日本特开平09-312373号公报

发明内容

在冲裁时,有时在连续模具内意外地对毛刺面进行冲压,会将毛刺压溃。在这种情况下,在照相机图像中电极的外周变得模糊,有时无法使电极的形状清晰地图像化,会产生误识别。因此,超声波接合的接合品质下降,因此,存在损害可靠性的问题。另外,有时由于识别错误,造成装置的动作停止等故障。因此,电极的超声波接合作业耗费时间,需要作业员始终在场,无法削减工时,难以转变为自动化。其结果,存在生产效率下降这一问题。

本发明就是为了解决上述这样的课题而提出的,其目的在于得到能够提高可靠性和生产效率的半导体装置的制造方法、半导体装置、电力转换装置以及移动体。

本发明涉及的半导体装置的特征在于,具有:金属图案;半导体芯片,其与所述金属图案连接;以及电极,其具有与所述金属图案接合的塌角面和在端部存在毛刺的毛刺面,所述毛刺面的所述端部的压溃量小于或等于10μm。

发明的效果

在本发明中,使毛刺面的端部的压溃量小于或等于10μm。由此,防止了电极的误识别,超声波接合的接合品质提高。其结果,能够提高可靠性和生产效率。

附图说明

图1是表示实施方式1涉及的半导体装置的剖面图。

图2是表示电极的斜视图。

图3是表示电极的侧视图。

图4是将图3的被圆圈包围的部分放大后的斜视图。

图5是电极的剖面图。

图6是将电极的切断部分放大后的斜视图。

图7是表示将电极的塌角面超声波接合于金属图案的情形的剖面图。

图8是表示将电极的毛刺面超声波接合于金属图案的情形的剖面图。

图9是表示实施方式1涉及的半导体装置的制造工序的剖面图。

图10是表示实施方式1涉及的半导体装置的制造工序的剖面图。

图11是表示毛刺面的端部的压溃量小于或等于10μm的电极的剖面图。

图12是表示毛刺面的端部的压溃量大于10μm的电极的剖面图。

图13是表示对毛刺面的端部的压溃量和能否由照相机识别进行调查而得出的实验数据的图。

图14是表示实施方式2涉及的半导体装置的电极的斜视图。

图15是表示实施方式3涉及的半导体装置的电极的斜视图。

图16是表示电力转换系统的结构的框图,在该电力转换系统中应用了实施方式4涉及的电力转换装置。

图17是表示实施方式5涉及的移动体的图。

具体实施方式

参照附图,对实施方式涉及的半导体装置的制造方法、半导体装置、电力转换装置以及移动体进行说明。对相同或者相应的结构要素标注相同的标号,有时省略重复说明。

实施方式1.

图1是表示实施方式1涉及的半导体装置的剖面图。绝缘基板2的下表面的金属图案3通过焊料4而接合于散热板1。在绝缘基板2的上表面的金属图案5连接有半导体芯片6、7的下表面电极。半导体芯片6、7的上表面电极彼此通过导线8而连接。电极9被超声波接合于金属图案5。在散热板1通过粘接剂11以将绝缘基板2以及半导体芯片6、7等包围的方式粘接有壳体10。在壳体10内,绝缘基板2以及半导体芯片6、7等被封装材料12封装。在壳体10之上通过粘接剂14而粘接有盖13。电极9的一部分被从盖13引出。

图2是表示电极的斜视图。图3是表示电极的侧视图。图4是将图3的被圆圈包围的部分放大后的斜视图。图5是电极的剖面图。图6是将电极的切断部分放大后的斜视图。电极9通过使用了连续模具的冲裁而形成。电极9的塌角面15的相反侧成为毛刺面16。在冲裁出的电极9的切断面存在剪切部17和断裂部18。在塌角面15的端部存在塌角19。在电极9的毛刺面16的端部存在毛刺20。毛刺20也被称为毛边。

在超声波接合中,使金属彼此接触,通过超声波振动和振幅而将金属表面的氧化膜和污渍等破坏,对金属表面的洁净化面彼此加压而进行接合。接合面积越大,则超声波接合的接合品质越高。图7是表示将电极的塌角面超声波接合于金属图案的情形的剖面图。电极9的塌角面15的中央部与金属图案5接触,接合面积变大。图8是表示将电极的毛刺面超声波接合于金属图案的情形的剖面图。由于仅毛刺20的部分与金属图案5接合,因此接合面积小。因此,在本实施方式中,将电极9的塌角面15超声波接合于金属图案5。

接下来,对本实施方式涉及的半导体装置的制造方法进行说明。图9及图10是表示实施方式1涉及的半导体装置的制造工序的剖面图。将半导体芯片6、7与绝缘基板2的金属图案5连接。通过冲裁而形成电极9。接下来,如图9所示,将光照射于电极9的毛刺面16,通过超声波接合装置的照相机21而对毛刺面16进行图像识别、对位。然后,如图10所示,将超声波接合工具22按压至电极9的毛刺面16,将电极9的塌角面15超声波接合于金属图案5。

这里,如果进行电极9的冲裁,则在电极9的切断后的端部整体形成毛刺20。在每次工作台前进时,都通过脱料板和拉模板而数次将毛刺20压溃。由此,毛刺20的大部分被压溃,毛刺面16的端部凹陷几μm程度。如果毛刺面16的端部的压溃量大,则在照相机图像中电极9的外周变得模糊,无法使电极9的形状清晰地图像化,产生误识别,接合工艺产生故障。这里,压溃量是指从毛刺面16的中央部的平坦面至毛刺面16的端部的压溃后的部分的底部为止的高度差。

图11是表示毛刺面的端部的压溃量小于或等于10μm的电极的剖面图。图12是表示毛刺面的端部的压溃量大于10μm的电极的剖面图。

图13是表示对毛刺面的端部的压溃量和能否由照相机识别进行调查而得出的实验数据的图。在毛刺面16的端部的压溃量为13~20μm的情况下,产生误识别,在7~10μm的情况下,能够正确地识别电极9。因此,在本实施方式中,通过在电极9的冲裁工序中使冲压的冲程量和速度最佳化,从而使毛刺面16的端部的压溃量小于或等于10μm。由此,防止了电极9的误识别,超声波接合的接合品质提高。其结果,能够提高可靠性和生产效率。

实施方式2.

图14是表示实施方式2涉及的半导体装置的电极的斜视图。在本实施方式中,在被超声波接合工具22按压的电极9的毛刺面16的角部,例如四角或者2个对角,设置有照相机可识别的标记形状23。标记形状23是通过半蚀刻等形成的圆形的凹陷。通过形成这样的物理凹陷,从而电极9的识别性和照相机识别精度进一步提高,因此接合品质和生产效率进一步提高。

如果对超声波接合后的电极9的毛刺面16的实际图像进行确认,则毛刺20以及标记形状23虽然与超声波接合工具22接触而局部变形,但在接合之后依然以可识别的程度残留下来。

此外,标记形状23也可以通过冲床等的机械加工而形成,也可以呈圆锥形状或者棱锥形状等。通过机械加工而形成标记形状23,由此标记形状23变得清晰,电极9的识别性和照相机识别精度进一步提高。另外,还能够实现定量管理。

实施方式3.

图15是表示实施方式3涉及的半导体装置的电极的斜视图。在本实施方式中,标记形状23呈L字形。该标记形状23是深度0.5mm左右的槽,通过机械加工而形成。由于L字形的标记形状23,电极9的识别性和照相机识别精度进一步提高。

在实施方式1-3中,半导体芯片6、7是由硅形成的IGBT、MOSFET、二极管(Diode)或者SBD等。但是,半导体芯片6、7不限于由硅形成,也可以由与硅相比带隙大的宽带隙半导体形成。宽带隙半导体例如是碳化硅、氮化镓类材料或者金刚石。由这样的宽带隙半导体形成的功率半导体元件由于耐电压性和容许电流密度高,因此能够小型化。通过使用该小型化后的元件,从而组装了该元件的半导体模块也能够小型化。另外,由于元件的耐热性高,所以能够使散热器的散热鳍片小型化,能够使水冷部空冷化,因而能够使半导体模块进一步小型化。另外,由于元件的电力损耗低且高效,因此能够使半导体模块高效化。另外,如果是本实施方式涉及的半导体装置,则即使在被用于高温环境的情况下,也能够稳定地确保电极9的超声波接合寿命。

实施方式4.

本实施方式是将上述实施方式1~3所涉及的半导体装置应用于电力转换装置。电力转换装置例如是逆变器装置、转换器装置、伺服放大器、电源单元等。本发明不限定于特定的电力转换装置,但以下,对将本发明应用于三相逆变器的情况进行说明。

图16是表示电力转换系统的结构的框图,在该电力转换系统中应用了实施方式4涉及的电力转换装置。该电力转换系统具有电源100、电力转换装置200、负载300。电源100是直流电源,向电力转换装置200供给直流电力。电源100能够由各种电源构成,例如,能够由直流系统、太阳能电池、蓄电池构成,也可以由与交流系统连接的整流电路或AC/DC转换器构成。另外,也可以使电源100由将从直流系统输出的直流电力转换为规定的电力的DC/DC转换器构成。

电力转换装置200是连接在电源100和负载300之间的三相逆变器,将从电源100供给的直流电力转换为交流电力,向负载300供给交流电力。电力转换装置200具有:主转换电路201,其将直流电力转换为交流电力而输出;驱动电路202,其输出对主转换电路201的各开关元件进行驱动的驱动信号;以及控制电路203,其将对驱动电路202进行控制的控制信号向驱动电路202输出。

负载300是由从电力转换装置200供给的交流电力进行驱动的三相电动机。此外,负载300不限定于特定的用途,是搭载于各种电气设备的电动机,例如,用作面向混合动力汽车、电动汽车、铁道车辆、电梯或者空调设备的电动机。

以下,对电力转换装置200详细地进行说明。主转换电路201具有开关元件和续流二极管(未图示),通过开关元件的通断,从而将从电源100供给的直流电力转换为交流电力,向负载300供给。主转换电路201的具体的电路结构存在各种结构,但本实施方式涉及的主转换电路201是两电平的三相全桥电路,能够由6个开关元件和与各个开关元件反向并联的6个续流二极管构成。主转换电路201的各开关元件由与上述实施方式1~3中的任意者相当的半导体装置构成。6个开关元件两个两个地串联连接而构成上下桥臂,各上下桥臂构成全桥电路的各相(U相、V相、W相)。并且,各上下桥臂的输出端子即主转换电路201的3个输出端子与负载300连接。

驱动电路202生成对主转换电路201的开关元件进行驱动的驱动信号,供给至主转换电路201的开关元件的控制电极。具体地说,按照来自后述的控制电路203的控制信号,向各开关元件的控制电极输出将开关元件设为接通状态的驱动信号和将开关元件设为断开状态的驱动信号。在将开关元件维持为接通状态的情况下,驱动信号是大于或等于开关元件的阈值电压的电压信号(接通信号),在将开关元件维持为断开状态的情况下,驱动信号成为小于或等于开关元件的阈值电压的电压信号(断开信号)。

控制电路203对主转换电路201的开关元件进行控制,以向负载300供给期望的电力。具体地说,基于应向负载300供给的电力,对主转换电路201的各开关元件应成为接通状态的时间(接通时间)进行计算。例如,能够通过与应输出的电压相对应地对开关元件的接通时间进行调制的PWM控制,对主转换电路201进行控制。并且,向驱动电路202输出控制指令(控制信号),以在各时刻向应成为接通状态的开关元件输出接通信号,向应成为断开状态的开关元件输出断开信号。驱动电路按照该控制信号,将接通信号或者断开信号作为驱动信号而向各开关元件的控制电极输出。

在本实施方式涉及的电力转换装置中,使主转换电路201的各开关元件由与上述实施方式1~3中任意者相当的半导体装置构成。由此,能够提高可靠性和生产效率。

在本实施方式中,对在两电平的三相逆变器应用本发明的例子进行了说明,但本发明不限于此,能够应用于各种电力转换装置。在本实施方式中,采用了两电平的电力转换装置,但也可以是三电平或多电平的电力转换装置,在向单相负载供给电力的情况下,也可以对单相逆变器应用本发明。另外,在向直流负载等供给电力的情况下,也能够对DC/DC转换器或AC/DC转换器应用本发明。

另外,应用了本发明的电力转换装置不限定于上述的负载为电动机的情况,例如,还能够用作放电加工机、激光加工机、感应加热烹调器、或者非接触器供电系统的电源装置,并且也能够用作太阳能发电系统或者蓄电系统等的功率调节器。

实施方式5.

图17是表示实施方式5涉及的移动体的图。该移动体400是电车等,使用实施方式4涉及的电力转换装置200而进行电力控制。由此,能够提高可靠性和生产效率。

标号的说明

5金属图案,6、7半导体芯片,9电极,15塌角面,16毛刺面,20毛刺,21照相机,22超声波接合工具,23标记形状,200电力转换装置,201主转换电路,202驱动电路,203控制电路,400移动体。

相关技术
  • 半导体装置的制造方法、半导体装置、电力转换装置以及移动体
  • 半导体装置、电力转换装置及半导体装置的制造方法
技术分类

06120112893608