掌桥专利:专业的专利平台
掌桥专利
首页

一种基于非等维状态混合估计的并行IMM机动目标跟踪方法

文献发布时间:2023-06-19 12:02:28


一种基于非等维状态混合估计的并行IMM机动目标跟踪方法

技术领域

本发明涉及雷达机动目标跟踪领域,尤其涉及一种基于非等维状态混合估计的并行IMM机动目标跟踪方法。

背景技术

随着现代交通信息化网络化的高速发展,目标的运动状态越来越复杂多变,机动目标跟踪技术无论在各个方面都越来越受到人们的青睐,是目标跟踪技术发展的重要领域。机动目标跟踪是通过一些基本观测和计算方法,实时计算出目标的各种运动参数,对目标进行跟踪。通过目标跟踪算法来完成对目标状态的准确估算,并为之后的目标检测识别、指挥决策等提供精准可靠的信息来源。

一般而言,由于机动目标运动具有复杂性、突变性和非线性等特点,常规的单模型滤波算法往往不能满足复杂机动目标的跟踪精度需求,而多模型滤波跟踪则在此方面展现了良好的性能。多模型算法的核心是在假设模型集包含目标所有可能运动模式的基础上,利用可能模型的概率加权匹配目标运动。其中交互式多模型(IMM)算法基于马尔科夫过程的信息重组,使得IMM算法兼具了一阶广义伪贝叶斯滤波的低计算量与二阶广义伪贝叶斯滤波的高精度的优势,成为最具费效比的多模型算法。IMM算法是一种基于“软切换”的算法,该滤波算法具有运动模型自适应的能力,但随着科技的发展,人们对跟踪性能的需求也越来越高。在对机动目标跟踪方面,基于先验信息固定的转移概率矩阵限制了IMM性能的发挥,而过多的基于过去模型信息对转移概率矩阵进行修正的自适应交互多模型(AIMM)算法则会导致模型切换滞后问题。在后续改进的方法中,人们在对转移概率矩阵进行修正时,利用当前模型信息来抑制模型切换滞后的影响,在一定程度提高的模型切换速度与跟跟踪精度,但在模型切换时的峰值误差方面还有待改进的空间。

发明内容

根据现有技术存在的问题,本发明公开了一种基于非等维状态混合估计的并行IMM机动目标跟踪方法,包括以下步骤:

S1:通过传感器采集机动目标的运动轨迹测量值并建立目标运动模型集,进行跟踪系统的初始化;

S2:通过在跟踪系统运行基于非等维状态混合估计的IMM算法,提供运动模型的当前信息,加快运动模型的切换速度;同时通过在跟踪系统运行基于非等维状态混合估计的AIMM算法,提供运动模型的过去信息,提高运动模型未发生切换时的跟踪精度;通过并行使用基于非等维状态混合估计的IMM算法,和基于非等维状态混合估计的AIMM算法,对当前时刻的机动目标进行跟踪;

S3:分别将当前时刻运行基于非等维状态混合估计的IMM算法与基于非等维状态混合估计的AIMM算法得到的全局状态估计与对应的协方差矩阵作为下一时刻基于非等维状态混合估计的IMM算法与基于非等维状态混合估计的AIMM算法的初值,进行下一时刻的跟踪,直至机动目标跟踪结束。

进一步地,所述通过在跟踪系统运行基于非等维状态混合估计的IMM算法,提供运动模型的当前信息,加快运动模型的切换速度的过程,包括以下步骤:

S2-1:采用非等维状态混合估计方法确定混合策略,再通过混合策略处理运动模型的状态向量,得到处理后的运动模型的状态向量;目的是改善目标模型切换时的信息丢失问题,进一步降低峰值误差;

S2-2:根据转移概率矩阵,对处理后的运动模型的状态向量进行输入交互;

S2-3:利用交互后的运动模型的状态向量进行滤波,得到各运动模型的滤波结果,对机动目标轨迹进行跟踪;

S2-4:利用各运动模型的滤波结果来计算各运动模型的似然函数,再采用各运动模型的似然函数更新各运动模型的概率;

S2-5:利用各运动模型的概率,将模型集中所有模型的滤波结果进行融合,计算全局状态估计和对应的协方差矩阵,得到当前时刻最终的跟踪估计,完成基于非等维状态混合估计的IMM算法当前时刻对机动目标的跟踪。

进一步地,所述通过在跟踪系统运行基于非等维状态混合估计的AIMM算法,提供运动模型的过去信息,提高运动模型未发生切换时的跟踪精度的过程包括以下步骤:

S3-1:采用非等维状态混合估计方法确定混合策略,再通过混合策略处理运动模型的状态向量,得到处理后的运动模型的状态向量;目的是改善目标模型切换时的信息丢失问题,进一步降低峰值误差;

S3-2:根据转移概率矩阵,对处理后的运动模型的状态向量进行输入交互;

S3-3:利用交互后的运动模型的状态向量进行滤波,得到各运动模型的滤波结果,对机动目标轨迹进行跟踪;

S3-4:利用各运动模型的滤波结果来计算各运动模型的似然函数,再采用各运动模型的似然函数更新各运动模型的概率;

S3-5:利用基于非等维状态混合估计的IMM算法与基于非等维状态混合估计的AIMM算法的运动模型的概率,对基于非等维状态混合估计的AIMM算法的转移概率矩阵进行更新;

S3-6:利用各运动模型的概率,将模型集中所有模型的滤波结果进行融合,计算全局状态估计和对应的协方差矩阵,得到当前时刻最终的跟踪估计,完成基于非等维状态混合估计的AIMM算法当前时刻对机动目标的跟踪。

进一步地,其特征在于,所述通过传感器采集机动目标的运动轨迹测量值并建立目标运动模型集的具体过程为:

建立包含M个目标运动模型的模型集,模型集包含运动目标的运动状态,确定M个目标运动子模型的第0时刻概率矩阵μ和第0时刻模型状态转移矩阵p为:

μ=[1/M 1/M ... 1/M]

其中,[·]

进一步地,所述采用非等维状态混合估计方法确定混合策略,再通过混合策略处理运动模型的状态向量,得到处理后的运动模型的状态向量过程为:

定义在一个由模型I与模型II组成的双模型系统中,模型II的状态分量包含于模型I,则在k-1时刻,则模型I的状态向量

P

其中,c(k-1)为模型I和模型II的公共分量,e(k-1)为模型I的额外分量,可以是加速度、转弯率等;

模型I和模型II进行状态交互时,对于低维的模型II的交互,可以舍弃模型I中额外的分量e(k-1),直接进行交互。

当高维模型I进行交互时,则需要对低维模型进行扩维,使用机动目标检测器对目标的运动状态进行检测,根据不同的运动状态选择合适的扩维方法;

令检验统计量ε(k-1)为残差的衰减记忆平均值:

其中ρ(s)=(1-λ)/(1-λ

设检测阈值Th,当ε(k-1)>Th时,使用额外分量e(k-1)的均匀分布来对低维的模型II状态向量进行扩维,扩维后的状态向量

其中,E[·]表示计算期望,Cov[·]表示计算协方差;

当ε(k-1)≤Th时,根据模型概率来确定扩维方法;

当模型概率矩阵中,模型1的概率μ

当模型概率矩阵中,μ

进一步地,根据转移概率矩阵,对处理后的运动模型的状态向量进行输入交互的具体过程为:

对于第j个运动子模型,根据第k-1时刻经过非等维混合估计处理的模型i的滤波估计值

其中,

进一步地,所述利用交互后的运动模型的状态向量进行滤波,得到各运动模型的滤波结果,对机动目标轨迹进行跟踪的过程为:

将计算得到的混合状态估计值

P

计算模型j的残差v

S

计算卡尔曼滤波增益K(k):

K

计算模型j的状态估计值

P

进一步地,所述利用各运动模型的滤波结果来计算各运动模型的似然函数,再采用各运动模型的似然函数更新各运动模型的概率的过程:

根据模型j的残差v

更新模型j的概率。

进一步地,利用基于非等维状态混合估计的IMM算法与基于非等维状态混合估计的AIMM算法的运动模型的概率,对基于非等维状态混合估计的AIMM算法的转移概率矩阵进行更新的过程为:

在基于非等维状态混合估计的AIMM算法中,计算在当前时刻匹配模型与其它模型间的似然比为:

其中,下标r表示匹配模型,l表示其它模型,A表示基于非等维状态混合估计的AIMM算法。

利用转移概率修正函数,将并行运行的基于非等维状态混合估计的IMM算法与基于非等维状态混合估计的AIMM算法的信息进行融合:

其中:

π

对其进行归一化,就得到基于非等维状态混合估计的AIMM算法中新的转移概率。

进一步地,所述利用各运动模型的概率,将模型集中所有模型的滤波结果进行融合,计算全局状态估计和对应的协方差矩阵,完成当前时刻对机动目标的跟踪的过程为:

使用模型j的更新概率μ

其中全局状态估计值

其中协方差估计值P(k)的表达式如下。

由于采用了上述技术方案,本发明提供的一种基于非等维状态混合估计的并行IMM机动目标跟踪方法,通过使用并行IMM算法的结构与非等维状态估计方法,以提高模型切换速度,抑制在模型切换时的信息丢失问题,降低跟踪估计峰值误差。该方法将基于转移概率矩阵自适应的并行IMM(ATPM-PIMM)算法与非等维状态混合估计方法结合,使用并行运行的两种IMM算法,在进行模型交互时,先利用非等维状态混合估计方法对模型状态向量进行处理,根据系统不同的运动状态,确定响应目标运动状态的混合策略,以改善非等维交互带来的信息丢失问题,提高模型切换速度;然后通过转移概率修正函数,来综合使用IMM算法中的当前模型信息与AIMM算法中的过去模型信息,以提高模型未发生切换时的跟踪精度,改善模型切换响应滞后问题,降低模型切换时的峰值误差,满足对机动目标跟踪的需要;本发明能有效的降低模型切换时的峰值误差,提高跟踪精度。

附图说明

为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。

图1为本发明的总流程图;

图2为本发明的方法与基于转移概率矩阵自适应的并行IMM(ATPM-PIMM)算法对雷达机动目标跟踪的x轴位置误差图;

图3为本发明的方法与ATPM-PIMM算法对雷达机动目标跟踪的y轴位置误差图;

图4为本发明的方法与ATPM-PIMM算法对雷达机动目标跟踪的CV模型概率图;

图5为本发明的方法与ATPM-PIMM算法对雷达机动目标跟踪的CT模型概率图。

具体实施方式

为使本发明的技术方案和优点更加清楚,下面结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚完整的描述:

图1为本发明的总流程图,一种基于非等维状态混合估计的并行IMM机动目标跟踪方法,包括以下步骤:

S1:通过传感器采集机动目标的运动轨迹测量值并建立目标运动模型集,进行跟踪系统的初始化;

S2:通过在跟踪系统运行基于非等维状态混合估计的IMM算法,提供运动模型的当前信息,加快运动模型的切换速度;同时通过在跟踪系统运行基于非等维状态混合估计的AIMM算法,提供运动模型的过去信息,提高运动模型未发生切换时的跟踪精度;通过并行使用基于非等维状态混合估计的IMM算法,和基于非等维状态混合估计的AIMM算法,对当前时刻的机动目标进行跟踪;

S3:分别将当前时刻运行基于非等维状态混合估计的IMM算法与基于非等维状态混合估计的AIMM算法得到的全局状态估计与对应的协方差矩阵作为下一时刻基于非等维状态混合估计的IMM算法与基于非等维状态混合估计的AIMM算法的初值,进行下一时刻的跟踪,直至机动目标跟踪结束。

进一步地,所述通过在跟踪系统运行基于非等维状态混合估计的IMM算法,提供运动模型的当前信息,加快运动模型的切换速度的过程,包括以下步骤:

S2-1:采用非等维状态混合估计方法确定混合策略,再通过混合策略处理运动模型的状态向量,得到处理后的运动模型的状态向量;

S2-2:根据转移概率矩阵,对处理后的运动模型的状态向量进行输入交互;

S2-3:利用交互后的运动模型的状态向量进行滤波,得到各运动模型的滤波结果,对机动目标轨迹进行跟踪;

S2-4:利用各运动模型的滤波结果来计算各运动模型的似然函数,再采用各运动模型的似然函数更新各运动模型的概率;

S2-5:利用各运动模型的概率,将模型集中所有模型的滤波结果进行融合,计算全局状态估计和对应的协方差矩阵,得到当前时刻最终的跟踪估计,完成基于非等维状态混合估计的IMM算法当前时刻对机动目标的跟踪。

进一步地:所述通过在跟踪系统运行基于非等维状态混合估计的AIMM算法,提供运动模型的过去信息,提高运动模型未发生切换时的跟踪精度的过程包括以下步骤:

S3-1:采用非等维状态混合估计方法确定混合策略,再通过混合策略处理运动模型的状态向量,得到处理后的运动模型的状态向量;

S3-2:根据转移概率矩阵,对处理后的运动模型的状态向量进行输入交互;

S3-3:利用交互后的运动模型的状态向量进行滤波,得到各运动模型的滤波结果,对机动目标轨迹进行跟踪;

S3-4:利用各运动模型的滤波结果来计算各运动模型的似然函数,再采用各运动模型的似然函数更新各运动模型的概率;

S3-5:利用基于非等维状态混合估计的IMM算法与基于非等维状态混合估计的AIMM算法的运动模型的概率,对基于非等维状态混合估计的AIMM算法的转移概率矩阵进行更新;

S3-6:利用各运动模型的概率,将模型集中所有模型的滤波结果进行融合,计算全局状态估计和对应的协方差矩阵,得到当前时刻最终的跟踪估计,完成基于非等维状态混合估计的AIMM算法当前时刻对机动目标的跟踪。

进一步地,所述通过传感器采集机动目标的运动轨迹测量值并建立目标运动模型集的具体过程为:

建立包含M个目标运动模型的模型集,模型集包含运动目标的运动状态,确定M个目标运动子模型的第0时刻概率矩阵μ和第0时刻模型状态转移矩阵p为:

μ=[1/M 1/M ... 1/M]

其中,[·]

进一步地,所述采用非等维状态混合估计方法确定混合策略,再通过混合策略处理运动模型的状态向量,得到处理后的运动模型的状态向量过程为:

定义在一个由模型I与模型II组成的双模型系统中,模型II的状态分量包含于模型I,则在k-1时刻,则模型I的状态向量

P

其中,c(k-1)为模型I和模型II的公共分量,e(k-1)为模型I的额外分量,可以是加速度、转弯率等;

模型I和模型II进行状态交互时,对于低维的模型II的交互,可以舍弃模型I中额外的分量e(k-1),直接进行交互。

当高维模型进行交互时,则需要对低维模型进行扩维,使用机动目标检测器对目标的运动状态进行检测,根据不同的运动状态选择合适的扩维方法;

令检验统计量ε(k-1)为残差的衰减记忆平均值:

其中ρ(s)=(1-λ)/(1-λ

设检测阈值Th,当ε(k-1)>Th时,使用额外分量e(k-1)的均匀分布来对低维的模型II状态向量进行扩维,扩维后的状态向量

其中,E[·]表示计算期望,Cov[·]表示计算协方差;

当ε(k-1)≤Th时,根据模型概率来确定扩维方法;

当模型概率矩阵中,模型1的概率μ

当模型概率矩阵中,μ

进一步地,根据转移概率矩阵,对处理后的运动模型的状态向量进行输入交互的具体过程为:

对于第j个运动子模型,根据第k-1时刻经过非等维混合估计处理的模型i的滤波估计值

其中,

进一步地,所述利用交互后的运动模型的状态向量进行滤波,得到各运动模型的滤波结果,对机动目标轨迹进行跟踪的过程为:

将计算得到的混合状态估计值

P

计算模型j的残差v

S

计算卡尔曼滤波增益K(k):

K

计算模型j的状态估计值

P

进一步地,所述利用各运动模型的滤波结果来计算各运动模型的似然函数,再采用各运动模型的似然函数更新各运动模型的概率的过程:

根据模型j的残差v

更新模型j的概率。

进一步地,利用基于非等维状态混合估计的IMM算法与基于非等维状态混合估计的AIMM算法的运动模型的概率,对基于非等维状态混合估计的AIMM算法的转移概率矩阵进行更新的过程为:

在基于非等维状态混合估计的AIMM算法中,计算在当前时刻匹配模型与其它模型间的似然比为:

其中,下标r表示匹配模型,l表示其它模型,A表示基于非等维状态混合估计的AIMM算法。

利用转移概率修正函数,将并行运行的基于非等维状态混合估计的IMM算法与基于非等维状态混合估计的AIMM算法的信息进行融合:

其中:

对其进行归一化,就得到基于非等维状态混合估计的IMM算法中新的转移概率。

进一步地,所述利用各运动模型的概率,将模型集中所有模型的滤波结果进行融合,计算全局状态估计和对应的协方差矩阵,完成当前时刻对机动目标的跟踪的过程为:

使用模型j的更新概率μ

其中全局状态估计值

其中协方差估计值P(k)的表达式如下。

实施例1:并行运行的IMM算法与自适应IMM算法仿真条件相同:模型集由CV模型和CT模型组成,两种模型的状态向量分别为:

其中,ω为转弯率,CV模型的过程噪声参数为0.001,CT模型的过程噪声参数为0.015,观测噪声协方差矩阵参数为0.1,目标初始状态为[0m;0m;1m/s;0m/s],在0-4s内做匀速直线运动,在4.1-9s内做1rad/s的匀速转弯运动,在9.1-11s内做匀速直线运动,在11.1-16s内做-1rad/s的匀速转弯运动,在16.1-20s内做匀速直线运动;采样时间设为0.1s,交互多模型的初始模型概率为[0.5 0.5],转移概率矩阵设为[0.95 0.05;0.050.95],进行200次蒙特卡洛仿真验证。

利用本发明方法与基于转移概率矩阵自适应的并行IMM(ATPM-PIMM)算法对仿真条件中所述的目标进行跟踪仿真,并对其跟踪性能进行比较,

图2为本发明的方法与ATPM-PIMM算法对雷达机动目标跟踪的x轴位置误差图;

图3为本发明的方法与ATPM-PIMM算法对雷达机动目标跟踪的y轴位置误差图;

图4为本发明的方法与ATPM-PIMM算法对雷达机动目标跟踪的CV模型概率图;

图5为本发明的方法与ATPM-PIMM算法对雷达机动目标跟踪的CT模型概率图;可以看出,本发明方法的跟踪性能更好,更适合对机动目标进行跟踪。

以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

相关技术
  • 一种基于非等维状态混合估计的并行IMM机动目标跟踪方法
  • 一种基于变维滤波算法的机动目标跟踪方法
技术分类

06120113148197