掌桥专利:专业的专利平台
掌桥专利
首页

提供掺杂硅的方法

文献发布时间:2023-06-19 13:48:08


提供掺杂硅的方法

相关申请的交叉引用

本申请要求于2019年3月22日申请的美国专利申请No.62/822,423的优先权利益,其通过引用合并于此以用于所有目的。

技术领域

本公开涉及半导体器件的形成。更具体而言,本公开涉及有掺杂硅区域的半导体器件的形成。

背景技术

在半导体器件的形成中,衬底(例如硅衬底)可能被掺杂有掺杂剂。有时候使用均匀掺杂分布。其他时候则使用非均匀掺杂分布。

发明内容

为了实现前述及根据本公开的目的,提供了一种掺杂衬底的方法。在衬底的表面上形成氧化硅扩散阻挡层。至少一层掺杂剂层沉积在氧化硅扩散阻挡层上。帽盖层沉积在至少一层掺杂剂层上以形成衬底、氧化硅扩散阻挡层、至少一层掺杂剂层,以及帽盖层的堆叠件。退火该堆叠件。移除帽盖层、至少一层掺杂剂层、以及氧化硅扩散阻挡层。

本公开内容的这些特征和其它特征将在下面在本公开的具体实施方式中并结合以下附图进行更详细的描述。

附图说明

在附图中以示例而非限制的方式示出了本公开,并且附图中类似的附图标记表示相似的元件,其中:

图1是一实施方案的流程图;

图2A-2F为根据一实施方案进行处理的堆叠件的横截面示意图;

图3A是可能被用于一实施方案的处理室的剖视俯视示意图。

图3B是图3A所示的实施方案的剖视示意侧视图。

图3C是图3B中的区域3C的放大视图。

图4是原子层沉积处理的更详细的视图的流程图。

图5是可能被用于实践一实施方案的计算机系统的示意图。

具体实施方式

现在将参考附图中所示的几个优选的实施方案来详细描述本公开。在下面的描述中,阐述了许多具体细节以便提供对本公开内容的彻底理解。然而,对于本领域技术人员显而易见的是,本公开内容可以在没有这些具体细节中的一些或全部的情况下实施。在其他情况下,未详细描述公知的工艺步骤和/或结构,以免不必要地使本公开内容不清楚。

硼硅玻璃(BSG)膜的沉积系使用氧化硼(B

为了增进对实施方案的了解,图1是一实施方案的流程图。提供衬底(步骤104)。图2A是在一实施方案中的衬底200的横截面示意图。衬底200可能是在其他层上形成的多晶硅。

在衬底200的表面上形成氧化硅扩散阻挡层。在该实施方案中,使用原子层沉积(ALD)处理以沉积氧化硅沉积层。图3A是处理室300的剖视俯视示意图,该处理室有四个处理站可以被用在原子层沉积处理中。图3B为图3A所示的处理室300的剖视示意侧视图。处理室300有室壁304。四个处理站位于室壁304之内。每个处理站含有基座312,该基座充当衬底支撑件以支撑晶片308、喷头316(用于提供气体至位于喷头316之下的晶片308)、以及歧管320,该歧管连接喷头316至气源322。在该实施方案中,气源322包含第一气源328、第二气源332、以及主要清扫气源336。次要清扫出气口324与次要清扫气源326流体连通。在该实施方案中,次要清扫出气口324呈围绕歧管320的圆柱形套环的形状。该圆柱形套环有多个孔使次要清扫气体能够沿径向方向在喷头316顶部上方向外流动。载环310围绕晶片308。载环310的一部分在晶片308下方。载环310可以是介电陶瓷材料,如氧化铝。载环310可以被用于将晶片308移入和移出处理室300以及移动于各种不同的室之间。控制器335可控制地连接到气源322、次要清扫气源326、射频(RF)功率系统340、以及真空系统344。此室的一个示例是由Lam Research Corporation of Fremont,CA所制造的

图4是为了形成氧化硅扩散阻挡的原子层沉积处理的流程图。提供次要清扫气体的流(步骤404)。在该示例中,该次要清扫气体为氧(O

同时伴随着该次要清扫气体的流动(步骤404),设置有原子层沉积处理(步骤408),其沉积了ALD层。该原子层沉积处理(步骤408)包含多个循环,其中每一循环包含提供第一反应物气体(步骤412)、清扫第一反应物气体(步骤414)、提供第二反应物气体(步骤416),以及清扫第二反应物气体(步骤418)。原子层沉积处理(步骤408)的配方的示例提供了第一反应物气体,如400sccm的氨基硅烷(步骤412)。沉积含硅的前体层。在0.4秒后,使经由喷头316的第一反应物气体的流动停止。第一清扫气体经喷头316流至站(步骤414)。在该示例中,该第一清扫气体为氩(Ar)。使该第一清扫气体的流动停止。第二反应物气体经喷头316流至处理室内(步骤416)。在该示例中,第二反应物气体不含氧且包含惰性气体,如13000sccm的Ar。将第二反应物气体转变为等离子体。在该示例中,以13.56(兆赫)MHz的频率提供100到500瓦的RF功率。来自第二反应物气体的等离子体以及次要清扫气体将沉积的含硅前体层转变为氧化硅,其为ALD层的一部分。在0.25秒后,进入处理室的第二反应物气体的流动停止。使清扫气体流入处理室内,以清扫第二反应物气体(步骤418)。第二清扫气体的流动停止。接着循环从使前体气体流入处理室的步骤开始重复。重复循环直到氧化硅扩散阻挡层完成。

图2B为衬底200在氧化硅扩散阻挡层204沉积之后的横截面示意图。不预期地发现,通过不经喷头提供氧气而在次要清扫气体的流动中提供氧,会形成氧化硅扩散阻挡层204,其在衬底200外缘周围较在衬底200中心上方来得厚。

接着,至少一层掺杂剂层沉积在氧化硅扩散阻挡层204上(步骤112)。在该示例中,五层掺杂剂层形成在氧化硅扩散阻挡层204上。图2C为衬底200在五层掺杂剂层形成在氧化硅扩散阻挡层204上之后的横截面示意图。在该示例中,五层掺杂剂层为第一含硼层208、第二含硼层212、第三含硼层216、第四含硼层220以及第五含硼层224。在该实施方案中,第一含硼层208、第二含硼层212、第三含硼层216、第四含硼层220以及第五含硼层224都是氧化硼层。阴影表示存在硼。第一含硼层208、第二含硼层212、第三含硼层216、第四含硼层220以及第五含硼层224可能通过ALD处理沉积。

这样的ALD处理可能使包含硼酸三甲酯(TMB)的第一掺杂剂反应物气体流动。第一掺杂剂反应物气体形成为等离子体以沉积含硼前体层。在第一掺杂剂反应物气体的清扫之后,使包含氧的第二掺杂剂反应物气体流动。第二掺杂剂反应物气体形成为等离子体以从含硼前体层形成氧化硼层。该处理重复多个循环。在其他实施方案中,第一含硼层208、第二含硼层212、第三含硼层216、第四含硼层220和第五含硼层224可通过等离子体增强原子层沉积(PEALD)处理、等离子体增强化学气相沉积(PECVD)处理或化学气相沉积(CVD)处理形成。在其他实施方案中,其他相似的处理可以被用于沉积第一含硼层208、第二含硼层212、第三含硼层216、第四含硼层220以及第五含硼层224。

帽盖层沉积在掺杂剂层之上(步骤116)。在此实施方案中,帽盖层以PEALD处理、ALD处理、PECVD,或CVD处理中的至少一者进行沉积。在该实施方案中,该帽盖层是氧化硅帽盖层。在其他实施方案中,其他相似的处理可以被用来沉积帽盖层。图2D是在帽盖层228已沉积而形成堆叠件232之后衬底200的横截面示意图。较理想的情况为,帽盖层228足够稠密以限制来自堆叠件232的掺杂剂的向外扩散。

退火堆叠件232(步骤120)。在该示例中,退火处理被原位执行或通过在不同的炉中加热而执行。堆叠件232在氮(N

帽盖层228、第一含硼层208、第二含硼层212、第三含硼层216、第四含硼层220、第五含硼层224以及氧化硅扩散阻挡层204从堆叠件232移除(步骤124)。使用氢氟酸(HF)的湿蚀刻可以被用于从堆叠件232移除帽盖层228、第一含硼层208、第二含硼层212、第三含硼层216、第四含硼层220、第五含硼层224和氧化硅扩散阻挡层204。图2F是在移除帽盖层228、第一含硼层208、第二含硼层212、第三含硼层216、第四含硼层220、第五含硼层224和氧化硅扩散阻挡层204之后的堆叠件232的横截面示意图。剩下掺杂衬底200。在该实施方案中,该掺杂衬底200为BSG。

通过具有形成氧化硅扩散阻挡层204的独立步骤(步骤104),氧化硅扩散阻挡层204的厚度可以被控制。氧化硅扩散阻挡层204的被控制的厚度提供对衬底200的掺杂剂的浓度分布的控制。该实施方案提供在整个晶片的下伏硅器件更均匀的掺杂。目标是使晶片上的每个管芯中的每个器件性能相匹配。

图3C是图3B所示的区域3C的放大视图。第一间隙364是晶片308与载环310间的距离。第二间隙368是载环310与基座312间的距离。O形环360在基座312与晶片308之间。如果第一间隙364被增加以增强在晶片308边缘的等离子体,被增强的等离子体因为稠化导致在晶片308边缘周围的氧化硅扩散阻挡层204的较低的厚度。在该实施方案中,第一间隙364减少,所以氧化硅扩散阻挡层204在衬底308边缘周围的厚度增加。

在其他实施方案中,沉积至少一层掺杂剂层在氧化硅扩散阻挡层204之上(步骤112)的操作沉积了氧化磷(P

在另外的实施方案中,与沉积在靠近衬底边缘的含硅前体层相比,在靠近衬底中心沉积较厚层的含硅前体层。在这样的实施方案中,沉积的氧化硅扩散阻挡层204在靠近衬底200中心处是与在衬底200边缘处相比较厚。

在另一实施方案中,通过加热衬底200,可能形成氧化硅扩散阻挡层204(步骤108)。衬底200是被非均匀加热的,使得氧化硅扩散阻挡层204的厚度是非均匀的。例如,与在衬底200的中心相比,衬底200周围的边缘被加热至较高的温度。因此,与衬底200的中心相比,氧化硅扩散阻挡层204在衬底200的边缘较厚。在该示例中,氧化硅从衬底200的顶端面形成,而非将氧化硅沉积在衬底200上。可以通过在整个基座312提供非均匀加热,以提供衬底200的非均匀加热。氧在加热硅的期间提供,以形成氧化硅。在若干实施方案中,衬底200被加热至在200℃至900℃的范围内的温度,以形成氧化硅扩散阻挡层204。更具体而言,衬底200被加热至在200℃至650℃的范围内的温度,以形成氧化硅扩散阻挡层204。甚至更具体而言,衬底200被加热至在200℃至400℃的范围内的温度,以形成氧化硅扩散阻挡层204。

在多种实施方案中,基座形式的衬底支撑件有多个加热区。在一实施方案中,衬底支撑件有超过20个独立控制的加热区。独立控制的加热区被用来独立地加热衬底的不同部分达到不同温度。这些区可以是环状或长方形或其他不同的形状以及不同形状的组合。在不同的实施方案中,为了改正其他非均匀性,独立控制的加热区可以被设定为在整个衬底提供非均匀的温度分布,以产生厚度较均匀的氧化硅扩散阻挡层204。该其他非均匀性可以是非均匀气流。该较均匀的氧化硅扩散阻挡层204可以被用于提供整个衬底200更均匀的掺杂浓度。在其他实施方案中,该非均匀温度分布提供调整过的氧化硅扩散阻挡层204,其有着非均匀厚度。该衬底200非均匀地加热,使得较厚的氧化硅扩散阻挡层204形成在衬底200的较高温的区域上。在若干实施方案中,该氧化硅扩散阻挡层204的非均匀厚度可以被用于提供衬底200较均匀浓度的掺杂。在其他实施方案中,氧化硅扩散阻挡层204的非均匀厚度可以被用于提供衬底200的调整过的非均匀浓度掺杂。氧化硅扩散阻挡层204的非均匀厚度可以被用于控制掺杂浓度的均匀性。

在示例性实施方案中,次要清扫气体可以包含O

图5是示出适用于实现在实施方案中使用的控制器335的计算机系统500的高级框图。计算机系统可以具有从集成电路、印刷电路板和小型手持设备到大型超计算机的许多物理形式。计算机系统500包括一个或多个处理器502,并且还可以包括电子显示装置504(用于显示图形、文本和其他数据)、主存储器506(例如随机存取存储器(RAM))、存储装置508(例如,硬盘驱动器)、可移动存储装置510(例如,光盘驱动器)、用户界面装置512(例如,键盘、触摸屏、小键盘、鼠标或其他指点装置等)和通信接口514(例如,无线网络接口)。通信接口514允许通过链路在计算机系统500和外部装置之间传送软件和数据。系统还可以包括与上述装置/模块连接的通信基础设施516(例如,通信总线、交叉连接杆或网络)。

经由通信接口514传送的信息可以呈信号的形式,例如电子信号、电磁信号、光学信号或能够经由通信链路由通信接口514接收的其它信号,通信链路携带信号并可以使用导线或电缆、光纤、电话线、蜂窝电话链路、射频链路和/或其他通信信道实现。利用这样的通信接口,可以预期一个或多个处理器502可以在执行上述方法步骤的过程中从网络接收信息,或者可以向网络输出信息。此外,方法实施方案可以仅在处理器上执行,或者可以通过诸如因特网之类的网络与共享处理的一部分的远程处理器结合执行。

术语“非瞬态计算机可读介质”通常用于指代介质,诸如主存储器、辅助存储器、可移动存储装置、和存储装置,诸如硬盘、闪存存储器、磁盘驱动存储器、CD-ROM以及其他形式的持久性存储器,并且不应当被解释为涵盖瞬态标的物,如载波或信号。计算机代码的示例包括机器代码(诸如由编译器产生的)和含有由计算机使用解释器执行的较高级代码的文档。计算机可读介质也可以是被包含于载波中且代表一系列可被处理器执行的指令的计算机数据信号发送的计算机代码。

虽然已经根据几个优选的实施方案描述了本发明,但是存在落在本发明的范围内的改变、修改、置换和各种替代等同方案。还应当注意,存在实现本公开的方法和装置的许多替代方式。因此,以下所附权利要求旨在被解释为包括落在本公开的真实精神和范围内的所有这样的改变、修改、置换和各种替代等同方案。

相关技术
  • 制备砷掺杂剂的方法、应用氧化砷掺杂生长单晶硅的方法和单晶炉以及砷掺杂单晶硅
  • 提供掺杂硅的方法
技术分类

06120113817465