掌桥专利:专业的专利平台
掌桥专利
首页

一种基于金属诱导有机界面层的有机光电器件及制备方法

文献发布时间:2023-06-19 16:04:54



技术领域

本发明属于有机光电器件技术领域,主要涉及一种基于金属诱导有机界面层的有机光电器件及制备方法。

背景技术

有机光电器件由于其材料来源广,可溶液加工,良好的机械性能等特点被广泛研究,具有良好的应用潜力。随着性能优异的新材料的合成与应用,器件制备方法的不断完善,有机光电器件的器件性能得到了不断的提升。发展至今,有机光电器件的光电转换效率获得了极大的提升,大大推动了有机光电器件的商业化进程。

作为多层材料叠加而成的器件,不同材料间的界面接触性能是影响器件效率的重要因素。界面修饰是提升有机光电器件中界面连接性能的主要手段。随着有机光电器件效率的不断提升,器件稳定性成为了限制有机光电器件商用需要解决的主要问题。一般来讲,可以通过材料设计或者界面结构优化来提升器件的结构稳定性。例如有机光电器件中常用的阳极界面修饰材料PEDOT:PSS(Advanced Energy Materials,2020,10,2000743)溶液呈酸性,会降低器件结构的稳定性。用于有机光电器件的阴极界面材料PFN-Br会展现出明显的不稳定性。水溶性ZnO作为阴极界面修饰材料被广泛应用于有机光电器件的制备,是目前最常用的界面材料之一(Nature Photonics 2012,6(2),115-120)。但是ZnO溶液的制备方法比较麻烦,而且不能长时间保存,制备器件时还需要高温加热。水醇溶性阴极界面修饰材料PFN-Br(聚[(9,9-二(3'-(N,N-二甲氨基)丙基)芴基-2,7-二基)-ALT-[(9,9-二正辛基芴基2,7-二基)-溴)经常应用于有机光电器件的制备,并展现出优异的性能(NovelElectroluminescent Conjugated PolyelectrolytesBased on Polyfluorene.Chemistryof Materials 2004,16,708-716)。然而,对于PFN-Br作为阴极界面应用于倒装有机光电器件的应用却鲜有报道,而且正装器件的稳定性也较差。因此,将这类水/醇溶性界面材料用于制备高效且稳定的有机光电器件中是很有意义的。

发明内容

基于上述研究背景,本发明提出了一种金属诱导有机偶极多功能界面层的制备方法,并成功将其应用于溶液法制备有机太阳能电池、有机光电探测器等器件中,得到了高效且稳定的有机光电器件。

本发明采用如下技术方案:

本发明提供了一种基于金属诱导有机界面层的有机光电器件,其器件结构包括阴极、阴极界面修饰层、活性层、阳极界面修饰层和阳极。

进一步地,所述阴极为氧化铟锡玻璃(ITO)。ITO是一种透明且具有良好导电性的衬底材料。

进一步地,所述阴极界面修饰层为金属层/有机界面层多功能复合界面层。

更进一步地,所述阴极界面修饰层为金属/PFN-Br复合界面。其中,金属优选为Ag,蒸镀在ITO表面,PFN-Br在金属表面旋涂成膜。金属层厚度为0.5-10nm,PFN-Br有机界面层厚度为10nm。

进一步地,所述活性层材料为PM6:Y6,PTB7-Th:PCBM或PTB7-Th:COTIC-4F。其中,供体PM6和受体Y6的分子结构参见文献Joule,2019,3(4):1140-1151;供体PTB7-Th和受体PCBM的分子结构参见文献Advanced Energy Materials,2019,9(19):1803394;供体PTB7-Th和受体COTIC-4F分子结构参见文献Advanced Energy Materials,2018,8(24):1801212。活性层厚度最优值为100nm。

优选地,所述活性层采用PM6:Y6,厚度最优值为100nm。

进一步地,所述阳极界面修饰层为金属氧化物,厚度最优值为10nm。

优选地,所述阳极界面修饰层为氧化钼MoO

进一步地,所述阳极为金属,通过热蒸镀法沉积在阳极修饰层上,厚度为100nm。

优选地,所述阳极为金属Al或者Ag,厚度为100nm。

进一步地,所述有机光电器件包括有机太阳能电池和有机光电探测器。

本发明提供了一种基于金属诱导有机界面层的有机光电器件的制备方法,包括以下步骤:

(1)处理阴极基底材料;

(2)在ITO表面采用热蒸镀法沉积金属层作为诱导层后,依次采用溶液法制备阴极界面修饰层和活性层;

(3)依次制备阳极界面修饰层和阳极,最终得到所述有机光电器件。

进一步地,步骤(1)中,阴极基底的处理方法为:将ITO玻璃放入去离子水中加入适量的清洁剂之后超声20分钟,如此反复2-3次,然后用去离子水清洗2-3次;之后将ITO玻璃用异丙醇超声清洗两次,每次20分钟;最后将ITO玻璃放入70℃的烘箱中8-12个小时后备用。

进一步地,步骤(2)中,阴极界面修饰层的制备方法为:将处理好的ITO玻璃移入蒸镀系统,在1×10

进一步地,步骤(2)中,活性层的制备方法为:将活性层材料溶于溶剂中,通过旋涂、喷涂、刮图、丝网印刷等方法制备在多功能复合界面层上,形成活性层。

进一步地,所述的溶剂为氯仿、氯苯或者氯苯加3%的二碘辛烷。

进一步地,步骤(3)中,阳极界面修饰层制备方法为:金属氧化物通过热蒸镀法或者纳米颗粒溶液沉积法制备作为阳极界面修饰层,随后在阳极界面修饰层上蒸镀金属Al或者Ag作为阳极顶电极。

优选地,步骤(3)中,采用热蒸镀法在1×10

与现有技术相比,本发明具有如下优点和有益效果:

本发明解决了PFN-Br这类水醇溶性界面材料在有机光电器件中不稳定的问题。而且,金属/PFN-Br的制备过程不需要高温加热,制作方法简单易操作。作为典型案例,本发明制备了Ag/PFN-Br的多功能有机复合界面,当PFN-Br和Ag接触时,两者之间属于强烈的化学吸附,有效避免了PFN-Br在活性层旋涂过程中被破坏。此外,金属/PFN-Br复合界面能够有效降低ITO表面的功函数(ITO的功函数为4.8eV,当在ITO表面添加Ag/PFN-Br界面层时,基底的表面功函数降为4.0eV。),使其与受体的LUMO能级更加匹配,降低活性层和电极间的电荷传输势垒,有利于电子的传输和收集,有效提升电荷传输效率,最终制备出综合性能优异的有机光电器件。同时,本发明制备的基于Ag/PFN-Br复合界面的有机光电器件具有良好的稳定性,在手套箱中放置超过900小时后器件效率依旧保持初始效率的90%,远远超过单纯使用PFN-Br的器件效率。

附图说明

图1为本发明制备的基于金属/PFN-Br复合界面的有机光电器件的结构示意图;

图2为本发明制备的基于金属/PFN-Br复合界面的有机光电器件的制备流程图;

图3为实施例1和对比例1制备的有机光电器件在光照条件下的电流密度和电压的关系图;

图4为实施例1和对比例1制备的有机光电器件在黑暗条件下的电流密度和电压的关系图;

图5为实施例1和对比例1制备的有机光电器件在氮气手套箱内器件效率和时间的关系图。

具体实施方式

以下实施例制备了基于金属诱导有机偶极界面材料的高效稳定有机光电器件,器件结构主要包括阴极01、阴极界面修饰层02、活性层03、阳极界面修饰层04和阳极05,其结构示意图如图1所示。

其中,阴极为氧化铟锡玻璃(ITO),阴极界面修饰层为金属/PFN-Br复合界面材料,其中金属蒸镀在ITO表面,PFN-Br在金属表面旋涂成膜,金属层厚度为0.5-10nm,最优值为1nm,PFN-Br旋涂的厚度为10nm左右。活性层采用PM6:Y6,PTB7-Th:PCBM或者PTB7-Th:COTIC-4F,活性层厚度为100nm。所述阳极界面修饰层为MoO

下面结合附图,对本发明较优的实施例进行详细的描述。

实施例1

本实施例是将Ag/PFN-Br复合界面应用于有机光电器件的制备,所述有机光电器件为有机太阳能电池。具体制备步骤如下:

(1)首先清洗ITO玻璃,确保其表面没有任何污染物。将ITO玻璃放入去离子水中加入15mL清洁剂之后超声20分钟,如此反复2-3次,然后用去离子水清洗2-3次;之后将ITO玻璃用异丙醇超声清洗两次,每次20分钟;最后将ITO玻璃放入70℃的烘箱中12个小时后备用。

(2)将处理好的ITO玻璃移入蒸镀系统,在4×10

(3)在前面步骤的基础上旋涂活性层。将活性层材料溶于溶剂中,其中活性层的给受体分别为PM6和Y6,质量比为1:1.2,总浓度为16mg/mL,溶剂为CF(氯仿)。将活性层以3000r/min的速度旋涂在阴极界面修饰层上表面。

(4)完成活性层的旋涂之后将器件移入蒸镀仓,在4×10

实施例1中的有机光电器件主要特征是,所述的阴极界面修饰层是在室温下制备的Ag/PFN-Br复合界面,Ag的平均蒸镀厚度为1nm,PFN-Br旋涂成膜的平均厚度为8nm。

对比例1

对比例1和实施例1的制备方法基本相同,区别在于阴极界面修饰层为ZnO,其器件结构为ITO/ZnO/PM6:Y6/MoO

(1)首先清洗ITO玻璃,确保其表面没有任何污染物。将ITO玻璃放入去离子水中加入15mL清洁剂之后超声20分钟,如此反复2-3次,然后用去离子水清洗2-3次;之后将ITO玻璃用异丙醇超声清洗两次,每次20分钟;最后将ITO玻璃放入70℃的烘箱中12个小时后备用。

(2)接着通过旋涂法将ZnO旋涂在ITO表面。首先配制ZnO前驱体溶液,步骤为:称量1g的醋酸锌,然后依次加入10mL乙二醇甲醚和280uL乙醇胺,60℃加热搅拌8小时以上至溶液完全澄清透明。取60μLZnO溶液,以2500r/min的转速旋涂在ITO表面,然后将ITO玻璃放在200℃热台上加热60分钟。至此阴极界面修饰层制备完毕。

(3)在前面步骤的基础上旋涂活性层。将活性层材料溶于溶剂中,其中活性层的给受体分别为PM6:Y6,质量比为1:1.2,总浓度为16mg/mL,溶剂为CF(氯仿)。将活性层以3000r/min的速度旋涂在阴极界面修饰层上表面。

(4)完成活性层的旋涂之后将器件移入蒸镀仓,在4×10

图3和图4分别是实施例1和对比例1的器件在光照和黑暗条件下的电流密度和电压之间的关系图。实施例1的器件结构为ITO/Ag/PFN-Br/PM6:Y6/MoO

黑暗条件下的电流密度和电压曲线关系(图4)进一步证明了实施例1和对比例1的器件性能存在差异的原因:实施例1基于Ag/PFN-Br的器件在正向偏压下有更大的电流密度,说明了界面接触电阻要小于对比例1,前者拥有更好的界面接触。从表1的数据可以发现:实施例1的器件的光电转换效率达到15.75%,也优于对比例1的15.23%。值得一提的是,如图5所示,从实施例1(曲线2)和对比例1(曲线1)在氮气手套箱内的器件稳定性研究结果可以发现,实施例1的器件效率在超过900h后依旧可以保持初始效率的90%以上,稳定性明显优于对比例1。

表1实施例1和对比例1器件的主要性能表征参数

实施例2

本实施例依旧是将Ag/PFN-Br复合界面应用于倒装有机光电器件的制备,所述有机光电器件为有机太阳能电池,其器件结构为ITO/Ag/PFN-Br/PTB7-Th:PCBM/MoO

(1)首先清洗ITO玻璃,确保其表面没有任何污染物。将ITO玻璃放入去离子水中加入15mL清洁剂之后超声20分钟,如此反复2-3次,然后用去离子水清洗2-3次;之后将ITO玻璃用异丙醇超声清洗两次,每次20分钟;最后将ITO玻璃放入70℃的烘箱中12个小时后备用。

(2)将处理好的ITO玻璃移入蒸镀系统,在4×10

(3)在前面步骤的基础上旋涂活性层。将活性层材料溶于溶剂中,其中活性层的给受体分别为PTB7-Th和PCBM,质量比为1:1.5,总浓度为25mg/mL,溶剂为CB(氯苯)加3%的DIO(二碘辛烷)。将活性层以3000r/min的速度旋涂在阴极界面修饰层上表面,然后移入真空仓抽大约3小时的DIO。

(4)完成活性层的旋涂之后将器件移入蒸镀仓,在4×10

对比例2

对比例2与实施例2制备方法基本相同,区别在于阴极界面层采用材料的是ZnO,其器件结构为ITO/ZnO/PTB7-Th:PCBM/MoO

实施例2和对比例2的器件的性能测试数据见表2,可以发现Ag/PFN-Br在富勒烯体系里依旧拥有良好的器件修饰效果。实施例2器件的填充因子和器件效率都要优于对比例2,从而说明Ag/PFN-Br复合界面在倒装有机光电器件的制备中具有良好的适用性。

表2实施例2和对比例2器件的主要性能表征参数

实施例3

本实施例是将Ag/PFN-Br复合界面应用于高性能有机光电探测器的制备。其制备流程和前面的有机光电器件(有机太阳能电池)的制备方法基本一样。器件结构为ITO/Ag/PFN-Br/PTB7-Th:COTIC-4F/MoO

(1)首先清洗ITO玻璃,确保其表面没有任何污染物。将ITO玻璃放入去离子水中加入15mL清洁剂之后超声20分钟,如此反复2-3次,然后用去离子水清洗2-3次;之后将ITO玻璃用异丙醇超声清洗两次,每次20分钟;最后将ITO玻璃放入70℃的烘箱中12个小时后备用。

(2)将处理好的ITO玻璃移入蒸镀系统,在4×10

(3)在前面步骤的基础上旋涂活性层。将活性层材料溶于溶剂中,其中活性层的给受体分别为PTB7-Th和COTIC-4F,质量比为1:1.5,总浓度为40mg/mL,溶剂为CB(氯苯)。将活性层以2000r/min的速度旋涂在阴极界面修饰层上表面。

(4)完成活性层的旋涂之后将器件移入蒸镀仓,在4×10

对比例3

对比例3与实施例3制备方法基本相同,区别在于阴极界面层采用的是ZnO,其中ZnO前驱体溶液的配制步骤同对比例1的步骤(2)。其器件结构为ITO/ZnO/PTB7-Th:COTIC-4F/MoO

表3实施例3和对比例3器件的主要性能表征参数

实施例4

本实施例依旧是将Ag/PFN-Br复合界面应用于倒装有机光电器件的制备,所述有机光电器件为有机太阳能电池,其器件结构为ITO/Ag(3nm)/PFN-Br/PTB7-Th:PCBM/MoO

(1)首先清洗ITO玻璃,确保其表面没有任何污染物。具体操作与实施例2步骤(1)相同。

(2)将处理好的ITO玻璃移入蒸镀系统,在4×10

(3)在前面步骤的基础上旋涂活性层。具体操作与实施例2步骤(3)相同。

(4)完成活性层的旋涂之后将器件移入蒸镀仓,在4×10

表4实施例4器件的主要性能表征参数

上述实施例主要是本发明的几种较优的实施形式,并进行了比较详细的描述。对于金属/PFN-Br复合界面应用于有机光电器件的应用不仅限于这些实施例。对于从事本领域的研究人员来说,在没有脱离本专利设计的主体思路下,进行若干变化和改进应当都属于本专利的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

相关技术
  • 一种基于金属诱导有机界面层的有机光电器件及制备方法
  • 基于共轭聚电解质的有机光电器件阴极界面层的制备方法及应用
技术分类

06120114691451