掌桥专利:专业的专利平台
掌桥专利
首页

一种摄像头模组及终端设备

文献发布时间:2023-06-19 16:06:26



技术领域

本发明涉及摄像头模组技术领域,具体来说,是指一种摄像头模组及终端设备。

背景技术

相关技术中,自动对焦摄像头模组是通过镜头运动来实现自动对焦的功能。这种结构通常采用音圈马达来驱动镜头的运动,而音圈马达由于结构体积较大,导致摄像头模组的肩高尺寸较大。作为前置摄像头,由于以手机为代表的终端设备的屏幕占比要求在96%以上,要求屏幕的开孔尺寸较小,因此采用音圈马达驱动镜头运动的自动对焦方式无法满足摄像头模组小型化的需求。

发明内容

有鉴于此,本发明的目的在于克服现有技术的不足,第一方面,提供一种摄像头模组,以解决采用音圈马达驱动镜头运动的方式导致摄像头模组结构体积较大的技术问题。

本发明解决该技术问题所采用的技术方案是:

一种摄像头模组,包括:

摄像头组件;

柔性部件,所述摄像头组件与所述柔性部件固定设置,所述柔性部件包括相连接的搭载部位与弹性部位,所述搭载部位搭载有与所述摄像头组件相对设置的感光芯片;

驱动组件,所述驱动组件用于产生驱动力;

其中,所述驱动组件能驱动所述搭载部位移动,所述搭载部位带动所述感光芯片移动。

在上述技术方案的基础上,该摄像头模组还可以做如下的改进。

可选的,所述搭载部位与所述弹性部位为一体成型的柔性结构。

可选的,所述柔性部件为柔性电路板,所述柔性电路板的一端弯折,所述柔性电路板的弯折端面设置所述搭载部位,所述柔性电路板的弯折连接部设置所述弹性部位。

可选的,所述柔性部件为柔性电路板,所述柔性电路板开设有镂空部位,所述柔性电路板镂空后的中部设置所述搭载部位,所述柔性电路板镂空后的边缘部位设置边框部位,所述柔性电路板镂空后的其余部位设置所述弹性部位。

可选的,所述搭载部位连接有载板,所述感光芯片连接于所述载板。

可选的,所述驱动组件包括磁性组件与线圈组件,所述磁性组件与所述摄像头组件连接固定,所述线圈组件与所述载板连接固定,所述线圈组件位于所述磁性组件的磁场范围内。

可选的,所述线圈组件包括第一支架与线圈本体,所述第一支架与所述载板连接固定,所述线圈本体绕制于所述第一支架。

可选的,所述第一支架内置有滤光片,所述滤光片位于所述摄像头组件与所述感光芯片之间。

可选的,所述线圈组件包括直接设置于所述载板的线圈本体。

可选的,所述磁性组件与所述线圈组件之间连接有弹性件。

可选的,所述磁性组件包括第二支架与磁性件,所述磁性件固定于所述第二支架的内部,所述摄像头组件固定于所述第二支架的外部。

可选的,所述载板还连接有位置传感器,所述第二支架的内部还固定有位置磁性件,所述位置传感器与所述位置磁性件相对设置。

可选的,所述第二支架连接有一底座,所述柔性部件固定于所述底座。

可选的,所述搭载部位能带动所述感光芯片沿所述摄像头模组的光轴方向移动,和/或,所述搭载部位能带动所述感光芯片垂直所述摄像模组的光轴方向移动或扭转。

第二方面,本发明还提供一种终端设备,包括上述的摄像头模组。

与现有技术相比,本发明提供的摄像头模组具有的有益效果是:

本发明通过设置柔性部件,柔性部件设置有搭载部位与弹性部位,并将感光芯片固定在搭载部位,此外,本发明还设置有驱动组件,当需要对焦时,驱动组件驱动搭载部位克服弹性部位的弹性力移动,同时,搭载部位带动设置其上的感光芯片移动从而实现自动对焦,本发明的摄像头模组不需要在摄像头组件设置音圈马达通过音圈马达驱动摄像头组件移动实现自动对焦,从而有利于减小摄像头模组的肩高尺寸与体积。

附图说明

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。

图1是本发明摄像头模组的一种分解结构示意图;

图2是图1中摄像头模组的一侧剖视结构示意图;

图3是图1中摄像头模组的另一侧剖视结构示意图;

图4是图1中柔性电路板的一种立体结构示意图;

图5是图1中柔性电路板的另一立体结构示意图;

图6是图1中柔性电路板的又一立体结构示意图;

图7是图1中柔性电路板的再一立体结构示意图;

图8是本发明摄像头模组的另一分解结构示意图;

图9是图8中摄像头模组的一侧剖视结构示意图;

图10是图9中磁性件与线圈本体相对位置的立体结构示意图;

图11是本发明磁性件与线圈本体相对位置的另一结构示意图。

图中:

10—摄像头组件;21—第二支架;22—磁性件;23—位置磁性件;30—弹片;40—滤光片;51—第一支架;52—线圈本体;53—绕线柱;60—感光芯片;71—载板;72—位置传感器;80—柔性电路板;81—搭载部位;82—弯折连接部;83—边框部位;831—第一接触部位;832—第一弯曲部位;841—第二接触部位;842—内框部位;843—第三接触部位;851—第四接触部位;852—第二弯曲部位;90—底座。

具体实施方式

为使本发明的目的、技术方案和优点更加清楚,下面将对本发明的技术方案进行详细的描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全面的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所得到的所有其它实施方式,都属于本发明所保护的范围。

实施例:

本发明提供一种摄像头模组,如图1至图3所示,包括摄像头组件10,摄像头组件10一般包括镜筒、多个透镜以及间隔环等多种构件堆叠而成。摄像头模组通过摄像头组件10获取图像信号,图像信号投射在感光芯片60上并转化为电信号发送至处理器。

如图1至图3所示,摄像头组件10连接有磁性组件,磁性组件包括第二支架21与磁性件22。第二支架21整体呈顶部开口、底部敞开的半盒型结构。摄像头组件10连接在第二支架21的顶部外侧,连接的方式包括但不限于粘贴、螺钉连接、卡扣连接或者一体成型等方式。其中,摄像头组件10获取的图像信号通过顶部开口传输。当然,第二支架21还可以设计成为筒型、盒型或者框架等多种结构形式,本实施例并不对第二支架21的具体结构做限定。此外,第二支架21在与摄像头组件10固定连接后,以能够使产生的驱动力控制在摄像头组件10的下方,进而使摄像头组件10在不发生移动的情况下也能实现自动对焦的功能。

如图1至图3所示,磁性件22固定在第二支架21半盒型结构的内侧壁上,并用于与线圈组件配合以产生磁推力。其中,可以在第二支架21的内侧壁上设置容纳凹槽,该容纳凹槽的结构与磁性件22相对应,即磁性件22能够对应置于容纳凹槽中并与第二支架21的内侧壁固定连接。磁性件22可以选用磁石,也可以选用磁铁、充磁体或者导电线圈中的任意一种。磁性件22的数量可以为一个或者多个,本实施例中,磁性件22的数量为两个较佳。两个磁性件22的位置相对设置,磁性件22与第二支架21的连接方式包括但不限于粘贴、焊接或者螺钉连接等方式。

于本实施例中,在第二支架21的内侧壁上还连接有位置磁性件23,用于与位置传感器72配合,以检测位置磁性件23与位置传感器72之间的相对位置。其中,位置磁性件23与磁性件22的材质可以相同或者不同,位置磁性件23与第二支架21的连接方式包括但不限于粘贴、焊接或者螺钉连接等方式。

如图1至图3所示,第二支架21的底部连接有底座90,底座90四角具有与半盒型结构的第二支架21四角匹配的立柱,使底座90可以通过立柱与第二支架21定位连接成为整体外壳结构。底座90的内部下沉,用以提供驱动组件足够的运动空间。第二支架21与底座90的连接方式包括但不限于粘贴、螺钉连接或者卡扣连接的方式。当然,根据第二支架21的实际结构形状,底座90也可以设计为圆形、环形或者多边形等结构形状。

如图1至图3所示,第二支架21与底座90连接形成外壳结构,柔性部件至少部分设于外壳结构内部以用于带动感光芯片60移动。在一些实施方式中,柔性部件可以选用柔性电路板80,柔性电路板80包括搭载部位81与弹性部位,搭载部位81用于搭载与摄像头组件10相对设置的感光芯片60。柔性电路板80至少部分固定在外壳结构内部,感光芯片60能够在外壳结构内移动。

可以理解的是,柔性部件也可以选用其他具有弹性的硅胶、橡胶等材料制成,感光芯片60另外单独外接电路板即可。但是本实施例中直接选用柔性电路板80作为柔性部件,不仅能够起到搭载感光芯片60沿摄像头组件10的光轴方向移动的作用,同时还能够对感光芯片60起到导电、数据传输的作用。采用柔性电路板80能够实现功能一体化,有利于减少其余零部件的设置,从而有利于减小整个摄像头模组的体积。此外,柔性电路板80的多功能性,有利于减少相关零部件,从而降低成本。

如图4所示,作为一种实施方式,柔性电路板80的一端弯折成型,弯折后的端部成为搭载部位81,弯折连接部82成为弹性部位,即搭载部位81能够在弯折连接部82的弹性作用下向摄像头组件10的光轴方向移动或者复位。其中,柔性电路板80弯折的次数可以为一次或者多次。

根据柔性电路板80的实际布线情况,可以使柔性电路板80弯折一次,形成U形结构;也可以使柔性电路板80弯折两次,形成Z形或者匚形结构;还可以弯折更多的次数以形成更多的结构形状。同时,根据外壳结构的具体形状,可以选择柔性电路板80具体的弯折形状。例如,弯折后的搭载部位81与未弯折的柔性电路板80相平行;或者,弯折后的搭载部位81与未弯折的柔性电路板80位于弯折连接部82的同一侧或者异侧。

如图5所示,作为另一种实施方式,柔性电路板80开设有镂空部位,镂空后的中部区域成为搭载部位81,镂空后的边缘部位成为边框部位83,镂空后的其余部位成为弹性部位。弹性部位包括第一接触部位831与第一弯曲部位832,第一弯曲部位832呈L型弯折的板式结构,第一弯曲部位832的两端分别与两个第一接触部位831相连接,两个第一接触部位831分别与搭载部位81和边框部位83相连接,使整个柔性电路板80导通。沿搭载部位81的周向,在搭载部位81与边框部位83之间可以设置一个或者多个第一弯曲部位832。本实施例中选择沿搭载部位81的周向设计四个均分的第一弯曲部位832。每组第一接触部位831与第一弯曲部位832上均可布置多组走线,第一接触部位831与第一弯曲部位832的宽度也可以根据走线的需要而设置。其中,第一接触部位831与第一弯曲部位832的宽度既可以相同,也可以不同。当然,第一弯曲部位832的形状并不局限于L形,还可以将第一弯曲部位832设计为弓字形、弧形或者波浪形等结构形式。

可以理解的是,由于搭载部位81与边框部位83之间通过第一接触部位831与第一弯曲部位832的连接,使得搭载部位81相对于边框部位83能够弹性升降,从而使得感光芯片60能够沿摄像头组件10的光轴方向移动或者复位。即弹性部位不仅对感光芯片60起到了弹性移动的作用,还对搭载部位81与边框部位83之间起到了导电、传输信号的作用。可选的,搭载部位81、第一接触部位831、第一弯曲部位832以及边框部位83可以通过蚀刻的方式一体成型,以降低零部件的生产制造难度。

如图6所示,作为又一种实施方式,柔性电路板80同样开设有镂空部位。所不同的是,弹性部位包括第二接触部位841、内框部位842以及第三接触部位843。内框部位842设置于搭载部位81与边框部位83之间,搭载部位81与内框部位842之间通过第三接触部位843连接,内框部位842与边框部位83之间通过第二接触部位841连接。其中,两个第二接触部位841相对设置,两个第三接触部位843相对设置,第二接触部位841与第三接触部位843垂直,同样使整个柔性电路板80导通,并且搭载部位81同样相对于边框部位83能够弹性升降。当然,第二接触部位841与第三接触部位843还可以设计成弧形排布、环形排列或者倾斜排列等多种结构形式。内框部位842还可以设计为多段分体式的L形或者半框式结构。

可以理解的是,搭载部位81、第二接触部位841、内框部位842、第三接触部位843以及边框部位83也可以通过蚀刻的方式一体成型,以降低零部件的生产制造难度。这种结构方式使得搭载部位81的弹性刚度较大,适用于更加灵敏的感光芯片60的移动控制。同时,由于内框部位842的环形布置,还能够使得柔性电路板80的走线方式更灵活。

如图7所示,作为再一种实施方式,柔性电路板80还是开设有镂空部位。所不同的是,弹性部位包括条形结构的第四接触部位851与第二弯曲部位852。第二弯曲部位852的两端分别通过两个第四接触部位851与搭载部位81和边框部位83之间连接。第二弯曲部位852与两个第四接触部位851连接形成整体弯折形的条状结构,多根弯折形的条状结构并排连接于搭载部位81和边框部位83之间。同样使整个柔性电路板80导通,并且搭载部位81同样相对于边框部位83能够弹性升降。当然,第二弯曲部位852还可以设计为弓字形、弧形或者波浪形等条状结构形式。同样,搭载部位81、第四接触部位851、第二弯曲部位852以及边框部位83也可以通过蚀刻的方式一体成型。

可以理解的是,上述镂空部位是指柔性电路板80上挖空的部位,不同弹性部位的结构形式,使得搭载部位81弹性升降的刚度不同。同时,使得柔性电路板80的导电性能不同。根据搭载部位81所搭载的感光芯片60的不同型号或者规格,可以选择不同弹性部位结构形式的柔性电路板80。

值得注意的是,上述柔性电路板80由于搭载部位与弹性部位的结构设计,不仅能够适用于感光芯片60沿摄像头组件10光轴方向移动的场景,也同样适用于感光芯片60在摄像头模组防抖场景中的应用。即感光芯片60不仅能够沿柔性电路板80所在平面的垂直方向运动,同样也能沿柔性电路板80所在的平面方向移动或者扭转。

如图1至图3所示,将柔性电路板80的未折弯部位或者边框部位83固定在第二支架21与底座90之间,使搭载部位81位于底座90的中部区域。其中,底座90中部区域的沉槽结构能够提供搭载部位81升降的空间。搭载部位81上固定连接有载板71,载板71整体呈板式结构,载板71既可以作为分体结构与搭载部位81连接,也可以与搭载部位81一体成型。当然,载板71还可以设计具有与感光芯片60适配的凹槽,当感光芯片60搭载在载板71后,感光芯片60的表面与载板71的表面平齐。载板71还可以设计用于安装位置传感器72的凹槽,位置传感器72与位置磁性件23的位置相对设置。

其中,位置传感器72包括但不限于霍尔传感器或者TMR磁传感器等位置传感器,位置传感器72可以与位置磁性件23正对设置,也可以与位置磁性件23斜对设置,只要位置传感器72能够感应位置磁性件23磁场角度的变化均可。载板71可以选用硬性电路板、导电铝箔片或者铜片材料制作而成。

如图1至图3所示,载板71上连接有线圈组件,线圈组件与磁性组件组合形成电磁式驱动组件,用于提供载板71以驱动力。线圈组件包括第一支架51与线圈本体52。第一支架51整体呈中部镂空的框架结构,第一支架51固定连接在载板71上,感光芯片60位于框架结构的中部镂空位置,能够接收摄像头组件10所投射的图像信号。在第一支架51一边的外侧壁上间隔设置有两个绕线柱53,一组线圈本体52绕制于两个绕线柱53之间,形成侧绕于第一支架51上的线圈本体52。同样的,在第一支架51上与该线圈本体52相对的另一边也同样设置有绕线柱53与线圈本体52。其中,线圈本体52与载板71电性连接。当然,第一支架51还可以设计为多边形框架结构,根据第一支架51的具体结构,还可以在第一支架51上侧绕更多组数的线圈本体52,每组线圈本体52分别与第二支架21上的磁性件22位置相对应。

如图2与图3所示,当第二支架21与底座90连接后,位置磁性件23与位置传感器72的位置相对,磁性件22与线圈本体52的位置相对。其中,由于侧绕式线圈本体52在单个磁性件22范围内改变了电流的方向,因此,与侧绕式线圈本体52相对设置的磁性件22选用单面双极磁石。当线圈本体52得电后,线圈本体52在磁性件22的磁场作用下产生磁推力并通过第一支架51驱动载板71沿摄像头组件10的光轴方向移动,从而带动载板71上的感光芯片60沿摄像头组件10的光轴方向移动。

可以理解的是,由于感光芯片60、线圈组件以及位置传感器72的结构设计、位置布置合理,使得感光芯片60、线圈组件以及位置传感器72能够同时承载于载板71上,从而使得摄像头模组的结构更紧凑,有利于减小摄像头模组的肩高尺寸和体积。

如图11所示,作为另一种实施方式,第一支架51还可以取消绕线柱53的结构设计,改为沿第一支架51的周向开设绕线槽的结构方式。采用一组线圈本体52以环绕的方式绕制于绕线槽内,同样能够通过线圈本体52驱动感光芯片60沿摄像头模组的光轴方向移动。其中,由于环绕式线圈本体52并未在单个磁性件22范围内改变电流的方向,因此,与环绕式线圈本体52相对设置的磁性件22选用单面单极磁石。当然,本实施例并不对单面单极磁石的数量做具体限定。本实施例中,根据线圈本体52的环绕形状,可以选择在线圈本体52的四周分别布置四个磁性件22。

可以理解的是,线圈本体52无论是以侧绕还是环绕的方式绕制在第一支架51上,磁性件22均可以固定于第二支架21的内侧壁上。因此,对于两种线圈本体52的绕制方式,无需改变磁性件22在第二支架21内的相对位置,从而方便了后期对摄像头模组的检修工作。

为了精确控制感光芯片60沿摄像头组件10的光轴方向移动,在一些实施例中,还可以在第一支架51与第二支架21之间设置导向结构,以保证感光芯片60移动的准确性。其中,导向结构包括但不限于在底座90上设置导向柱,在第一支架51上设置与导向柱配合的导向槽,通过导向槽与导向柱的配合使感光芯片60沿摄像头组件10的光轴方向移动。当然,也可以在第一支架51与第二支架21之间采用滚珠与滚槽配合的结构方式。

如图1至图3所示,在第一支架51的侧壁内部设置有安装台阶,在第一支架51的中部镂空位置内置有滤光片40,滤光片40位于摄像头组件10与感光芯片60之间,用于过滤无用的光波。第二支架21与底座90连接固定后,在第二支架21与第一支架51之间连接有弹性件,弹性件可以选用弹片30,也可以选用弹性橡胶或者硅胶等结构,使感光芯片60移动后在弹片30与柔性电路板80弹性部位的共同作用下复位。

本发明实现自动对焦的原理是:线圈本体52从柔性电路板80得电,由于摄像头组件10、柔性电路板80以及磁性组件均相对固定,得电后的线圈本体52切割磁感线产生磁推力,在磁性件22磁场力的作用下相对于磁性件22吸附或者排斥运动。第一支架51、第二支架21以及底座90对线圈本体52的移动起到定向作用,使载板71带动感光芯片60克服弹性部位的弹性力沿摄像头组件10光轴方向移动。摄像头组件10获取的图像信号依次穿过第二支架21顶部的开口、滤光片40以及第一支架51中部镂空位置,并最终在感光芯片60上成像。当线圈本体52失电后,感光芯片60在弹片30与柔性电路板80弹性部位的共同弹性力作用下复位。同时,位置传感器72实时获取位置磁性件23的相对位置,反馈自动对焦的焦距。

本发明充分利用了柔性电路板80的柔性特点,将柔性电路板80设计为搭载部位81与弹性部位的组合形式,不仅实现了柔性电路板80本身的电路功能,而且对感光芯片60起到了支撑、弹性的作用。同时,载板71搭载感光芯片60、线圈组件以及位置传感器72,结构设计紧凑。不同于现有技术通过驱动马达驱动摄像头组件运动的结构方式,取消了驱动马达的设计,使得摄像头模组的肩高更小、体积更小。

此外,本发明不同于现有技术,本发明通过驱动感光芯片60沿摄像头模组光轴方向的移动来调节焦距,对于使用过程中的整个摄像头模组而言,摄像头模组的整体肩高是一定的,有利于摄像头模组安装空间的确定。而现有技术中的摄像头模组由于驱动摄像头组件10运动而导致使用过程中的摄像头模组的肩高变化,不利于摄像头模组安装空间的确定。

如图8至10所示,基于上述实施例中的摄像头模组,还可以将线圈组件与磁性组件作如下的改进:将线圈本体52采用蚀刻或者粘贴的方式直接设置在载板71的板面上。具体来说,可以在载板71上设置凸出于载板71板面的凸台,凸台能够局部增加载板71的厚度,以保证线圈本体52蚀刻的深度。其中,根据线圈本体蚀刻的形状,磁性件22既可以选用单面单极磁石,也可以选用单面双极磁石。磁性件22固定在第二支架21内侧的顶部,磁性件22与线圈本体52的位置相对设置。

其中,载板71的厚度也可以根据线圈本体52蚀刻的深度进行选择,从而能够将线圈本体52直接蚀刻在载板71的板面上,而无需设计凸台结构。但为了减小载板71的厚度,仅需对线圈本体52范围内的载板71进行局部增厚处理即可,也即形成了上述的凸台。

可以理解的是,通过蚀刻或者粘贴的方式将线圈本体52集成于载板71的板面上,能够使磁性件22与载板71之间以堆叠的方式排布。不同于线圈本体52以侧绕或者环绕设置于第一支架51上的方式,减小了整个摄像头模组水平方向的尺寸,同时,由于第一支架51仅需要搭载滤光片40,使载板71与第一支架51的厚度更薄,从而进一步减小了摄像头模组的肩高尺寸,进一步减小了整个摄像头模组的体积。

如图8与图9所示,第一支架51的外侧壁可以设置与线圈本体52和磁性件22的外轮廓适配的凹槽结构,使凹槽与凸台配合,用于对载板71的移动起导向的作用。此时,第一支架51的主要作用是搭载滤光片40。因此,第一支架51可以设计为更薄的厚度,有利于摄像头模组肩高的进一步减小,从而进一步的减小摄像头模组的体积。

可以理解的是,本实施例同样不对磁性件22以及载板71上所蚀刻的线圈本体52数量做具体限定。

值得注意的是,载板71上的线圈本体52除了可以通过蚀刻或者粘贴的方式设计成为如图8所示的断开式结构,也可以将四组凸台首尾相连接形成一体式环状结构。换言之,图8中所示的线圈本体52所蚀刻或者粘贴的形状类似于图1中侧绕式的线圈本体52形状,此时磁性件22可以选用单面双极磁性件。当四组凸台首尾相连接形成一体式环状结构后,也可以将线圈本体52蚀刻或者粘贴成为如图11所示的线圈本体52形状,此时磁性件22可以选用单面单极磁性件。当然,与线圈本体52相对设置的磁性件22的数量可以根据驱动力的设计而确定。

本发明还提供一种终端设备,包括上述实施例中的摄像头模组。终端设备包括但不限于手机、平板或者笔记本电脑等设备,终端设备仅需开设较小尺寸的开孔,即可安装本发明的摄像头模组。

以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。

相关技术
  • 摄像头模组、终端设备及摄像头模组的控制方法
  • 摄像头模组、终端设备及摄像头模组的制作方法
技术分类

06120114707626