掌桥专利:专业的专利平台
掌桥专利
首页

一种区域多能源系统多目标协调调控方法

文献发布时间:2023-06-19 19:28:50


一种区域多能源系统多目标协调调控方法

技术领域

本发明涉及多能源系统优化调度领域。

背景技术

在庞大的能源消耗面前,如何使各个不同区域的多能源协调达到经济性最优、环保最优、能耗最小就成了重中之重。

为了更高效合理地利用能源,越来越多的国家开始选择采用灵活性更高、可靠性更强的分布式电源(Distributed generator,DG)。然而,DG在能源系统的实际应用中依旧会存在诸多技术性问题,首当其冲的就是经济成本问题,虽然DG结构十分轻巧灵活,但其容量小、需求数量大的缺点使得它最终的制作工艺成本非常高;其次,当将其单独接入主电网时往往会出现供电潮流信号分布不均匀、电路短路等问题,这会对主电力系统信号带来重大干扰。

虚拟智能电厂(Virtual power plant,VPP)技术的出现为区域能源调度问题提供了新的方向。VPP通过应用先进有效的电源信息及通讯交换技术硬件和软件系统,实现包括分布式储能系统、DG、可控负荷系统、电动汽车等项目在内的多个分布式能源(Distributedenergy resource,DER)的聚合优化,并对各个独立电源系统进行动态协调管理。虚拟电厂可在多种资源节点中部署先进可靠的电源量测调度程序、信息通信技术平台及电网自动调节程序,对内部电网实现发电、需求与响应的全面优化配置。对电厂外部的电网采用智能发用电网络集群,深入挖掘其内部电网各类发电资源节点的发电调控潜力,完美解决上述配电网供给侧改革发展过程所遇到的问题。

发明内容

为了解决不同区域的多能源协调问题,本发明提供了一种区域多能源系统多目标协调调控方法。

本发明为实现上述目的所采用的技术方案是:一种区域多能源系统多目标协调调控方法,其特征在于:包括如下步骤:

步骤1:以电厂VPP模型作为机组运行决策框架,并以机组综合运行管理成本、污染物排放量和火电机组的能耗为目标函数建立模型;

步骤2:建立各项约束条件;

步骤3:将所述模型和约束条件带入到能够实现多目标优化的标准边界交叉法中,得出Pareto最优解;

步骤4:采用熵权法,从上述所得到的所有Pareto最优解集中选择一个折中最优解。

所述步骤1中机组最小运行成本建模:运行维修成本需要同时考虑到风力发电、光伏等发电技术成本、运行及维护检修成本、燃料成本以及电站储能材料成本等和火电锅炉成本,得出目标函数如下:

minR

C

C

式中:R

污染物排放量以及火电机组能耗最小的算法:

1)二氧化碳、硫氧化物以及氮氧化物气体排放总量一般可由下式表示:

式中:E

2)火电机组能耗最小

minE

式中:E

以最小运行成本、环境成本和火电机组能耗为目标建立模型:

以发电机组综合运行管理成本、污染物排放量、火电机组能耗为主要目标函数来建立模型:

F(x)=min(R

所述步骤2中建立约束条件模型的算法:

1)功率平衡约束:

式中:P

2)机组出力约束:

式中:

3)火电机组爬坡速率约束:

式中:

4)用户舒适度约束:

在供暖时,保持室内温度在人体适宜状态,电锅炉产生热量与室内温度的关系为:

式中:

所述步骤3中标准边界交叉法具体算法为:

1)将多目标优化模型简化为:

/>

式中:x为各自变量;m(x)n(x)为模型中等式和不等式的约束;

2)当采用边界交叉法对多目标进行优化时,第一步应先对每一个目标进行单独优化计算,解得各个单目标的最优解x

规格化后的两个目标函数点构成了Pareto前沿端点,并在乌托邦平面上求得Pareto最优解。

所述步骤4中熵权法算法为:

首先将指标正向化,对具有m个最优解n个目标的解集规范化数据处理,得到

X=(x

式中:X为规范化决策矩阵,x

然后进行数据标准化处理,即把每项指标数量级化到同一个范围内,

式中:n

处理过后可以构成数据矩阵N=(n

其中

最后计算权重以及评价值

式中:w

应用于权利要求1-7任意一种区域多能源系统多目标协调调控方法的调控装置,包括存储器和处理器,存储器用于存储计算机程序,所述计算机程序用于被处理器加载时执行上述方法。

应用于权利要求1-7任意一种区域多能源系统多目标协调调控方法的计算机可读存储介质,所述存储介质中存储有计算机程序,所述计算机程序适用于被处理器加载时执行上述方法。

本发明的区域多能源系统多目标协调调控方法,以VPP模型为调度基础的运行决策框架,以机组运行动力成本、环境成本、能源消耗量等变量为基本目标函数来建立经济的调度决策模型,并综合地考虑运行调度方案中存在的系统功率负载平衡、机组运行出力均衡以及机组的爬坡速率均衡等基本约束与条件,提出了一种基于实现多目标优化的标准边界交叉法与熵权法相结合的方法,优化改进了分布式能源协调控制,能够聚合各个分布式能源参与多能源系统协调优化运行,且能够得到分布均匀的Pareto前沿,实现多能源系统的全局最优运行策略,以便调度人员获取准确的目标信息,不但能实现运行成本、环境成本、火电机组能耗最小,还能优化各个能源的调度分配,达到电力网运行良好的经济性与安全可靠性。

附图说明

图1为本发明中的一种区域多能源系统多目标协调调控方法流程图。

图2为实验1和实验3下的运行成本曲线。

图3为实验1和实验3下的污染物排放量曲线。

图4为三种试验下的迭代次数曲线图。

具体实施方式

本发明的区域多能源系统多目标协调调控方法,不同于我国传统的电力网微网运营与经济调度方式,采用虚拟电厂为运行框架,并基于虚拟电厂能够优化分布式能源分配的优点建立新型电源系统协调管理技术。在充分考虑虚拟电厂对于新型电网的影响下,以运行成本最小、环境成本最小、火电厂能耗最小为目标建立区域多能源系统调度优化模型;还要综合考虑功率平衡约束条件、机组处理约束条件、机组爬坡速率约束条件,最后将所建模型与约束条件带入到能够实现多目标优化的标准边界交叉法中,并在乌托邦平面上的得出Pareto最优解。同时,提出一种基于改进交叉权重比的算法优化技术。普通的边界交叉算法虽然简单方便,但在进行多目标大计算量的计算优化时容易出现因各个目标占比分配不恰当而产生的误差。在本次发明中,虽然要进行调度优化的目标只有三项,但每一项所包含的内容和计算量却是巨大的,权重也不易分配,所以本次发明还提出了一种用熵权法来对原本的边界交叉法进行优化的设计。通过算出最小熵值以及最小置信度得到最佳权重比,以此得到多目标调度优化的最优解。具体方法如下:

步骤1:以VPP模型作为机组运行框架,并考虑以发电机组综合运行成本,污染物排放量,火电机组能耗为主要目标函数来建立模型:

1)最小运行成本

运行成本需要考虑风力发电、光伏的发电建设成本、运行及维护的成本、燃料成本、储能成本和电锅炉成本,得出目标函数如下:

minR

/>

C

C

式中:R

2)二氧化碳、硫氧化物以及氮氧化物气体排放总量一般可由下式表示:

式中:E

3)火电机组能耗最小

minE

式中:E

4)多目标经济调度模型

以发电机组综合运行管理成本,污染物排放量,火电机组能耗为目标函数建立模型。

F(x)=min(R

步骤2:建立约束条件

1)功率平衡约束

式中:P

2)机组出力约束

式中:

3)火电机组爬坡速率约束:

式中:

4)用户舒适度约束:

在供暖时,保持室内温度在人体适宜状态,电锅炉产生热量与室内温度的关系为:

式中:

步骤3:

1)将所述模型和约束条件带入到能够实现多目标优化的标准边界交叉法中,得出Pareto最优解。

将多目标优化模型简化为:

式中:x为各自变量;m(x)n(x)为模型中等式和不等式的约束;

当采用边界交叉法对多目标进行优化时,第一步应先对每一个目标进行单独优化计算,解得各个单目标的最优解x

规格化后的两个目标函数点构成了Pareto前沿端点,并在乌托邦平面上求得Pareto最优解。

2)运用熵权法即客观赋权法从上述得到的Pareto最优解集中选取一个折中最优解。熵权法的基本流程如下:

首先将指标正向化,对具有m个最优解n个目标的解集规范化数据处理,得到

X=(x

式中:X为规范化决策矩阵,x

然后进行数据标准化处理,即把每项指标数量级化到同一个范围内。

式中:n

处理过后可以构成数据矩阵N=(n

其中

最后计算权重以及评价值

式中:w

将所述模型和约束条件带入到熵权法中,在Matlab仿真中进行优化,得出最优结果,根据结果调整机组运行成本,污染物排放量,火电机组能耗至最低。

熵权法研究的一大优点即是它可以用来确保企业在选择确定企业指标权重时尽量不受其它主观影响因素变化的直接影响,指标权重计算可以完全根据企业特定项目的各种公式运算和实际数据分析计算,使考核评价和结果判断更加公正客观、准确可靠和科学。

下面通过查阅具体实例,设计一组实际数据来对本次专利进行进一步的详细解释。

具体实例:假设某区域构建以虚拟电厂为框架的电力网络,设该区域建有常规火电机组2台,火电机组各项参数如表1所示;风电机组和光伏发电机组各1台,设风电装机为1000MW,光伏装机为300MW,由于光伏与风电机组的设备会出现破损老化,对运行成本产生影响,所以风力和光伏单位度电成本分别取210元/MWh和260元/MWh。煤炭的单位价格取750元/t。

表1常规机组参数

为验证本发明在区域多能源调度领域的有效性,分别设置三个对比实验进行有效性分析:(1)在传统微网的运行架构下采用粒子群算法对目标函数进行计算;(2)在VPP的框架下采用普通的标准边界交叉法进行运算;(3)在VPP框架下,通过技术方案中熵权法即客观赋权法对原算法进行优化后得到三个目标函数(即机组运行成本,污染物排放量,火电机组能耗)在Pareto上的折中最优解。三个对比实验的结果如表2所示,由于实验2和实验3只是算法有差异,计算结果相差较小,无法直观地在仿真图中体现,故仿真图只做实验1和实验3的对比,目标结果仿真图见附图2、3、4。

表2计算结果

综上所述,实验三得到的运行成本为1002.57万元,污染物排放量为4463.43kg,环境成本为2.71万元,火电机组能耗为520.42MWh,均远低于实验一、二的结果。由此可得,在能够满足发电需求且不影响经济效益的情况下,采用虚拟电厂优化区域多能源调度能够大幅度节省经济调度成本,同时更节能环保。此外,采用熵权法优化原算法也能在一定程度上减少经济成本与火电能耗。

式中:w

本发明的一种区域多能源系统多目标协调调控方法的调控装置,包括存储器和处理器,存储器用于存储计算机程序,所述计算机程序用于被处理器加载时执行上述方法。

本发明的一种区域多能源系统多目标协调调控方法的计算机可读存储介质,所述存储介质中存储有计算机程序,所述计算机程序适用于被处理器加载时执行上述方法。

本发明是通过实施例进行描述的,本领域技术人员知悉,在不脱离本发明的精神和范围的情况下,可以对这些特征和实施例进行各种改变或等效替换。另外,在本发明的教导下,可以对这些特征和实施例进行修改以适应具体的情况及材料而不会脱离本发明的精神和范围。因此,本发明不受此处所公开的具体实施例的限制,所有落入本申请的权利要求范围内的实施例都属于本发明的保护范围。

相关技术
  • 一种大规模新能源接入电网的电压协调控制系统及方法
  • 一种可速度协调控制的多辊系统及其速度协调控制方法
  • 一种风电场与常规能源的多目标协调控制方法及系统
  • 一种微电网中储能系统和新能源系统的协调控制器及协调控制方法
技术分类

06120115921989