掌桥专利:专业的专利平台
掌桥专利
首页

一种液态金属柔性电子及其制备方法和应用

文献发布时间:2023-06-19 09:24:30


一种液态金属柔性电子及其制备方法和应用

技术领域

本发明涉及液态金属柔性电子技术领域,尤其涉及一种液态金属柔性电子及其制备方法和应用。

背景技术

液态金属如镓基、铋基合金等是一大类物理化学性质十分独特的新兴功能材料,常温下呈液态,具有高沸点、导电性强、热导率高等属性,制造工艺不需要高温冶炼,环保无毒,并且具备常规高熔点金属材料所没有的低熔点特性,其熔融状态下的塑形能力为快捷打造不同形态的功能器件创造了条件,更是非常适合应用于柔性电子的制造。

现阶段基于液态金属制备柔性电子的方法主要有:(1)直写法:利用注射器或类似的吸取工具吸取液态金属墨水,将液态金属缓缓注入洁净的空笔芯内,在基底上书写绘制出电路图案;(2)平面打印法:在直写法的的基础上结合运动导轨、数控模块、打印头和设定模块等构成一个完整的设备,打印头内装载液态金属墨水,根据计算机软件发出的控制指令在基底上实现电子图案的快速打印;(3)喷墨印刷法:将液态金属置于喷笔中,液态金属再在重力作用下由盛容器进入喷嘴,并在环柱状空气的作用下喷射出,通过特定形状的掩膜,将设计好的电路图案转移到基底上;(4)光刻法:通过光刻等技术在柔性基底内构造出微通道,结合注射操作向通道内注入液态金属制得电路;(5)3D打印法:通过逐层打印构造对象,依次沉积柔性基底-液态金属墨水-柔性基底,该工艺可以避免腐蚀有助于环保。

直写法、平面打印技术和喷墨印刷法都只能构造传统的二维电路,这些二维电路由液态金属薄膜形成,在承载大电流密度的情况下还会由电迁移现象引起断裂问题。光刻法构造微通道,工艺繁琐成本较高,不适合大面积的应用推广。而用3D金属打印机直接打印柔性电路,虽简化了制造流程和节约材料,但这种3D金属打印机造价仍然高昂。

发明内容

有鉴于此,本发明的目的在于提供一种液态金属柔性电子及其制备方法。本发明提供的制备方法在Ecoflex(硅胶)柔性基底中,快速构造出微通道,接着向通道内注射进液态金属完成柔性电子的制造,无需采用传统的光刻工艺进行微通道的构建,能极大简化操作步骤,降低成本。

为了实现上述发明目的,本发明提供以下技术方案:

本发明提供了一种液态金属柔性电子的制备方法,包括以下步骤;

根据电路图案,利用3D打印得到ABS塑料模型;

在所述ABS塑料模型的表面进行离子溅射,形成金膜,得到镀金的ABS电路;

将Ecoflex硅胶放入模具中,然后将所述镀金的ABS电路悬空放入所述模具中,使所述镀金的ABS电路不与所述模具接触,再进行固化,得到固化模型;

将所述固化模型浸泡在丙酮中使所述ABS塑料模型溶解,在Ecoflex基底中得到了内壁附有金镀层的微通道;

将镓铟共晶注射入所述内壁附有金镀层的微通道中,然后将铜导线插入所述内壁附有金镀层的微通道的两端的液态金属中,再向所述内壁附有金镀层的微通道口涂覆Ecoflex硅胶,待涂覆的Ecoflex硅胶固化后将电路封装,得到所述液态金属柔性电子。

优选地,所述离子溅射的时间为60~100s。

优选地,所述固化的时间独立地为2~4h。

优选地,所述浸泡的时间为12~24h。

优选地,所述镓铟共晶中Ga的含量为74.5wt%,In的含量为25.5wt%。

优选地,所述铜导线的长度为50~70mm。

本发明还提供了上述技术方案所述制备方法制得的液态金属柔性电子。

本发明还提供了上述技术方案所述的液态金属柔性电子在智能家具、智能穿戴、电子皮肤、柔性传感、射频天线、生物医疗和航空航天领域中的应用。

本发明提供了一种液态金属柔性电子的制备方法,包括以下步骤:根据电路图案,利用3D打印得到ABS塑料模型;在所述ABS塑料模型的表面进行离子溅射,形成金膜,得到镀金的ABS电路;将Ecoflex硅胶放入模具中,然后将所述镀金的ABS电路悬空放入所述模具中,使所述镀金的ABS电路不与所述模具接触,再进行固化,得到固化模型;将所述固化模型浸泡在丙酮中使所述ABS塑料模型溶解,在Ecoflex基底中得到了内壁附有金镀层的微通道;将镓铟共晶注射入所述内壁附有金镀层的微通道中,然后将铜导线插入所述内壁附有金镀层的微通道的两端的液态金属中,再向所述内壁附有金镀层的微通道口涂覆Ecoflex硅胶,待涂覆的Ecoflex硅胶固化后将电路封装,得到所述液态金属柔性电子。本发明利用ABS塑料可被丙酮溶解的特性,利用3D打印,在Ecoflex硅胶这一柔性基底中,快速构造出微通道,接着向通道内注射进液态金属完成柔性电子的制造。该方法无需采用传统的光刻工艺进行微通道的构建,能极大简化操作步骤,降低成本。

本发明还提供了上述技术方案所述制备方法制得的液态金属柔性电子,本发明将ABS表面的金膜转移到了Ecoflex硅胶柔性基底的表面,提高了液态金属在通道内的润湿性,方便后续的液态金属注射操作,制备的液态金属柔性电路弹性高,能满足多种变形的需求并且服役过程电性能稳定。

由Young-Dupre方程计算了不同阶段微通道的黏附功,镀金前后黏附功从110提升至200mJ/m

附图说明

图1为本发明制备液态金属柔性电子的流程图;

图2为实施例1与对比例得到的液态金属柔性电子的形状与结构图;

图3为实施例1制备的液态金属柔性电子的100%应变1000次循环后波峰波谷汇总;

图4为实施例1和对比例制备的液态金属柔性电子600%应变拉伸循环电阻曲线,其中a)为对比例,b)为实施例1;

图5为实施例1制备的不同通道尺寸的液态金属柔性电子的电阻拉伸循环曲线,其中a)0.4mm;b)0.6mm;c)0.8mm;d)1.0mm;e)1.2mm;

图6为实施例1制备的不同通道尺寸的液态金属柔性电子的峰值电阻随应变变化曲线;

图7为实施例1制备的1.2mm通道的液态金属柔性电子每个应变下单次拉伸曲线汇总;

图8为实施例1制备的不同通道尺寸的液态金属柔性电子的电路电阻随弯折角度变化曲线;

图9为实施例1制备的不同通道尺寸的液态金属柔性电子的电阻随扭转角度的变化曲线;

图10为实施例1制备的不同通道尺寸的液态金属柔性电子的变化曲线的斜率;

图11为电路压力测试示意图;

图12为三种不同复杂程度的电路图案;

图13为实施例1制备的不同通道尺寸的液态金属柔性电子在简单电路在不同Ecoflex厚度下电路电阻随砝码质量增加的变化曲线,其中a)0.4mm;b)0.7mm;c)1.0mm;

图14为实施例1制备的不同通道尺寸的液态金属柔性电子在复杂电路在不同Ecoflex厚度下电路电阻随砝码质量增加的变化曲线,其中a)0.4mm;b)0.7mm;c)1.0mm;

图15为实施例1制备的不同通道尺寸的液态金属柔性电子在更复杂电路在不同Ecoflex厚度下电路电阻随砝码质量增加的变化曲线,其中a)0.4mm;b)0.7mm;c)1.0mm;

图16为实施例1制备的不同通道尺寸的液态金属柔性电子拉伸控制灯泡亮度实验,其中a)0.4mm;b)0.6mm;c)0.8mm;d)1.0mm;e)1.2mm;

图17为实施例1制备的不同通道尺寸的液态金属柔性电子弯折或扭转控制灯泡亮度实验,其中a)0.4mm;b)0.6mm;c)0.8mm;d)1.0mm;e)1.2mm;

图18为运动前后人体脉搏测量曲线,其中a)运动前;b)运动后。

具体实施方式

本发明提供了一种液态金属柔性电子的制备方法,包括以下步骤;

根据电路图案,利用3D打印得到ABS塑料模型;

在所述ABS塑料模型的表面进行离子溅射,形成金膜,得到镀金的ABS电路;

将Ecoflex硅胶放入模具中,然后将所述镀金的ABS电路悬空放入所述模具中,使所述镀金的ABS电路不与所述模具接触,再进行固化,得到固化模型;

将所述固化模型浸泡在丙酮中使所述ABS塑料模型溶解,在Ecoflex基底中得到了内壁附有金镀层的微通道;

将镓铟共晶注射入所述内壁附有金镀层的微通道中,然后将铜导线插入所述内壁附有金镀层的微通道的两端的液态金属中,再向所述内壁附有金镀层的微通道口涂覆Ecoflex硅胶,待涂覆的Ecoflex硅胶固化后将电路封装,得到所述液态金属柔性电子。

图1为本发明制备液态金属柔性电子的流程图。

本发明根据电路图案,利用3D打印得到ABS塑料模型。本发明对所述ABS塑料模型的规格没有特殊的限定,优选根据需要的电路图案设计。本发明对所述3D打印的具体方式没有特殊的限定,能够得到ABS塑料模型即可。

得到ABS塑料模型后,本发明在所述ABS塑料模型的表面进行离子溅射,形成金膜,得到镀金的ABS电路。在本发明中,所述金膜的作用提高镓铟共晶在通道内的润湿性,方便制作电路。

在本发明中,所述离子溅射的时间优选为60~100s。

本发明将Ecoflex硅胶放入模具中,然后将所述镀金的ABS电路悬空放入所述模具中,使所述镀金的ABS电路不与所述模具接触,再进行固化,得到固化模型。在本发明中,所述Ecoflex硅胶优选为美国Smooth-On厂的市售商品。在本发明中,所述模具的材质优选为PLA。

在本发明中,所述悬空的作用是保证Ecoflex硅胶能完全把所述镀金的ABS电路包裹起来。

在本发明中,所述固化的时间优选为2~4h。本发明对所述固化的具体方式没有特殊的限定,具体的如室温下放置固化即可。

得到固化模型后,本发明将所述固化模型浸泡在丙酮中使所述ABS塑料模型溶解,在Ecoflex基底中得到了内壁附有金镀层的微通道。

在本发明中,所述浸泡的时间优选为12~24h。

在本发明中,所述溶解优选在超声的条件下进行。

得到内壁附有金镀层的微通道后,本发明将镓铟共晶注射入所述内壁附有金镀层的微通道中,然后将铜导线插入所述内壁附有金镀层的微通道的两端的液态金属中,再向所述内壁附有金镀层的微通道口涂覆Ecoflex硅胶,待涂覆的Ecoflex硅胶固化后将电路封装,得到所述液态金属柔性电子。

在本发明中,所述镓铟共晶中Ga的含量优选为74.5wt%,In的含量优选为25.5wt%。本发明优选用注射器吸取所述镓铟共晶从通道的一端向里注射。

在本发明中,所述铜导线的长度优选为50~70mm,更优选为60mm。

本发明对所述涂覆的Ecoflex硅胶的用量没有特殊的限定,能够使所述内壁附有金镀层的微通道封装即可。在本发明中,所述涂覆的Ecoflex硅胶固化的时间优选为2~4h。本发明对所述固化的具体方式没有特殊的限定,具体的如室温下放置固化即可。

本发明还提供了上述技术方案所述制备方法制得的液态金属柔性电子。本发明将ABS表面的金膜转移到了Ecoflex硅胶柔性基底的表面,提高了液态金属在通道内的润湿性,方便后续的液态金属注射操作,制备的液态金属柔性电路弹性高,能满足多种变形的需求并且服役过程电性能稳定。

本发明还提供了上述技术方案所述的液态金属柔性电子在智能家具、智能穿戴、电子皮肤、柔性传感、射频天线、生物医疗和航空航天领域中的应用。本发明对所述应用的具体方式没有特殊的限定,采用本领域技术人员熟知的方式即可。

为了进一步说明本发明,下面结合实例对本发明提供的液态金属柔性电子及其制备方法和应用进行详细地描述,但不能将它们理解为对本发明保护范围的限定。

实施例1

在电脑中用相关软件绘制出电路图案,用3D打印机打印出ABS塑料模型;将打印好的ABS塑料模型放置在离子溅射仪中溅射60s,在其表面镀上一层金膜;将Ecoflex硅胶到入模具中,接着悬空放入镀金后的ABS电路,在室温下静置2小时固化,得到固化模型;将固化模型(包括固化好的Ecoflex和ABS模型)一同浸泡于丙酮溶液中12小时,丙酮将ABS模型溶解掉,从丙酮溶液中取出ABS溶解完全的Ecoflex,冲洗干净后,在Ecoflex基底中得到了内壁附有金镀层的微通道;用注射器吸取镓铟共晶(EGaIn,Ga:74.5%,In:25.5%,wt%)从通道的一端向里注射,然后取长度为60mm的铜导线插入通道两端的液态金属中,再向通道口滴上Ecoflex硅胶,待其固化后将电路封装起来,得到液态金属柔性电子。

对比例未镀金膜

与实施例1的制备方法相同,区别仅在于ABS塑料模型未镀金膜。

实施例1与对比例得到的液态金属柔性电子的形状与结构如图2所示,为标准拉伸件的哑铃形,中间小两端大,并且试样中间最窄处的长度为20mm,截面形状为边长5mm的正方形,并在中间做有五种尺寸的圆形通道,分别是0.4mm,0.6mm,0.8mm,1.0mm和1.2mm,通道高内填充满了EGaIn液态金属制成了电路。

对制得的液态金属柔性电子先进行两个拉伸的极限测试,第一个试验将这实施例1制得的五个尺寸的液态金属柔性电子置于步进平台上在100%应变下进行1000次的拉伸循环试验,得到循环过程中电阻的变化曲线结果如图3所示:波峰代表着电路拉伸到100%后测得的电路电阻,波谷则是电路回到原长时测得的电路电阻,在1000次循环后这五个尺寸电路的波峰与波谷依旧十分平稳,均完整地通过试验,说明该模板法所制得地电路能够承受低应变下的拉伸循环,对于日常生活中的低应变拉伸应用可以满足。第二个极限实验时取1.0mm和1.2mm的电路进行600%应变的电阻拉伸循环测试,并且每种通道尺寸下分为内壁镀金与未镀金两种情况,得到拉伸曲线结果如图4所示,其中a)为未镀金膜,即对比例,b)为镀金膜,即实施例1,未镀金膜的两种尺寸的电路都只实现了13次循环,而镀金的1.0mm电路实现了31次循环,1.2mm电路实现了26次循环,只少时前者未镀金的两倍,说明在通道内壁镀金可以显著提高电路的稳定性,在较高应变下能承受住更多次数的拉伸形变。

对实施例1制得的液态金属柔性电子进行应变由低到高的电阻拉伸循环测试,通道尺寸为0.4mm,0.6mm,0.8mm,1.0mm和1.2mm五种,应变的范围设置有10%,20%,30%,50%,70%,100%,150%,200%,300%,400%,500%和600%,每个应变下拉伸10次,测得电阻在拉伸过程中随时间变化曲线如图5,其中a)0.4mm;b)0.6mm;c)0.8mm;d)1.0mm;e)1.2mm。由图5可知,0.6mm,0.8mm,1.0mm和1.2mm尺寸的电路均完整的通过了循环测试,没有开路情况的发生,并且无论是在低应变还是高应变下,电路的波峰与波谷都比较平稳。但是0.4mm的电路在600s左右应变达到200%时结束了循环,电阻趋向了无穷大,即发生了开路这应该是由于电路尺寸较小而稳定性降低,电路的Ecoflex基底在一次次循环拉伸过程中对通道内的EGaIn进行挤压和推移,使得EGaIn的分布不再均匀,部分区域含量底而部分区域含量高,最终在电路拉伸到较大形变时,通道截面积也迅速减小,在EGaIn液态金属含量较少的地方发生断裂而无法保持连接的状态,最终导致开路的发生。而对于通道尺寸较大的电路,由于内部EGaIn液态金属的体积较多,即使发生较大的形变,基底对EGaIn的挤压也无法使它断裂,因而不会发生短路。

取每个应变下的峰值电阻汇总,并由电路的初始值根据上述推导的公式进行拟合,得到拟合曲线与实际峰值的汇总,制得图6,可以看到五个尺寸下测得的实际电阻和公式拟合的曲线十分吻合,基本上所有的点都落在了曲线上,由此可以证明实验结果与推导的理论基本一致,电路在拉伸过程中的电阻就是按公式变化的。同时从1.2mm通道的电阻拉伸曲线中取出每个应变下的单次拉伸回复过程统计观察,得到图7,可以看到应变从10%到600%,电路电阻的拉伸曲线都是基本重合的,并且每个应变下的拉伸与回复过程都基本是对称的,这里也同样说明电路电阻变化稳定并且符合推导的公式关系。

将实施例1制得的液态金属柔性电子置于不同角度的弯折模型上用万用电表测得电阻的变化,电路弯折的角度有:0°,30°,60°,90°,120°,150°和180°,试验结果如图8所示,随着电路弯折的角度从0°增加到180°,电路的电阻也在不断加大,但是通道尺寸尺寸不同,电阻增量也随之不同。0.4mm尺寸的电路从0°时的135mΩ增加到了180°时的167mΩ,而1.2mm电路只从10mΩ增加到了14mΩ,通道尺寸越小,则电阻增量越大。弯折时Ecoflex拉伸同样导致了通道内的EGaIn液态金属被拉伸而使电阻增加,并且通道尺寸越小,同样的弯折角度对电路的影响越大,因此可以根据需要运用不同尺寸的电路实现不同的应用。

将实施例1制得的液态金属柔性电子置于于夹具上进行扭转并由万用电表测得电路电阻变化,扭转的角度θ有0°,30°,60°,90°.......330°和360°,试验结果如图9所示,随着电路扭转的角度从0°增加到360°,电路的电阻也在不断增加,曲线近乎是一条直线,并且通道尺寸不同,电阻增量也随之不同。0.4mm尺寸的电路从0°时的127mΩ增加到360°时的147Ω,而1.2mm电路只从10mΩ增加到了12mΩ,与弯折时的情况一致,通道尺寸越小,电路电阻的增量越大,不过与弯折是的增量相比要小很多。在电路的基底Ecoflex硅胶扭转时,通道随之扭转而对其内部的EGaIn液态金属产生挤压使其截面积减小电阻增大,并且通道尺寸越小,对这种形变的灵敏度则越大,电阻变化越大。进一步的对图中曲线的斜率分析,汇总得到图10,通道尺寸越小,电阻扭转斜率则越大,说明电路电阻对扭转形变越敏感,即灵敏度越高。

对实施例1制得的液态金属柔性电子在受压时电路的性能变化进行测试,并测得定灵敏度。测试过程如图11所示,将不同质量的砝码轮流置于EGaIn液态金属柔性电路上,砝码得质量有1g,2g,5g,10g,20g……100g和200g等,同时电路通道尺寸设置为0.4mm,0.6mm,0.8mm,1.0mm和1.2mm五种,设置了简单(通道总长70mm),复杂(通道总长110mm)和更复杂(通道总长170mm)三种图案,如图12所示,受压部分的单位面积内通道长分别是7.2mm/cm

取实施例1制得的液态金属柔性电子作为控制灯泡明暗的开关,组成一个完整闭合电路,考察对电路中的电流起到较大的调节作用,结果如图16所示,EGaIn液态金属部分相当于一个滑动变阻器,拉伸时EGaIn液态金属的电阻增大而使电路中电流减小,灯泡两端电压下降于是发光亮度降低,并且可以看到通道尺寸越小时,灯泡亮度变化越明显,0.4mm电路从0拉伸至300%后,灯泡变暗近乎熄灭,而1.2mm电路拉伸300%后,亮度只有轻微的减弱。同时这也从侧面说明,通过将电路尺寸做大,可以抵御形变对电路产生的影响,提高电路的稳定性。

将实施例1制得的液态金属柔性电子进行180°对折和360°扭转,再次观察了弯折与扭转过程中小灯泡亮度的变化,结果如图17所示,可以看到灯泡亮度都几乎没有任何变化。而根据前面电路弯折与扭转的实验数据,弯折最多使电路电阻增加约30mΩ,而扭转更少只有20mΩ,与拉伸时电阻变化两个数量级完全没有可比性,因此对电路中灯泡两端电压影响太小,所以灯泡亮度几乎也不会有任何变化。同样的这也说明电路能够经受弯折或扭转这些较小形变,具有一定的稳定性。

将实施例1制得的液态金属柔性电子用于人体脉搏的测量。测试时将样品放置在人的手腕上按住,同时在万用电表上开始测量电路电阻的变化。脉搏跳动对Ecoflex中的EGaIn液态金属产生挤压而发生形变,电阻也随之改变,由此测得脉搏。我们测量了运动前平静状态下一位志愿者的脉搏,然后测量了他在一分钟剧烈运动后的脉搏,得到结果如图18所示。运动前平静状态下,测得脉搏时72次/分,剧烈运动后一分钟后脉搏是112次/分,均在人体脉搏的正常范围内,并且可以看到运动前脉搏跳动平缓,曲线的振幅约为1mΩ,而运动后人体脉搏跳动剧烈,曲线振幅约为4mΩ,与实际相一致。

由Young-Dupre方程计算了不同阶段微通道的黏附功,镀金前后黏附功从110提升至200mJ/m

以上所述仅是本发明的优选实施方式,并非对本发明作任何形式上的限制。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

技术分类

06120112156696