掌桥专利:专业的专利平台
掌桥专利
首页

陶瓷加热器

文献发布时间:2023-06-19 12:16:29


陶瓷加热器

技术领域

本发明涉及一种陶瓷加热器。

背景技术

以往,作为陶瓷加热器,已知有在具有晶片载置面的圆盘状的陶瓷板的内周侧和外周侧分别独立地埋入有电阻发热体的被称为双区加热器的陶瓷加热器。例如,在专利文献1中公开了图10所示的陶瓷加热器410。该陶瓷加热器410利用外周侧热电偶450来测定陶瓷板420的外周侧的温度。热电偶引导件432在筒状轴440的内部从下方笔直地向上方延伸后弯曲成圆弧状来进行90°的转向。该热电偶引导件432安装于在陶瓷板420的背面中的设置于被筒状轴440包围的区域的狭缝426a中。狭缝426a构成热电偶通路426的入口部分。外周侧热电偶450插入热电偶引导件432的筒内并到达热电偶通路426的末端位置。

现有技术文献

专利文献

专利文献1:国际公开第2012/039453号小册子(图11)

发明内容

发明所要解决的课题

然而,由于热电偶通路426向一个方向笔直地延伸,因此根据测温位置的不同,有时会与陶瓷板420内的障碍物碰撞。因此,有时测温位置的设计自由度受到限制。

本发明是为了解决这样的课题而完成的,其主要目的在于提高测温位置的设计自由度。

用于解决课题的方案

本发明的陶瓷加热器具备:

陶瓷板,其在表面具有晶片载置面;

电阻发热体,其埋设在所述陶瓷板中;

筒状轴,其从所述陶瓷板的背面支撑所述陶瓷板;以及

热电偶通路,其从上述陶瓷板的上述背面中被上述筒状轴包围的轴内区域的起点到达上述陶瓷板的外周部的末端位置,

所述热电偶通路在所述起点与所述末端位置之间具有弯道部。

在该陶瓷加热器中,热电偶通路在起点与末端位置之间具有弯道部。即使在陶瓷板内存在障碍物,也能够利用弯道部来避开该障碍物。因此,测温位置的设计自由度变高。

在本发明的陶瓷加热器中,所述弯道部可以以避开设置于所述陶瓷板的预定部位的方式设置。所谓预定部位,例如可以举出在厚度方向上贯通陶瓷板的孔(顶针孔、气孔等)、配线有电阻发热体的部位等。

在本发明的陶瓷加热器中,所述弯道部也可以在所述陶瓷板的面方向上弯曲。这样的话,能够容易地避开在厚度方向上贯通陶瓷板的孔等。

在本发明的陶瓷加热器中,所述弯道部也可以在所述陶瓷板的厚度方向上弯曲。这样的话,能够容易地避开在陶瓷板内以与晶片载置面大致平行的方式埋设的电阻发热体。在该情况下,所述末端位置也可以设置于所述陶瓷板中埋设有所述电阻发热体的面与所述晶片载置面之间。这样的话,由于作为测温位置的末端位置接近晶片载置面,因此热电偶的测温结果与晶片的表面温度之差变小,能够得到更实用的测温结果。

在本发明的陶瓷加热器中,优选所述弯道部的曲率半径为20mm以上。这样的话,能够将热电偶比较顺畅地插通于热电偶通路。

本发明的陶瓷加热器也可以进一步具备热电偶,所述热电偶插通于所述热电偶通路,且前端的测温部到达所述末端位置。

附图说明

图1为陶瓷加热器10的立体图。

图2为图1的A-A剖视图。

图3为图1的B-B剖视图。

图4为从陶瓷板20的背面20b观察热电偶通路26时的俯视图。

图5为热电偶引导件32的主视图。

图6为从陶瓷板20的背面20b观察热电偶通路26的变形例时的俯视图。

图7为陶瓷加热器10的变形例的纵剖视图。

图8为从陶瓷板20的背面20b观察热电偶通路26的变形例时的俯视图。

图9为从陶瓷板20的背面20b观察热电偶通路26的变形例时的俯视图。

图10为现有例的说明图。

具体实施方式

一边参照附图一边在以下说明本发明的适合的实施方式。图1是陶瓷加热器10的立体图,图2是图1的A-A剖视图,图3是图1的B-B剖视图,图4是从陶瓷板20的背面20b观察热电偶通路26时的俯视图,图5是热电偶引导件32的主视图。

陶瓷加热器10用于对要实施蚀刻、CVD等处理的晶片W进行加热,设置于未图示的真空室内。该陶瓷加热器10具备:具有晶片载置面20a的圆盘状的陶瓷板20;以及筒状轴40,其与陶瓷板20的与晶片载置面20a相反一侧的面(背面)20b接合。

陶瓷板20是由氮化铝、氧化铝等为代表的陶瓷材料构成的圆盘状的板。陶瓷板20的直径没有特别限定,例如为300mm左右。陶瓷板20通过与陶瓷板20呈同心圆状的假想边界20c(参照图3)分为小圆形的内周侧区域Z1和圆环状的外周侧区域Z2。在陶瓷板20的内周侧区域Z1埋设有内周侧电阻发热体22,在外周侧区域Z2埋设有外周侧电阻发热体24。这两种电阻发热体22、24例如由以钼、钨或碳化钨为主成分的线圈构成。如图2所示,陶瓷板20通过将上侧板P1和比该上侧板P1薄的下侧板P2进行面接合而制作。

筒状轴40与陶瓷板20同样地由氮化铝、氧化铝等陶瓷形成。筒状轴40的上端的凸缘部40a扩散接合于陶瓷板20。

如图3所示,内周侧电阻发热体22形成为:从一对端子22a、22b中的一方出发,以一笔画的要领在多个折回部折回并在内周侧区域Z1的大致整个区域布线后,到达一对端子22a、22b中的另一方。一对端子22a、22b设置于轴内区域20d(陶瓷板20的背面20b中的筒状轴40的内侧区域)。在一对端子22a、22b上分别接合有金属制(例如Ni制)的供电棒42a、42b。

如图3所示,外周侧电阻发热体24形成为:从一对端子24a、24b中的一方出发,以一笔画的要领在多个折回部折回并在外周侧区域Z2的大致整个区域布线后,到达一对端子24a、24b中的另一方。一对端子24a、24b设置于陶瓷板20的背面20b的轴内区域20d。在一对端子24a、24b上分别接合有金属制(例如Ni制)的供电棒44a、44b。

如图3所示,陶瓷板20具有在厚度方向上贯通陶瓷板20的多个(在此为3个)顶针孔H1~H3。3个顶针孔H1~H3每隔预定角度(在此为120°)配置在与陶瓷板20的同心圆上。在顶针孔H1~H3中,可上下移动地插入未图示的顶针。顶针用于使晶片W相对于晶片载置面20a上下移动。

如图2及图3所示,在陶瓷板20的内部,与晶片载置面20a平行地设置有用于插入外周侧热电偶50的长孔形状的热电偶通路26。热电偶通路26从陶瓷板20的背面20b中的轴内区域20d的起点26s延伸至设置在陶瓷板20的外周侧的末端位置26e。如图3及图4所示,末端位置26e设置在:穿过顶针孔H1且与陶瓷板20的半径一致的直线70上,并且比顶针孔H1更靠近外周侧。热电偶通路26中从起点26s到凸缘部40a的入口部分成为用于供热电偶引导件32的弯曲部34的前端嵌入的长槽形状的导入部26a。导入部26a在轴内区域20d开口。热电偶通路26在起点26s与末端位置26e之间具有弯曲成大致C字状的弯道部26c。弯道部26c在陶瓷板20的面方向上弯曲,以避开顶针孔H1的方式设置。陶瓷板20通过将以贯通孔的形式设置有导入部26a的下侧板P2、与以弯道槽的形式挖掘有热电偶通路26中除了导入部26a以外的部分的上侧板P1进行接合来制造。

如图5所示,热电偶引导件32是具备引导孔32a的金属制(例如不锈钢制)的筒状部件。热电偶引导件32具备:垂直部33,其在与晶片载置面20a垂直的方向上延伸;以及弯曲部34,其从垂直方向转换为水平方向。垂直部33的外径大于弯曲部34的外径,但垂直部33的内径与弯曲部34的内径相同。这样,通过减小弯曲部34的外径,能够减小插入弯曲部34的热电偶通路26的导入部26a的宽度。但是,也可以使垂直部33的外径与弯曲部34的外径相同。弯曲部34的曲率半径R没有特别限定,例如为30mm左右。在热电偶引导件32的引导孔32a中插通有外周侧热电偶50。弯曲部34的前端既可以仅简单地嵌入导入部26a内,也可以接合或粘接于导入部26a内。

如图2所示,在筒状轴40的内部,除了热电偶引导件32以外,还配置有分别与内周侧电阻发热体22的一对端子22a、22b连接的供电棒42a、42b、分别与外周侧电阻发热体24的一对端子24a、24b连接的供电棒44a、44b。在筒状轴40的内部,还配置有用于测定陶瓷板20的中央附近的温度的内周侧热电偶48、用于测定陶瓷板20的外周附近的温度的外周侧热电偶50。内周侧热电偶48插入至设置于陶瓷板20的轴内区域20d的凹部49,前端的测温部48a与陶瓷板20接触。凹部49设置在不与各端子22a、22b、24a、24b或热电偶通路26的导入部26a干涉的位置。外周侧热电偶50是铠装热电偶,以穿过热电偶引导件32的引导孔32a和热电偶通路26的方式配置。外周侧热电偶50的前端的测温部50a穿过热电偶通路26而与末端位置26e接触。

接着,对陶瓷加热器10的使用例进行说明。首先,在未图示的真空室内设置陶瓷加热器10,在该陶瓷加热器10的晶片载置面20a载置晶片W。而且,以使由内周侧热电偶48检测出的温度成为预先确定的内周侧目标温度的方式调整向内周侧电阻发热体22供给的电力,并且,以使由外周侧热电偶50检测出的温度成为预先确定的外周侧目标温度的方式,调整向外周侧电阻发热体24供给的电力。由此,将晶片W的温度控制为期望的温度。然后,将真空室内设定为真空气氛或减压气氛,使真空室内产生等离子体,利用该等离子体对晶片W实施CVD成膜或实施蚀刻。

在以上说明的本实施方式的陶瓷加热器10中,热电偶通路26在起点26s与末端位置26e之间具有弯道部26c。因此,即使在陶瓷板20内存在顶针孔H1那样的障碍物,也能够利用弯道部26c来避开该障碍物。因此,外周侧热电偶50的测温位置的设计自由度变高。

另外,由于弯道部26c在陶瓷板20的面方向上弯曲,因此能够容易地避开在厚度方向上贯通陶瓷板20的顶针孔H1。

进而,外周侧热电偶50的测温位置、即热电偶通路26的末端位置26e设置在顶针孔H1的外周侧。具体而言,末端位置26e设置在:穿过顶针孔H1且与陶瓷板20的半径一致的直线70上,并且比顶针孔H1更靠近外周侧。因此,无法直线地连结轴内区域20d的起点26s与末端位置26e。因此,在热电偶通路26设置弯道部26c的意义大。

另外,弯道部26c的曲率半径优选为20mm以上。这样,能够使外周侧热电偶50比较顺畅地插通于热电偶通路26。实际上,形成了弯道部26c的曲率半径为20mm的热电偶通路26并使外周侧热电偶50多次插通,结果,在大部分情况下,外周侧热电偶50在弯道部26c中顺畅地通过,但在一部分的情况下,有时外周侧热电偶50在弯道部26c折弯而无法顺畅地通过。而另一方面,形成了弯道部26c的曲率半径为30mm的热电偶通路26并使外周侧热电偶50多次插通,结果,在所有情况下,外周侧热电偶50顺利地通过弯道部26c。因此,弯道部26c的曲率半径更优选为30mm以上。

需说明的是,不言而喻,本发明不限定于任何上述实施方式,只要属于本发明的技术范围,则能够以各种方式实施。

在上述的实施方式中,将热电偶通路26的末端位置26e设置在顶针孔H1的外周侧,但并不特别限定于此。例如,如图6所示,也可以将热电偶通路26的末端位置26e设置在从穿过顶针孔H1且与陶瓷板20的半径一致的直线70偏离的位置。在图6中,在长槽形状的导入部26a的轴线26A上设置有顶针孔H1。在此,轴线26A与直线70重叠。在图6中,对于与上述的实施方式相同的构成要素附上相同的附图标记。在该情况下,当沿着导入部26a的轴线26A直线地设置热电偶通路时,该热电偶通路会碰到顶针孔H1。因此,为了避免该情况,在热电偶通路26上设置有弯道部26c。

在上述的实施方式中,作为弯道部26c,例示了在陶瓷板20的面方向上弯曲的弯道部,但并不特别限定于此。例如,如图7所示,也可以将热电偶通路126的弯道部126c设置为在起点126s与末端位置126e之间沿陶瓷板20的厚度方向弯曲。弯道部126c的曲率半径优选为20mm以上,更优选为30mm以上。在图7中,将热电偶通路126的末端位置126e设置在晶片载置面20a与陶瓷板20中埋设有外周侧电阻发热体24的面之间,且将外周侧热电偶150的测温部150a配置为与末端位置126e接触。在图7中,对于与上述的实施方式相同的构成要素附上相同的附图标记。这样的话,热电偶通路126能够利用弯道部126c而容易地避开以与晶片载置面20a大致平行的方式埋设于陶瓷板20内的内周侧电阻发热体22及外周侧电阻发热体24。另外,由于末端位置126e(测温部150a的位置)接近晶片载置面20a,因此外周侧热电偶150的测温结果与晶片W的表面温度之差变小,能够得到更实用的测温结果。在该情况下,也可以使热电偶通路126中穿过设置有电阻发热体22、24的面的部分,穿过多区加热器的加热器区域间(内周侧区域Z1与外周侧区域Z2之间)。这样的话,能够减小对热电偶通路126的内周侧电阻发热体22及外周侧电阻发热体24的影响。

在上述的实施方式中,将从热电偶通路26的导入部26a的端部到末端位置26e为止的区间整体设为弯道部26c,但并不特别限定于此。例如,如图8所示,也可以在热电偶通路26中,将从导入部26a的端部到顶针孔H1的紧前为止的区间设置为沿着导入部26a的轴线26A,并将从顶针孔H1的紧前到末端位置26e为止的区间设置成大致C字状的弯道部26c。

在上述的实施方式中,将热电偶通路26的弯道部26c设为大致C字状,但并不特别限定于此。例如,如图9所示,在导入部26a的轴线26A上设置有顶针孔H1和气孔h1(在厚度方向上贯通陶瓷板20,用于向晶片W的背面侧供给He气的孔)的情况下,也可以以避开顶针孔H1和气孔h1双方的方式将弯道部26c形成为大致S字状。需说明的是,除此之外,也可以将弯道部26c设为将S字形、C字形适当组合而得到的形状或无规律地弯曲的形状。

在上述的实施方式中,热电偶通路26也可以将在陶瓷板20的面方向上弯曲的弯道部和在厚度方向上弯曲的弯道部组合。例如,能够利用在面方向上弯曲的弯道部来避开顶针孔,并且利用在厚度方向上弯曲的弯道部来避开内周侧及外周侧电阻发热体以使末端位置(测温部的位置)接近晶片载置面。

在上述的实施方式中,将两种电阻发热体22、24设为线圈形状,但并不特别限定于线圈形状,例如也可以是印刷图案,也可以是带形状、网眼形状等。

在上述的实施方式中,也可以在陶瓷板20中除了电阻发热体22、24以外还内置静电电极、RF电极。

在上述的实施方式中,例示了所谓的双区加热器,但并不特别限定于双区加热器。例如,也可以将内周侧区域Z1分为多个内周侧小区,针对每个内周侧小区域以一笔画的要领布置电阻发热体。另外,也可以将外周侧区Z2分为多个外周侧小区,针对每个外周侧小区,以一笔画的要领布置电阻发热体。内周侧及外周侧小区的形状既可以是环状,也可以是扇状,也可以是其他的形状。

在上述的实施方式中,将热电偶引导件32安装于热电偶通路26的导入部26a,但也可以在将外周侧热电偶50插入热电偶通路26时将热电偶引导件32配置于导入部26a,在将外周侧热电偶50插入热电偶通路26之后将热电偶引导件32去除。或者,也可以不使用热电偶引导件32而将外周侧热电偶50插入热电偶通路26。

在上述的实施方式中,在将热电偶通路26设为截面大致四边形的通路的情况下,优选通路内的面与面的边界(例如底面与侧面的边界)成为C面或R面,以避免使边缘变尖。

在上述实施方式中,外周侧热电偶50的外径d优选为0.5mm以上2mm以下。在外径d小于0.5mm的情况下,在将外周侧热电偶50插入热电偶通路26时会弯曲,难以插入到末端位置26e。若外径d超过2mm,则外周侧热电偶50的柔软性消失,因此难以将外周侧热电偶50插入至末端位置26e。

在上述的实施方式中,末端位置26e在外周侧热电偶50的测温部50a为凸状曲面的情况下,也可以将热电偶通路26的末端面(末端位置26e处的立壁)的立壁中与测温部50a接触的部分设为凹状曲面。这样的话,由于外周侧热电偶50的测温部50a以面接触或与其接近的状态进行接触,因此测温精度提高。

本申请将2020年2月3日申请的日本专利申请第2020-016116号作为优先权主张的基础,通过引用将其内容全部包含在本说明书中。

相关技术
  • 陶瓷加热器、采用该陶瓷加热器的热线引火塞及陶瓷加热器的制造方法
  • 一种陶瓷加热器支撑基体及陶瓷加热器
技术分类

06120113236896