掌桥专利:专业的专利平台
掌桥专利
首页

自移动设备及其自动工作系统

文献发布时间:2024-04-18 20:01:30


自移动设备及其自动工作系统

本申请是申请人于2019年9月12日申请的发明名称为“自移动设备及其自动工作系统”,申请号为201980040394.4的中国发明专利申请的分案申请。

技术领域

本发明涉及一种自移动设备及其自动工作系统。

背景技术

随着科学技术的发展,智能的自移动设备为人们所熟知,由于自移动设备可以自动预先设置的程序执行预先设置的相关任务,无须人为的操作与干预,因此在工业应用及家居产品上的应用非常广泛。工业上的应用如执行各种功能的机器人,家居产品上的应用如割草机、吸尘器等,这些智能的自移动设备极大地节省了人们的时间,给工业生产及家居生活都带来了极大的便利。

以自动割草机为例,自动割草机一般在规定的工作区域内进行自主移动和切割,工作区域可以为边界线限定的区域,可以为信标限定的工作区域,也可以为不设置实际物理边界的工作区域,通过地图等方式进行限定。自动割草机包括切割系统,该切割系统的外围设有防护罩防止切割系统对操作人员带来伤害。切割系统包括切割件,通常的切割件是由金属刃具来担当的。为了保证不会伤到用户,一种情况下,金属刃具的外围设有防护罩,防护罩之间与自动割草机的外围也存在一定距离,这样,金属刃具的末端离自动割草机的外围轮廓的距离会比较大;另一种情况下,金属刃具与自动割草机的外围轮廓的距离能够保证用户无法接触到金属刃具,这样,金属刃具的末端离自动割草机的外围轮廓的距离会更大。也就是说,切割作业时,金属刃具的末端与工作区域边界之间,或者与墙角、篱笆、台阶等障碍之间会产生切割不到的区域。这些切割不到的区域需要用户采用传统的方式进行二次处理,如使用打草机进行人工修边,造成了操作上的诸多不便。

发明内容

为克服现有技术的缺陷,本发明所要解决的一个问题是具有辅助工作能力的安全工作的自移动设备。

本发明解决现有技术问题所采用的一个技术方案是:

一种自移动设备,在工作区域内移动和工作,包括:壳体;行走模块,安装于所述壳体,带动所述壳体移动;主工作模块,安装于所述壳体,执行主工作任务;辅助工作模块,安装于所述壳体,执行辅助工作任务;控制模块,用于控制所述行走模块、主工作模块和辅助工作模块;所述自移动设备包括无线通信模块,用于接收用户操作产生的控制信号;所述自移动设备包括自动工作模式和辅助工作模式,在所述辅助工作模式中,所述控制模块至少基于所述控制信号控制所述辅助工作模块工作;所述控制模块基于所述控制信号中断控制所述辅助工作模块停止工作。

在其中一个实施例中,所述控制信号中断包括所述无线通信模块停止接收所述控制信号的时间大于预设中断时间。

在其中一个实施例中,所述预设中断时间小于等于3秒。

在其中一个实施例中,在所述辅助工作模式中,若所述控制模块判断所述控制信号的信号源与所述无线通信模块的距离大于等于第一预设距离,控制所述辅助工作模块停止工作。

在其中一个实施例中,所述第一预设距离小于等于20米。

在其中一个实施例中,在所述辅助工作模式中,若所述信号源与所述无线通信模块的距离大于第二预设距离,所述控制模块控制所述辅助工作模块降低工作速率,使所述辅助工作模块的工作能量小于预设能量;所述第二预设距离小于所述第一预设距离。

在其中一个实施例中,所述第二预设距离小于等于6米。

在其中一个实施例中,若所述控制模块判断所述控制信号强度小于等于预设强度,控制所述辅助工作模块停止工作。

在其中一个实施例中,所述控制模块基于至少两种预设信号控制所述自移动设备切换为所述辅助工作模式。

在其中一个实施例中,若控制模块接收的所述至少两种预设信号满足预设条件,所述控制模块控制所述自移动设备切换为所述辅助工作模式。

在其中一个实施例中,所述预设条件包括预设时间和/或预设顺序。

在其中一个实施例中,所述至少一种预设信号由所述无线通信模块接收。

在其中一个实施例中,所述至少一种预设信号包括所述控制信号。

在其中一个实施例中,所述自移动设备包括交互模块,所述至少一种预设信号由用户操作所述交互模块产生。

在其中一个实施例中,在所述辅助工作模式中,所述控制模块基于停止信号控制所述辅助工作模块停止工作。

在其中一个实施例中,所述停止信号由所述无线通信模块接收。

在其中一个实施例中,在所述辅助工作模式中,所述控制模块控制所述行走模块沿预设路径移动。

在其中一个实施例中,所述自移动设备包括路径侦测模块,用于检测所述预设路径,所述控制模块根据所述路径侦测模块的输出自动控制所述行走模块的移动方向。

在其中一个实施例中,所述控制模块根据所述路径侦测模块的输出判断所述自移动设备是否在所述预设路径上,若不在所述预设路径上,控制所述辅助工作模块停止工作。

在其中一个实施例中,所述预设路径包括所述工作区域的内边界和/或外边界。

在其中一个实施例中,在所述辅助工作模式中,所述辅助工作模块的工作能量小于5J。

在其中一个实施例中,在所述辅助工作模式中,所述辅助工作模块的工作能量小于2J。

在其中一个实施例中,在所述辅助工作模式中,所述行走模块的最大移动速度小于25m/min。

在其中一个实施例中,在所述辅助工作模式中,所述行走模块的最大移动速度大于5m/min。

在其中一个实施例中,所述辅助工作模块包括打草头,所述打草头安装有打草绳,所述打草头带动所述打草绳旋转以割草。

在其中一个实施例中,所述无线通信模块包括蓝牙通信模块。

在其中一个实施例中,若所述辅助工作模块停止工作,所述控制模块控制所述自移动设备切换为所述自动工作模式。

在其中一个实施例中,在所述自动工作模式中,所述控制模块自主控制所述行走模块和所述主工作模块。

在其中一个实施例中,在所述自动工作模式中,所述控制模块控制所述辅助工作模块不工作。

本发明解决现有技术问题所采用的另一个技术方案是:

一种自动工作系统,包括自移动设备和用户终端,

所述自移动设备,在工作区域内移动和工作,包括:壳体;行走模块,安装于所述壳体,带动所述壳体移动;主工作模块,安装于所述壳体,执行主工作任务;辅助工作模块,安装于所述壳体,执行辅助工作任务;控制模块,用于控制所述行走模块、主工作模块和辅助工作模块;无线通信模块,用于接收所述用户终端发送的信号;

所述用户终端包括:输入模块,供用户操作产生信号;处理模块,用于处理所述信号;远程通信模块,用于发送所述信号;所述输入模块包括第一输入单元,用于产生控制信号,所述信号包括所述控制信号;

所述自移动设备包括自动工作模式和辅助工作模式,在所述辅助工作模式中,所述控制模块至少基于所述控制信号控制所述辅助工作模块工作;所述控制模块基于所述控制信号中断控制所述辅助工作模块停止工作。

在其中一个实施例中,所述控制信号中断包括所述无线通信模块停止接收所述控制信号的时间大于预设中断时间。

在其中一个实施例中,所述预设中断时间小于等于3秒。

在其中一个实施例中,在所述辅助工作模式中,若所述无线通信模块与所述远程通信模块的距离小于等于第一预设距离,所述控制模块控制所述辅助工作模块停止工作。

在其中一个实施例中,所述第一预设距离小于等于20米。

在其中一个实施例中,在所述辅助工作模式中,若所述距离大于第二预设距离,所述控制模块控制所述辅助工作模块降低工作速率,使所述辅助工作模块的工作能量小于预设能量。

在其中一个实施例中,所述第二预设距离小于等于6米。

在其中一个实施例中,所述输入模块包括第二输入单元,用于产生启动信号。

在其中一个实施例中,所述处理模块基于所述启动信号控制所述远程通信模块发送所述控制信号。

在其中一个实施例中,若处理模块接收的所述控制信号和启动信号满足预设条件,控制所述远程通信模块发送所述控制信号。

在其中一个实施例中,所述预设条件包括预设时间和/或预设顺序。

在其中一个实施例中,所述控制模块基于所述控制信号控制所述自移动设备切换为所述辅助工作模式。

在其中一个实施例中,所述处理模块控制所述远程通信模块发送所述启动信号和所述控制信号。

在其中一个实施例中,所述自移动设备包括交互模块,用于产生启动信号。

在其中一个实施例中,所述控制模块基于所述启动信号和所述控制信号控制所述自移动设备切换为所述辅助工作模式。

在其中一个实施例中,所述控制模块基于所述启动信号和所述控制信号控制所述自移动设备切换为所述辅助工作模式。

在其中一个实施例中,若所述控制模块接收的所述启动信号和所述控制信号满足预设条件,所述控制模块控制所述自移动设备切换为所述辅助工作模式。

在其中一个实施例中,所述第一输入单元包括触摸感应式按键,由用户触摸产生所述控制信号。

在其中一个实施例中,所述第一输入单元通过第一连接电路或第二连接电路与所述处理模块连接,所述第一连接电路与所述第二连接电路并联。

在其中一个实施例中,所述输入模块包括第三输入单元,用于产生停止信号;所述控制模块基于所述停止信号控制所述辅助工作模块停止工作。

与现有技术相比,本方案的有益效果是:

自移动设备安装辅助工作模块,能够将原本需要用户手持设备进行的打草、修枝等工作由自移动设备完成,用户只需操作用户终端,使得工作过程更加轻松便捷。而辅助工作模块的工作需要用户通过操作用户终端进行,确保在用户监控状态下进行,能够保证用户对可能发生的危险情况进行响应,从而提高操作安全性。

附图说明

以上所述的本发明的目的、技术方案以及有益效果可以通过下面附图实现:

图1是一个实施例中自动工作系统的示意图。

图2是一个实施例中自移动设备的结构示意图。

图3是一个实施例中自动割草机的结构示意图。

图4是一个实施例中自动割草机各模块工作区域的示意图。

图5是又一实施例中自动割草机各模块工作区域的示意图。

图6是另一实施例中自动割草机各模块工作区域的示意图。

图7是一个实施例中自动割草机移动方向的示意图。

图8是另一实施例中自动割草机移动方向的示意图。

图9是一个实施例中用户终端的结构示意图。

图10是一个实施例中调高结构的示意图。

图11是一个实施例中自动割草机与障碍物位置关系的示意图。

图12是一个实施例中自动割草系统的示意图。

图13是一个实施例中用户终端的结构示意图。

图14是又一实施例中用户终端的结构示意图。

图15是一个实施例中自动割草机的结构示意图。

具体实施方式

以下结合附图详细叙述本发明的具体实施方式。

图1为一个自动工作系统,如图1所示,本实施方式中,自动工作系统包括自移动设备1、边界3和停靠站5。其中边界3用于限制自动工作系统的工作区域7,自移动设备1在边界3内行走并工作,停靠站5用于供自移动设备1停靠,尤其是在能源不足时返回补充能量。

边界3可以是工作区域7的外边界,外边界是整个工作区域7的外围,通常首尾相连,将工作区域7封闭。边界3可以是实体的也可以是电子的,即可以由墙壁、篱笆,栏杆等形成边界3,可以由边界信号发生装置发出电磁信号或光信号等,可以是能够产生磁场的无源磁性装置,也可以是自移动设备1学习或记录的绝对坐标或相对坐标,或其他能够确定位置的环境信息等。边界3也可以是工作区域7的外边界和内边界的统称,内边界包括了工作范围内的障碍或其他自移动设备1不宜进入的区域,障碍是位于工作范围内的无法在其上行走的部分或区域,如室内的沙发、床柜,或室外的水塘、花台等。

本实施例中,自移动设备1为自动割草机,在其他实施例中,自移动设备1可以是自动吸尘器、自动喷洒设备、自动监控设备等适合无人值守的设备,自动行走于工作区域7的地面或表面上,完成相应的工作。自移动设备1包括行走模块、主工作模块、边界侦测模块、能量模块、控制模块。

如图2所示,行走模块23用于带动自移动设备1在工作区域7内行走,通常由安装在自移动设备1上的轮组和驱动轮组的行走马达组成。轮组包括连接行走马达的驱动轮和主要起辅助支撑作用的辅助轮。本实施例中,驱动轮的数量为两个,位于自移动设备1的后部,每个驱动轮连接有一个行走马达,辅助轮的数量为一个或两个,位于自移动设备1的前部。

主工作模块25用于执行自移动设备1的主要工作任务。若自移动设备1为自动割草机,则主工作模块包括割草刀片、切割马达等,也可能包括割草高度调节机构等优化或调整割草效果的部件。若自移动设备1为自动吸尘器,则主工作模块包括吸尘马达,吸尘口、吸尘管、真空室、集尘装置等用于执行吸尘任务的工作部件。

边界侦测模块用于侦测自移动设备1和边界3的相对位置关系,具体可能包括距离、角度,边界3内外方位中的一种或几种。边界侦测模块的组成和原理可以为多种,如可以为红外线式、超声波式、碰撞检测式,磁感应式等等,其传感器和对应的信号发生装置的设置位置和数量也是多样的,并且和路径规划方式相关。

能量模块用于为自移动设备1的各项工作提供能量,其包括可充电电池和充电连接结构,充电连接结构通常为充电电极。

控制模块31用于控制自移动设备1自动行走和工作,是自移动设备1的核心部件,它执行的功能包括控制主工作模块启动工作或停止,控制行走模块启动或停止,并控制移动方向,判断能量模块的能量并及时指令自移动设备1返回充电站自动对接充电等等。控制模块通常包括单片机和存储器以及其它外围电路。

除了上述模块,自移动设备1还包括容纳和安装各个模块的壳体21、供使用者操作的控制面板等,自移动设备1还可能包括各种环境传感器,如湿度传感器,温度传感器,加速度传感器,光传感器等,这些传感器可以帮助自移动设备判断工作环境,以执行相应的程序。

在一个实施例中,自移动设备1包括辅助工作模块33,用于执行自移动设备1的辅助工作任务。可选的,若自移动设备1为自动割草机,辅助工作模块包括辅助切割模块或施肥模块或落叶收集模块等。若自移动设备1为清洁机器人,辅助工作模块包括洒水模块或拖地模块等。

停靠站5通常位于工作范围内,如边界3附近或边界3上,和市电或其它电能提供系统连接,供自移动设备1返回充电,停靠站5上设有充电电极,用于和自移动设备1的相应的电极对接。可选的,停靠站5不设置充电电极,而设置无线充电模块,与自移动设备1的无线充电模块相互感应从而实现无线充电。

在一个实施例中,自移动设备1包括主工作模式和辅助工作模式,在主工作模式中,控制模块31自主控制行走模块23和主工作模块25;在辅助工作模块中,控制模块31基于用户操作产生的预设信号控制辅助工作模块33工作。

图9是一个实施例中用户终端9的结构示意图,如图9所示,自动工作系统包括一个用户终端9,用户终端9可与自移动设备1建立通信连接。用户终端9包括远程通信模块10、处理模块12和输入模块14,输入模块14和远程通信模块10分别连接在处理模块12上。可选的,用户终端9还包括指示灯16,与处理模块连接,用于指示通信连接状态。根据实际需要,输入模块14可以设置若干个按键,每个按键对应不同的功能。自移动设备1包括无线通信模块65,可以与用户终端9建立通信连接,从而接收信号。用户终端9可以是独立的控制器,也可以是与自移动设备1可拆卸连接的控制装置,或者是手机、电脑等用户终端。用户通过对用户终端9的操作至少部分地控制自移动设备1工作。

在一个实施例中,输入模块14包括第一输入单元,用于产生控制信号;第二输入单元,用于产生启动信号。继续参考图9,在一个实施例中,第一输入单元包括按键141、第二输入单元包括按键143,其中按键141为启动键,供用户操作产生启动信号,按键143为控制键,用于供用户操作产生控制信号。可选的,按键143为接触式传感器,检测用户接触用户终端9并产生控制信号,使得用户以正常姿势手持用户终端时,就能够接触到接触式传感器143并发出控制信号。本实施例中,接触式传感器为电容传感器。

在一个实施例中,输入模块14包括第三输入单元,本实施例中,第三输入包括停止键145,产生停止信号,控制模块31基于停止信号停止行走模块23和辅助工作模块33。

在一个实施例中,为避免按键143及与其连接的信号传输电路或控制电路在工作过程中失效,按键143与两个独立通道的电路连接,若其中一个通道的电路失效,另一通道的电路可以保证用户正常控制。在另一个实施例中,按键143包括按键一和按键二,若按键一或按键二中的任何一个按键失效,另一个仍可以正常工作,确保用户正常控制。

在一个实施例中,若用户终端9处于工作状态,当用户按下按键141和按键143,产生启动信号和控制信号,处理模块12控制远程通信模块10分别发送启动信号和控制信号。在通信状态下,无线通信模块65接收启动信号和控制信号,控制模块31基于启动信号和控制信号控制辅助工作模块33工作。

在一个实施例中,若用户终端9处于工作状态,当用户按下按键141和按键143,处理模块12分别接收到启动信号和控制信号,且满足预设条件,则处理模块12控制远程通信模块10发送控制信号。本实施例中,预设条件包括处理模块12在预设时间内接收到启动信号和控制信号。预设时间可以为10秒、20秒等,根据实际需要进行设置。在其他实施例中,预设条件包括处理模块12以预设顺序接收到启动信号和控制信号,控制模块31基于控制信号控制辅助工作模块33工作。预设顺序可以为先接收到启动信号,后接收到控制信号;也可以为先接收到控制信号,后接收到启动信号;还可以设置为同时接收到启动信号和控制信号等。

在一个实施例中,自移动设备1包括交互模块35,供用户操作产生信号。本实施例中,交互模块53包括在壳体21设置的启动键,用户终端9设置有控制键。当用户操作启动键,控制模块31接收到启动信号,当用户操作控制键,用户终端9发送控制信号,控制模块31通过无线通信模块65接收到控制信号。若控制模块31接收的启动信号和控制信号满足预设条件,则控制模块31控制辅助工作模块33工作。

无线通信模块65包括天线,无线通信模块65的天线设置于自移动设备1的上部,可选的,设置于辅助工作模块33的上部,从而避免被自动割草机11内的金属干扰,影响无线通信模块65发送和接收信号。

在一个实施例中,在辅助工作模式中,控制模块31至少基于控制信号控制辅助工作模块33工作。若控制模块31接收的控制信号中断,控制模块31控制辅助工作模块33停止工作。

在一个实施例中,控制信号中断具体为无线通信模块65无法接收到控制信号的时间大于预设中断时间。本实施例中,预设中断时间小于等于3秒。根据实际需要,预设中断时间可以为4秒、5秒等。这里,无线通信模块65无法接收到控制信号的情况包括用户松开用户终端9的按键,或用户终端9与自移动设备1失去连接,或用户终端9失电,或用户终端9与自移动设备1之间存在障碍物遮挡等等。

若用户持续手持用户终端9,接触到按键143,则用户终端9持续发出控制信号,说明用户处在控制状态下,控制模块31根据接收到的控制信号控制辅助工作模块33工作。若控制模块31确认用户终端9完成启动后,控制模块31通过无线通信模块65接收的控制信号中断,则控制辅助工作模块33停止工作。可选的,控制辅助工作模块33和行走模块23都停止工作。

在一个实施例中,若控制模块31接收到停止信号,即用户按下停止键145,则控制模块31控制辅助工作模块33停止工作。可选的,控制模块31控制辅助工作模块33和行走模块23都停止工作。

在一个实施例中,为了保证用户在自移动设备1的有效控制范围内进行控制,控制模块31根据接收的控制信号判断用户终端9与自移动设备1的距离,若用户终端9与自移动设备1的距离大于等于预设距离,则控制辅助工作模块33停止工作。本实施例中,预设距离小于等于20米,也就是说,当用户终端9与自移动设备1的有效距离小于20米时,用户终端9可以对自移动设备1进行控制。当用户终端9与自移动设备1的有效距离大于20米时,用户终端9发送的控制信号无法控制辅助工作模块33工作。

图12是一个实施例中自动割草系统的示意图,如图12所示,自动割草系统包括:自动割草机11;停靠站105,供自动割草机11停泊和充电;位于停靠站105上、生成边界信号的边界信号发生器;连接边界信号发生器的边界线103,边界线103和边界信号发生器形成闭合环形,边界线103上具有边界信号,边界线103以内形成自动割草机11的工作区域107。自动割草机11包括壳体61,安装在壳体61上的行走模块51、主切割模块53、边界侦测模块55、能量模块57、控制模块59。

主切割模块53为刀盘,包括围绕旋转轴的轴线转动的底盘,底盘构成一个垂直旋转轴轴线的平面,其中央开孔并且该开孔与旋转轴套接,旋转轴位于底盘的中心;还包括设置在底盘的圆周边缘的主切割元件,主切割元件随底盘的转动而一起围绕旋转轴轴线转动,底盘及主切割元件旋转形成以线盘中心为第一转轴的主切割区域。

以自动割草机11前进方向为壳体61的纵向,以垂直于地面的方向为壳体61的竖向,以同时垂直于纵向和竖向的方向为壳体61的横向,壳体61包括纵向上的纵轴线111,主切割模块53安装于壳体61的纵轴线111上,使得壳体61的周缘与主切割模块53的距离足够大,从而保证用户的使用安全。若自动割草机11在边界线103内侧沿着边界线103移动,则可能会导致主切割模块53工作形成的主切割区域无法覆盖到工作区域107的边界。

在一个实施例中,边界侦测模块25包括第一边界信号传感器和第二边界信号传感器,对称设置于壳体61前部,通过检测边界信号判断位于边界线103内或外。若第一边界信号传感器检测结果显示在边界线103外时,说明第一边界信号传感器所在的一侧自动割草机11已驶出边界线103,此时控制模块59控制自动割草机11转向,也就是说,自动割草机11会部分驶出边界线103,然后转向。一般的,为了避免自动割草机11频繁碰撞墙壁、篱笆、台阶等障碍或是进入不需要工作的区域,障碍物边缘设置的边界线103与障碍物或其他边界之间的距离约有30厘米。若自动割草机11回归时停靠站105时部分位于边界线103内,部分位于边界线103外,即跨线回归时,主切割模块53只能切割到边界线103外约10mm的区域,因此边界线103与障碍物之间留下了约20mm的待修边区域是自动割草机11无法处理的。考虑一种极端情况,自动割草机11能够完全沿着墙壁、篱笆等障碍移动,也会由于壳体61的周缘与主切割区域之间存在距离而无法完全处理待修边区域。因此,若仅安装有主切割模块53,自动割草机13无法实现切割到边。

图3是自动割草机的结构示意图,如图12和图3所示,为了解决主切割模块53无法切割到边的问题,自动割草机11还包括辅助切割模块63。本实施例中,辅助切割模块63包括打草头,包括绕有打草绳的线盘、收容线盘的收容座,打草头工作时,收容座被驱动旋转带动线盘及打草绳同步旋转,形成以线盘圆心为第二转轴的辅助切割区域。

由于辅助切割模块63工作产生的草屑容易粘在壳体61上,而水洗是解决此问题的一个重要方式。为了防止水洗过程中辅助切割模块内部接触到水造成损坏,需要对辅助切割模块63进行防水设计。继续参考图3,在一个实施例中,辅助切割模块63包括辅助切割电机,用于驱动打草头旋转。辅助切割电机设置于电机防护罩内,电机防护罩防止灰尘,雨雪等给电动机的运转带来的损害,确保电动机正常连续工作。本实施例中,电机防护罩包括供辅助切割电机的输出轴伸出的出口,除该出口外,电机防护罩为密封结构,即不包括供电机散热的散热孔。因此,电机防护罩的材料包括铝壳等导热材料。本实施例中,电机防护罩与辅助切割电机的机壳在高度方向上存在间隙,以供辅助切割电机的出风口排出气流,在电机防护罩内进行气流循环。在一个实施例中,辅助切割模块63包括散热风扇,安装于电机防护罩下方,用于辅助散热。在一个实施例中,电机防护罩的一侧朝向主切割模块53,另一侧朝向自动割草机11外,则上述另一侧的电机防护罩包括散热孔,帮助辅助切割电机散热。上述面向主切割模块53的一侧无散热孔,防止主切割模块53工作产生的草屑进入辅助切割电机。

在一个实施例中,电机防护罩的出口与辅助切割电机的输出轴之间设置密封件,在保持辅助切割电机输出轴的正常旋转的前提下进一步隔离电机防护罩内外环境。在一个实施例中,辅助切割模块63内的带电体通过封装与外部环境隔离,包括灌封防水,如环氧树脂灌封胶;或表面涂层防水,如三防漆或纳米涂层等。

图4是一个实施例中自动割草机各模块工作区域的示意图,如图4所示,为了实现自动割草机11沿着边界线103移动时能够切割到边界线103外的待修边区域,辅助切割模块63工作形成的辅助切割区域相切于壳体61或超出壳体61。若行走模块51在横向上位于壳体61内,第二转轴与壳体61外边缘在横向上的距离小于等于辅助切割区域的半径;若行走模块51在横向上位于壳体61外,第二转轴与行走模块51外边缘在横向上的距离小于等于辅助切割区域的半径;使得辅助切割区域超出或相切于壳体61或行走模块51。这样,若自动割草机11能够沿着障碍物移动,辅助切割区域能够完全覆盖障碍物周围。当自动割草机11沿着边界线103移动时,只要辅助切割区域在横向上能够覆盖到边界线103或边界线103外的待修边区域,就能够实现自动割草机11完全切割到边,而无需用户再次处理。辅助切割模块63安装的一侧为自动割草机11移动方向的左侧或右侧;若辅助切割模块63包括两个打草头,则可以在自移动割草机11移动方向的左侧和右侧各安装一个,控制模块59可以控制其中一个工作或者两个同时工作。在其他实施例中,辅助切割区域在纵向上超出壳体61也能够实现切割到边,特别的,对于工作区域107内存在障碍物的情况,当自动割草机11在前进过程中遇到障碍物,则自动割草机11无需改变移动方式超出壳体61的辅助切割区域则可以覆盖到障碍物边缘。

图5是又一实施例中自动割草机各模块工作区域的示意图,如图5所示,主切割模块53安装于壳体61的纵轴线111的一侧,使得主切割区域能够更靠近障碍物,从而切割到主切割模块53安装于纵轴线111上时无法切割到的区域,但为了避免意外伤害,一般在用户能够接触到主切割元件的一侧设置防护罩,确保用户无法伸入并接触到主切割元件,这就造成了主切割模块53与防护罩之间仍然存在距离,导致自动割草机11即使沿着障碍物切割也无法切割到边。因此,将辅助切割模块63也安装于壳体61的纵轴线111的相同一侧,如,主切割模块53和辅助切割模块63均安装于自动割草机11行走方向的右侧。主切割模块53和辅助切割模块63以这样的方式安装于壳体61,主切割模块53能够最大化地切割到工作区域107的边界附近,从而减小辅助切割模块63的工作负荷。由于主切割模块53和辅助切割模块63安装在同一侧,为了使主切割模块53和辅助切割模块63朝向工作区域107的外侧,主切割模块53工作时或辅助切割模块63工作时,自动割草机11沿边界线103移动的移动方向是一致的,无需改变方向。

图6是另一实施例中自动割草机各模块工作区域的示意图,如图6所示,主切割模块53安装于壳体61的纵轴线111的一侧,辅助切割模块63安装于壳体61的纵轴线111的另一侧。由于主切割模块53和辅助切割模块63安装于纵轴线111的不同侧,能够充分利用壳体61的空间,使得自动割草机11的各个模块的结构布局更为紧凑。为了实现切割到边,主切割模块53工作时自动割草机11沿边界线103移动的方向与辅助切割模块63工作时自动割草机11沿边界线103移动的方向是相反的。

在一个实施例中,辅助切割模块63的辅助切割元件为打草绳,打草头工作时,打草绳的工作能量小于等于完全能量,安全能量小于等于5J,确保人或动物接触到时不会造成伤害。本实施例中,打草绳为尼龙材质,通过打草绳材料和形状的限制,以及对打草头工作速率的限制等,将打草绳的工作能量控制在安全范围内。在其他实施例中,打草绳可以为柔性的其他材料,如树脂,纤维等材质。辅助切割模块63也可以为除打草头外的其他切割装置,还可以是没有刃口的金属元件、塑料刀片等,只需要在能够满足辅助切割元件的工作能量小于安全能量即可。在一个实施例中,安全能量小于等于2J。

在一个实施例中,当辅助切割模块63工作时,自动割草机11的最大移动速度不超出预设速度范围。自动割草机11的移动速度与辅助切割模块63的工作能量相关,若自动割草机11的移动速度过大,为了减少漏切割的可能性,辅助切割模块63需要配合较大的工作能量,从而影响工作安全。本实施例中,预设速度范围小于等于25m/min。

若自动割草机11的移动速度小,辅助切割模块63的工作能量可以相应减小,提高安全性。但是,太小的移动速度会影响自动割草机11的工作效率,增加工作时间,影响用户体验。在一个实施例中,预设速度范围大于等于5m/min。

在一个实施例中,驱动轮包括轮毂盖,轮毂盖表面近似光滑,凹槽深度小于等于5mm。轮毂盖的凹槽深度越大,草屑附着的可能性越高,需要用户进行清理。因此,轮毂盖表面近似光滑能够减少草屑附着率。可以理解的是,靠近辅助切割模块63的壳体61表面也近似光滑。

在一个实施例中,壳体61包括底座以及安装于底座的上盖,由于辅助切割模块63的工作区域在高度方向上与上盖侧边缘部分重叠,为了避免壳体61干扰辅助切割模块63工作,高度方向上与辅助切割模块63重叠部分的壳体61与辅助切割模块63的工作区域所在的平面的高度差大于等于5mm。

在一个实施例中,如图6所示,主切割模块53和辅助切割模块63分别位于壳体61纵轴线的两侧。辅助切割模块63所在一侧的壳体61与主切割模块53在水平方向上的距离大于等于180mm,防止主切割模块53工作时用户将手指伸入造成伤害。

在一个实施例中,壳体61包括活动护罩,安装于底座或上盖,位于辅助切割模块63所在一侧,当辅助切割模块63安装于壳体61时,活动护罩上移,防止影响辅助切割模块工作;当辅助切割模块63未安装于壳体61时,活动护罩下移,防止用户将手或脚伸入接触到主切割模块53。在其他实施例中,当辅助切割模块63安装于壳体61时,该部分上盖从壳体61上拆卸下来,当辅助切割模块63未安装于壳体61时,该部分上盖安装于壳体61。在一个实施例中,设定一个辅助切割区域的最大半径,此最大半径小于等于第二转轴与自动割草机11的其他结构的距离。继续参考图4,在辅助切割区域的边缘安装一个限制元件37,用于限制打草绳的长度,从而限制辅助切割区域的最大半径。辅助切割模块63安装于壳体61纵轴线111的一侧,由于打草绳在工作过程中磨损比较严重,打草头会在工作过程中频繁地放线,即放出一段打草绳。一般情况下,放出的打草绳长度相对固定,但一般的打草头放线结构不可避免地放出比正常长度更长的打草绳,这样会造成打草头工作时打草绳打在自动割草机11的其他结构上,如行走模块51或主切割模块53,造成一定程度的损坏。本实施例中,限制元件37安装于壳体61,限制元件37包括刀片,用于切断超出设定长度的打草绳。通过限制元件37限制打草绳的长度,保证辅助切割模块63与其他模块之间的工作区域互不干涉。

在一个实施例中,在自动割草机11移动方向上,辅助轮位于前侧,驱动轮位于后侧,辅助轮后侧及辅助切割模块63的后侧形成区域A。限制元件37的安装高度大致平行于辅助切割模块63的切割区域,且位于区域A内。本实施例中,限制元件37安装于区域A内,且靠近辅助轮,当自动割草机11遇到障碍物时,辅助轮先于限制元件37遇到并越过障碍,而位于辅助轮后侧的限制元件37也能随着辅助轮越过障碍物。在其他实施例中,限制元件37安装于区域A内且靠近驱动轮,当障碍物位于自动割草机11后侧时,驱动轮接触并越过障碍的可能性更大,限制元件37能够随之越过障碍,避免碰撞。在其他实施例中,行走模块51包括前侧的两个驱动轮和后侧的两个驱动轮,而不包括辅助轮。限制元件37同样位于区域A内。

在一个实施例中,限制元件37安装于活动结构,如弹性结构。当遇到障碍物时,限制元件37能在活动结构的带动下避开障碍物,当离开障碍物后,限制元件37能自动恢复原位。在一个实施例中,限制元件37的高度大于30毫米,即限制元件37与水平地面的距离大于30毫米。在一个实施例中,辅助切割模块63包括打草头,控制模块59控制打草头向后旋转。若打草头位于壳体61的左侧,则控制模块59控制打草头逆时针旋转,若打草头位于壳体61的右侧,则控制模块59控制打草头顺时针旋转。由于打草头旋转切割时,会产生在相应旋向上运动的草屑,若打草头向前旋转,草屑容易堆积在自动割草机11的前侧,当自动割草机11向前移动后,打草头再次作用于堆积的草屑上,会增加打草头的工作负载。因此,打草头向后旋转能够在减小打草头的工作负载。进一步的,对于安装于壳体61下方的辅助轮而言,若草屑堆积在辅助轮上,很难排出;若驱动轮不被壳体61覆盖,则相对容易将草屑排出。因此,打草头向后旋转能够帮助行走模块排出草屑,防止影响自动割草机11移动。

在一个实施例中,主切割模块53和辅助切割模块63之间设置有隔离罩。隔离罩至少部分地覆盖主切割模块53,或至少部分地覆盖辅助切割模块63,从而防止主切割模块53工作时草屑进入辅助切割模块63,或辅助切割模块63工作时草屑进入主切割模块53。

在一个实施例中,主切割模块53包括倾斜设置的刀片,辅助切割模块63包括倾斜设置的打草头或倾斜设置的打草绳,使得打草绳工作时的倾斜角度与主切割模块53的刀片倾斜角度一致,从而保持辅助切割模块63切割后的切割断面与主切割模块53切割后的切割断面一致,获得更好的切割效果。在一个实施例中,倾斜角度为3度。

在一个实施例中,打草头上安装有两根打草绳,在竖向上存在高度差,当打草头工作时,上下两根打草绳分别形成第一切割平面和第二切割平面,若草坪高度较高,第一切割平面和第二切割平面可以分别对草进行切割。由于辅助切割模块63的工作频率低于主切割模块53,因此待修边区域的草的高度大于工作区域107内的草,若打草头安装有一根打草绳,打草头切割后的草屑长度较长,通过安装两个打草绳对待修边区域内的草进行切割,可以更加细化草屑,使得草屑遮挡不会遮挡草坪影响美观度,甚至影响草坪生长。

在一个实施例中,控制模块59通过检测打草头的工作参数判断打草绳露出打草头的长度,若判断长度小于阈值,则控制打草头自动放线,即自动放出一定长度的打草绳,使得辅助切割区域恢复原有的工作面积。具体的,可检测打草头的工作电压等参数,控制模块59判断工作电压与阈值之间的关系,从而控制打草头放线。

在一个实施例中,打草绳缠绕于线盘安装于打草头,当线盘上的打草绳用尽时,需要更换新的线盘供打草头工作使用。控制模块59通过检测打草头的工作参数判断打草绳是否用尽,若打草绳用尽,则提醒用户更换。具体的,打草头包括驱动电机,通过传感器检测电机转速、电流或功率等,当打草头驱动电机的测量信号小于预设值时,则判断打草绳用尽。当控制模块59判断打草绳用尽,可通过安装于壳体61的光电模块等提醒装置进行提醒,也可通过无线信号传输方式将换线提醒信号传输至终端设备,如手机、电脑等设备。

在一个实施例中,行走模块51沿着边界线103移动的方向可以包括两个方向,保证辅助切割模块63能够切割到边的第一方向和与第一方向相反的第二方向。控制模块59控制行走模块51沿边界线103以第一方向移动,当自动割草机11以第一方向移动时,安装辅助切割模块63的一侧相对于纵轴线111的另一侧朝向工作区域107之外,以使辅助切割区域延伸至边界线103或边界线103以外,从而切割到主切割模块53无法切割到的区域。

图7是一个实施例中自动割草机移动方向的示意图,如图7所示,辅助切割模块63安装在纵轴线111左侧,控制模块59需控制行走模块51沿着边界线103以顺时针方向移动,即沿着边界线103的顺时针方向为第一方向,逆时针方向为第二方向。

图8是另一实施例中自动割草机移动方向的示意图,如图8所示,辅助切割模块63安装在纵轴线111右侧,控制模块59需控制行走模块51沿着边界线103以逆时针方向移动,即沿着边界线103的逆时针方向为第一方向,顺时针方向为第二方向。

继续参考图12,在一个实施例中,边界侦测模块55包括第一磁场传感器和第二磁场传感器,通过第一磁场传感器和第二磁场传感器检测边界线103上的电流产生的磁场信号,从而判断位于边界线103内或边界线103外。第一磁场传感器安装于纵轴线111的左侧,第二磁场传感器安装于纵轴线111的右侧,为了控制自动割草机11沿边界线103移动的方向为顺时针方向,控制模块59需控制第一磁场传感器位于边界线103外,第二磁场传感器位于边界线103内;若要控制自移动割草机11沿着边界线103移动的方向为逆时针方向,控制模块59需控制第一磁场传感器位于边界线103内,第二磁场传感器位于边界线103外。在其他实施例中,控制模块59可通过第一磁场传感器和第二磁场传感器检测到的磁场信号的判断位于边界线103内或外,还可以通过磁场信号强度控制自动割草机11沿着边界线103的一侧行走,并控制行走方向,具体不再赘述。

继续参考图4、图5和图6,在一个实施例中,以第一转轴到纵轴线111的距离为第一距离,以第二转轴到纵轴线111的距离为第二距离,第二距离与第一距离的差值小于等于主切割区域与辅助切割区域的半径之和。在自动割草机11沿着边界线103移动过程中,主切割模块53在草坪上工作后的区域约为宽度等于主切割区域直径的区域a,辅助切割模块63在草坪上工作后的区域约为宽度等于辅助切割区域直径的区域b。若第二距离与第一距离的差值大于主切割区域与辅助切割区域的半径之和,则区域a和区域b在横向上存在间隙,就导致主切割模块53和辅助切割模块63工作后在障碍物周围仍然留有未切割区域。这样,当自动割草机11以特定的方式沿着边界线103移动并切割完成后,控制模块59还需要根据边界侦测模块55对边界线103信号强度的检测控制行走模块51与边界线103之间的相对距离,从而实现对未切割区域的切割。这种工作方式不仅增加了控制模块59的负荷,也降低了自动割草机11的工作效率。因此,当第二距离与第一距离的差值小于等于主切割区域与辅助切割区域的半径之和时,区域a和区域b在横向上相切或相交,确保主切割模块53和辅助切割模块63工作后障碍物周围已经实现完全切割。

在一个实施例中,为了避免辅助切割模块63接触到凹凸不平的地面,影响自动割草机11的自由移动,辅助切割模块63的高度大于等于30mm,即辅助切割模块63与水平地面的距离大于等于30mm。图10是一个实施例中调高结构的示意图,如图10所示,主切割模块53包括主高度调节模块,用于调节主切割模块53的高度。一般的,主切割模块53的切割高度在20毫米到100毫米之间,欧洲、美洲等不同地区的用户会有不同的需求。为了保证自动割草机11的通过性,与主切割模块53相适应,辅助切割模块63的切割高度大于等于20毫米。在一个实施例中,为了取得切割效果,辅助切割模块63的切割高度也不能过高,与主切割模块53相适应,辅助切割模块63的切割高度小于等于100毫米。若主切割模块53的最大切割高度为80毫米,则辅助切割模块63的切割高度小于等于80毫米。在一个实施例中,为了保证视觉效果,有必要将辅助切割模块63的切割高度与主切割模块53的切割高度保持在一定的范围内。可选的,将辅助切割模块63的切割高度设置为主切割模块的最低切割高度与最高切割高度的平均值。

继续参考图10,在一个实施例中,辅助切割模块63包括辅助高度调节模块,用于调节辅助切割模块63的高度。辅助切割模块63的高度调节范围与主切割模块53相同。在一个实施例中,主高度调节模块和辅助高度调节模块之间通过传动模块进行传动连接,使得主高度调节模块调节主切割模块53的高度时,能够带动辅助高度调节模块调节辅助切割模块63的高度。

在一个实施例中,在辅助切割模块63工作过程中,主切割模块53以预设方式启动,防止辅助切割模块63工作时产生的草屑堆积于主切割模块53上。因此,主切割模块53可以周期性地启动,通过旋转使得草屑掉落;也可以在主切割模块53检测到重量大于预设值时启动;或者在辅助切割模块63与用户终端9的距离满足预设距离时启动。本实施例中,控制模块59可以控制主切割模块以正常工作速率启动,也可以以更大或更小的速率启动,只要能够使草屑掉落即可。

在一个实施例中,壳体61安装有警示模块,警示模块可以包括警示灯或蜂鸣器等。当辅助切割模块63工作时,控制模块59控制警示模块启动,从而提醒用户,避免意外接触到辅助切割模块63。警示模块包括声音警示或灯光警示等。

在一个实施例中,当辅助切割模块63工作时,辅助切割模块63产生的噪声强度大于预设噪声强度,且该预设噪声强度大于主切割模块53工作时产生的噪声强度。本实施例中,在距离辅助切割模块63一米的位置,辅助切割模块63产生的噪声强度大于等于60dB。

在一个实施例中,由于自动割草机11沿着边界线103移动的过程中可能会经过停靠站105,导致辅助切割元件与停靠站105接触,从而损坏停靠站105或损坏辅助切割元件。以打草绳为例,为了减少打草绳的磨损和停靠站105的损坏,可以对停靠站的部分表面进行圆角设计,避免打草绳与停靠站105的棱角接触。

在一个实施例中,停靠站105的高度低于辅助切割模块63工作行程的辅助切割区域所在的高度。在一个实施例中,对于辅助切割区域所在的平面,停靠站105与第二转轴的距离大于辅助切割区域的半径,使得辅助切割元件无法与停靠站105接触。

在一个实施例中,自动割草系统具有至少两种工作模式:主切割模式和辅助切割模式。在主切割模式中,控制模块59自动控制自动割草机11在边界线103内移动和工作,或沿着边界线103移动和工作。在辅助切割模式中,若控制模块59持续接收到预设信号,至少基于预设信号,控制辅助切割模块63工作;若控制模块59接收到的预设信号中断,控制模块59控制辅助切割模块63停止工作。用户通过操作用户终端30间接地控制辅助切割模块63工作与否,保证辅助切割模块63工作与否由用户监控和决定,确保用户能够对异常情况进行快速响应。这样,即使辅助切割模块63在工作过程中有意外接触人或动物的可能性,也能够通过用户的监控杜绝危险情况。

图13是一个实施例中用户终端的结构示意图,如图13所示,用户终端30包括远程通信模块36、处理模块32和按键34,按键34包括按键341、按键343,若用户分别按下按键341和按键343,产生启动信号和控制信号,处理模块32通过远程通信模块36发送启动信号和控制信号。自动割草机11还包括无线通信模块65,若远程通信模块36与无线通信模块65建立连接,当控制模块59通过无线通信模块65接收到启动信号和控制信号,则控制自动割草机11启动辅助切割模式。本实施例中,按下两个或两个以上按键启动能够避免用户误操作。启动辅助切割模式的方式还可以有很多,如语音输入、密码输入等。

在一个实施例中,若控制模块59接收的启动信号和控制信号满足预设条件,则控制自动割草机切换为辅助切割模式。当本实施例中,预设条件包括处理模块32在预设时间内接收到启动信号和控制信号。在其他实施例中,预设条件包括处理模块32以预设顺序接收到启动信号和控制信号。

在一个实施例中,若用户终端30处于工作状态,当用户按下按键141和按键143,处理模块32分别接收到启动信号和控制信号,且满足预设条件,则处理模块32控制远程通信模块36发送控制信号。当控制模块59接收到控制信号,控制自动割草机切换为辅助切割模式。

在一个实施例中,壳体21设置有启动键,用户终端30设置有控制键。当用户操作启动键,控制模块59接收到启动信号,当用户操作控制键,用户终端30发送控制信号,控制模块59通过无线通信模块65接收到控制信号。若控制模块59接收的启动信号和控制信号满足预设条件,则控制模块59控制自动割草机切换为辅助切割模式。

若用户终端30与自动割草机11建立了通信连接,当用户持续按下按键343,处理模块32通过远程通信模块36发出控制信号。在辅助切割模式中,若控制模块59通过无线通信模块65持续接收到控制信号,则控制模块59控制辅助切割模块63工作。在辅助切割模式中,控制模块59持续判断是否接收到控制信号,若控制模块59接收的控制信号中断,控制模块59控制辅助切割模块63停止工作。

继续参考图13,在一个实施例中,用户终端30包括按键341和按键343,还包括按键345,当用户按下按键345,则用户终端30发出停止信号,控制模块59根据接收到的停止信号控制辅助切割模块63停止工作。

在一个实施例中,按键343为接触式传感器,用户可以通过持续接触按键343实现对按键343的持续操作,使得用户终端30持续发出控制信号,当用户不再接触按键343时,用户终端30不再发出控制信号。可选的,按键341和/或按键345也可以为接触式传感器。接触式传感器具体可以为电容传感器、压电传感器等。在其他实施例中,用户终端30整体或部分安装有电容传感器,使得当用户接触用户终端30的相应位置时,电容传感器能够检测到用户操作,用户终端30相应地发出预设信号。当用户意图停止辅助切割模块63的工作时,可按下按键345使得用户终端30发出停止信号,也可直接松开用户终端30。本实施例采用接触式传感器替代传统按键,能够提高用户持续操作用户终端30的便捷性。可选的,按键341和/或按键345也可以为其他感应式传感器,如红外传感器、加速度传感器等。

在一个实施例中,用户终端30包括方向控制键,用户通过操作用户终端30的方向控制键发送方向信号,控制自动割草机11的移动方向。本实施例中,当用户终端30与自动割草机11的距离小于方向控制距离时,允许用户通过方向控制键控制自动割草机11的移动方向。在一个实施例中,当用户终端30与自动割草机11的距离大于方向控制距离时,控制模块59忽略用户终端30发出的方向信号,即不允许用户通过方向控制键控制自动割草机11的移动方向。本实施例中,方向控制距离为6米。可选的,当控制模块59接收到用户终端30发出的方向信号,控制辅助切割模块63停止工作。

在一个实施例中,用户终端30为移动终端,用户终端30可以为能够基于网络协议接入通信网络并具有数据发送功能的终端设备。具体的,例如,所述客户端可以为移动智能电话、计算机(包括笔记本电脑,台式电脑)、平板电子设备、个人数字助理(PDA)或者智能可穿戴设备等。

图14是又一实施例中用户终端的结构示意图,如图14所示,在一个实施例中,用户终端30为移动终端,用户可通过操作用户终端30的虚拟按键或物理按键发出信号,通过操作特定的按键发出信号控制辅助切割模块63工作或停止工作。在其他实施例中,用户可以不操作特定的按键发出信号控制辅助切割模块63。当用户手持用户终端30时,用户终端30利用既有的传感器检测到其保持的状态不是静止状态。如通过指南针或陀螺仪判断用户终端30的姿态,若姿态持续改变,则用户终端30发出控制信号,控制模块59控制辅助切割模块63工作,若姿态保持不变,则用户终端30不再发出控制信号,辅助切割模块63停止工作。又如,通过摄像头捕捉图像,若图像变化较为频繁,则用户终端30发出控制信号,控制模块59控制辅助切割模块63工作,若图像几乎不发生变化,则辅助切割模块63停止工作。只要能通过用户终端30既有的传感器检测到用户的手持状态,保证自动割草机11在用户的监控下工作,则用户终端30能够通过传感器的输出发出控制信号,使得控制模块59控制辅助切割模块63工作。

在一个实施例中,用户终端30为移动终端,用户终端30包括压力感测模块,当压力感测模块检测到用户按压时,认为用户处在监控自动割草机11工作的状态,则用户终端30能够通过压力传感器的输出发出控制信号,使得控制模块59控制辅助切割模块63工作。

在一个实施例中,用户终端30为移动终端,用户终端30包括接口,用于与外部设备实现电连接。用户终端30可通过接口与外部设备连接,外部设备可以包括加速度计、陀螺仪等,外部设备用户检测用户的监控状态。用户终端30通过外部设备输出的检测信号发出控制信号,使得控制模块59控制辅助切割模块63工作。

在一个实施例中,用户终端30还可以包括运行于任一上述所列设备上的具有向自动割草机11发送功能指令的APP。当APP切换到后台运行时,用户终端30发出的控制信号停止,控制模块59控制辅助切割模块63停止工作。或者,当APP切换到后台运行时,用户终端30发出停止信号,控制模块59控制辅助切割模块63停止工作。或,当APP切换到后台运行时,用户终端30发出停止信号,控制模块59控制辅助切割模块63和行走模块51停止工作。APP切换到后台运行包括用户终端处于电话接听状态或短信阅读状态等等。在一个实施例中,若有电话接入,用户在一定时间内挂断电话,则用户终端30不受该操作影响;若用户在一定时间内没有挂断电话,则用户终端30发出停止信号,控制辅助切割模块63和/或行走模块51停止工作。

在一个实施例中,控制模块59判断用户终端30发出的信号强度与预设强度的关系,若无线通信模块65接收的信号强度小于预设强度,控制模块59控制辅助切割模块63停止工作。此时用户继续操作用户终端30,用户终端30虽然能发出控制信号,但无线通信模块65无法接收到控制信号,或者即使能接收到控制信号,控制模块59也将其处理为未接收到的状态,即控制模块59控制辅助切割模块63停止工作。这里通过信号强度与预设强度比较,是为了将用户终端30与自动割草机11保持在一定距离之内,也可以通过除信号强度之外的其他参数判断距离关系。在其他实施例中,控制模块59通过无线通信模块65接收的控制信号判断用户终端30与自动割草机11的距离关系,若用户终端30与自动割草机11的距离大于第一预设距离,则控制辅助切割模块63停止工作。

在一个实施例中,用户终端30与自动割草机11在不同的距离范围内,辅助切割模块63的工作能量不同。当辅助切割模块63的工作能量较大时,为了保证用户能够及时识别到异常情况,并通过用户终端30进行控制,需要将用户终端30与自动割草机11约束在第一预设距离内。若自动割草机11与用户终端30的距离小于第一预设距离,控制模块59控制所述辅助切割模块63,使辅助切割模块63的工作能量小于第一预设能量。若自动割草机11与用户终端30的距离大于第一预设距离且小于第二预设距离,控制模块59控制辅助切割模块63减小工作能量,使辅助切割模块63的工作能量小于第二预设能量,第二预设能量小于第一预设能量。第一预设能量为0.5J,第二预设能量为0.25J。

对于一个特定的辅助切割模块,其工作能量主要受到工作速率的影响,在一个实施例中,不同情况下的辅助切割模块63的工作速率不同。当用户终端30与自动割草机11的距离大于第一预设距离,辅助切割模块63的工作速率小;当用户终端30与自动割草机11的距离小于第一预设距离,辅助切割模块63的工作速率大。在一个实施例中,辅助切割模块63的工作速率包括至少两种:第一工作速率和第二工作速率,第一工作速率为高速,第二工作速率为低速。控制模块59判断发出控制信号的用户终端30与远程通信模块36的距离与第一预设距离和第二预设距离之间的关系,若用户终端30与自动割草机11的距离大于第二预设距离,则用户终端30与自动割草机11不能建立有效的通信连接,控制模块59控制辅助切割模块63停止工作。用户终端30与自动割草机11的距离若小于第一预设距离,控制辅助切割模块63以第一工作速率工作,若大于第一预设距离且小于第二预设距离,控制辅助切割模块63以第二工作速率工作,若大于第二预设距离,控制辅助切割模块63停止工作。由于辅助切割模块63以第一工作速率工作时,产生的能量较大,可能对人或动物造成伤害,因此当用户距离自移动设备1较远时,辅助切割模块63以第二工作速率工作,产生的能量较小,减少或避免造成伤害。这样,若工作区域107的面积较大,在自动割草机11的移动过程中,如果用户不移动,用户与自动割草机11的距离会超出第一预设距离,通过切换工作速率,不仅能够避免辅助切割模块63频繁切换工作和不工作的状态,还能够提醒用户调整位置。本实施例中,第一预设距离为6米,第二预设距离为20米,在其他实施例中,第一预设距离和第二预设距离的取值可以根据安全要求和工作区域面积等进行调节。

在一个实施例中,在辅助切割模式中,若在一段规定的时间内,用户不操作用户终端30,或者用户终端30与自动割草机11的距离超过预设距离,当用户终端30回到与自动割草机11的有效距离内,或者用户再次操作用户终端30发出控制信号,使得控制模块59接收到有效的控制信号,则控制模块59控制辅助切割模块63继续工作;若控制模块59无法接收到有效的控制信号超过规定时间,则辅助切割模式切换至主切割模式。当辅助切割模式中断后,用户需通过操作用户终端30发送启动信号,重新启动辅助切割模式。

在一个实施例中,自动割草机11包括能够侦测用户设置的预设路径的路径侦测模块67,控制模块59通过路径侦测模块67的输出信号控制自动割草机11沿着预设路径移动。所谓沿着预设路径移动,可以是行走模块51部分位于预设路径一侧,部分位于预设路径另一侧,也可以是行走模块51完全位于预设路径的一侧,这里不作具体限制。设置预设路径的目的是为了当自动割草机11沿着预设路径移动时,辅助切割模块63能够在相应的区域完成相应的工作任务。控制模块59通过传感器的输出自动控制自移动设备的移动,而无需用户控制自动割草机11的移动方向,这样不仅能够减少用户控制造成的误差,而且能够减少用户操作的复杂度,在保证用户监控的同时最大程度地保证自动割草机11的自动化程度。在其他实施例中,用户设置的预设路径可以为边界线103或边界线103的一部分,则控制模块59可通过边界侦测模块55的输出控制行走模块51沿着预设路径移动。预设路径可以为用户在工作区域107内设置的特定路径,也可以是边界线103或边界线103的一部分,若预设路径为边界线103或边界线103的一部分,控制模块59可通过边界侦测模块55的输出控制行走模块51沿着预设路径移动,即边界侦测模块55可以作为路径侦测模块67输出检测结果供控制模块59判断。具体的,边界线103包括设置于工作区域107外侧边界的外边界线和设置于工作区域107内侧边界的内边界线。

在一个实施例中,控制行走模块51沿着预设路径移动具体为控制自动割草机11在预设路径上移动。在辅助切割模式中,控制模块59判断自动割草机11是否在预设路径上,若不在,则控制模块59控制行走模块51移动,并通过路径侦测模块67的输出控制自动割草机11靠近预设路径;若自动割草机11在预设路径上,则控制模块59控制行走模块51沿着预设路径移动。

在一个实施例中,预设路径可以包括实体或电子的任意一种或多种组合,具体可以是发生虚拟信号的信号发生装置、存储在控制模块59中的相对坐标或绝对坐标等。如:预设路径通过磁性材料进行设置,可以是磁钉或磁条,磁条的形状可以根据用户需要进行调整,以适应辅助切割模块63的工作需要。相应的,路径侦测模块67包括检测磁性材料产生的磁场的传感器,通过检测磁场强度、方向等参数使得自动割草机11沿着预设路径移动。

在一个实施例中,在辅助切割模式中,若控制模块59持续接收到控制信号,且控制模块59判断自动割草机11在预设路径上,则控制辅助切割模块63工作;若控制模块59持续接收到控制信号,而控制模块59判断自动割草机11不在预设路径上,则控制辅助切割模块63停止工作;若控制模块59接收的控制信号停止,则无论自动割草机11是否在预设路径上,控制模块59都控制辅助切割模块63停止工作。通过判断自动割草机11与预设路径之间的位置关系控制辅助切割模块63可以减少辅助切割模块63的无效工作时间,从而节省能量模块57的能量,提高工作效率;再者,限制辅助切割模块63只在预设路径上工作,减小辅助切割模块63的工作范围,能够减少辅助切割模块63造成意外伤害的可能性。

图15是一个实施例中自动割草机的结构示意图,如图15所示,辅助切割模块63包括修枝模块。当自动割草机11沿着预设路径移动时,辅助切割模块63朝向待修枝区域,使得自动割草机11沿着预设路径移动后,能够完成待修枝区域的修枝工作。因此,用户能够通过自动割草机11的辅助切割模式轻松地完成原本需要用户手持修枝剪完成的工作。

在一个实施例中,自动割草机11包括提示模块67,提示模块67存储有启动辅助切割模式的附加条件,可以包括自动割草机11的工作日程,能量模块57的剩余能量等。若提示模块67判断附加条件满足,则向用户终端30发送提示信号。用户可根据提示信号了解自动割草机11的工作状态,确保手动控制更加高效。无线通信模块65包括蓝牙通信或WI-FI通信或蜂窝网络通信等。

在一个实施例中,自动割草机11包括修边模式。图11是一个实施例中自动割草机与障碍物位置关系的示意图,如图11所示,一个待修边区域包括至少一个起点100和至少一个终点200,用户在边界线13上或边界线13的一定范围内设置有对应于起点100的第一标记101和对应于终点200的第二标记201,标记具体可以为无源磁性装置或金属件等。自动割草机11安装有标记检测模块,用于检测第一标记101和第二标记201。当自动割草机11从停靠站15出发沿着边界线13以第一方向移动时,若标记检测模块检测到第一标记101,则控制辅助切割模块33工作,若标记检测模块检测到第二标记201,则控制辅助切割模块33停止工作,使得辅助切割模块33只在待修边区域内工作。当自动割草机11从停靠站15出发沿边界线13以第一方向移动时,标记检测模块首先检测到的即为第一标记101,其后检测到的即为第二标记201。由于待修边区域范围小,人或动物在自动割草机11工作时进入待修边区域的可能性较小,辅助切割模块33工作时对人或动物造成伤害的可能性也会变小。

继续参考图11,在一个实施例中,自动割草机11安装有边界侦测模块27包括距离检测模块,距离检测模块探测的主方向与辅助切割模块33工作时的朝向相同,即朝向工作区域17的外侧。本实施例中,待修边区域为边界线13与边界线13外的障碍物之间的区域,当自动割草机11沿着边界线13移动并靠近障碍物时,距离检测模块可以检测到自动割草机与障碍物之间的距离。当自动割草机11沿着边界线13以第一方向移动时,若距离检测模块检测的距离小于预设距离,则控制模块31控制辅助切割模块33工作;若检测的距离大于预设距离,则控制模块31控制辅助切割模块33停止工作。

继续参考图11,在一个实施例中,自动割草机11包括边界学习模式,在边界学习模式中,自动割草机11沿着边界线13以第一方向移动,通过用户操作使控制模块31记录边界线上的第一点101和第二点201,对应于待修边区域的起点100和终点200。自动割草机11包括通信模块35,安装于壳体21,可与用户设备9通信,并接收信号。当自动割草机11沿着边界线13以第一方向移动时,若自动割草机11经过待修边区域的起点100,用户操作用户设备9发出学习信号,使控制模块31记录边界线13上的第一点101,若自动割草机11经过待修边区域的终点200,用户再次操作用户设备9发出学习信号,使控制模块31记录边界线13上的第二点201。在修边模式中,当自动割草机11沿着边界线13以第一方向移动时,控制模块31控制辅助切割模块33从第一点101开始工作,经过第二点201时停止工作。在其他实施例中,为了避免误操作修改控制模块31记录的第一点101和第二点201,用户需通过输入密码等方式解除对记录的锁定才能进行修改。

本领域技术人员可以想到的是,本发明还可以有其他的实现方式,但只要其采用的技术精髓与本发明相同或相近似,或者任何基于本发明做出的变化和替换都在本发明的保护范围之内。

技术分类

06120116556434