掌桥专利:专业的专利平台
掌桥专利
首页

轧辊的磨削合格与否判定装置、轧辊的磨削合格与否判定方法及金属带的轧制方法

文献发布时间:2023-06-19 19:28:50


轧辊的磨削合格与否判定装置、轧辊的磨削合格与否判定方法及金属带的轧制方法

技术领域

本发明涉及轧辊的磨削合格与否判定装置、轧辊的磨削合格与否判定方法及金属带的轧制方法。

背景技术

用于汽车、饮料罐等的钢板等金属带在实施了连续铸造工序、热轧工序及冷轧工序后,经过退火工序、电镀工序而成为产品。其中,冷轧工序是决定作为产品的金属带的厚度的最终工序。近年来,有时使电镀厚度比以往薄,电镀工序前的金属带的表面性状容易对电镀工序后的产品的表面性状造成影响,因此防止发生表面缺陷的必要性增加。

作为在冷轧工序中发生的表面缺陷之一,可举出颤痕(chatter mark)。这是在金属带的宽度方向上出现的线状标记,并且是这样的线状标记在金属带的长度方向上周期性地出现的表面缺陷。颤痕是因轧机的振动(以下称为颤振)而发生的。对于非常轻度的颤痕,有时在冷轧工序后的目视检查、板厚测定等中未判明,而在电镀工序后首次判明。因此,未注意到在其间也发生大量的表面缺陷,结果使产品的成品率降低,成为严重阻碍生产率的主要原因。另外,还已知在罐用钢板、电磁钢板等薄材料中,由于因颤振引起的金属带的厚度、张力的急剧变动,有时发生金属带断裂等问题而阻碍生产率。

从这样的背景考虑,提出了抑制颤振发生的方法。例如,专利文献1中记载了下述方法:将振动检测器安装于轧机,在轧制中收集振动信息,并且取得轧制载荷、机架间张力等轧制操作参数,通过进行它们的频率分析来判定颤振的发生。另外,专利文献1中记载了下述方法:预先辨识轧机的自然振动频率和由轴承不良、轧辊缺陷引起的固有的振动频率,通过在轧制中与振动信息进行比较来确定颤痕的发生原因。

另一方面,虽然不是以颤振为对象,但专利文献2中记载了下述方法:对于轧辊的磨削装置,利用至少设置于磨削装置的磨石台的振动传感器来取得振动数据,通过频率解析来计算振动值水平,通过与预先确定的阈值的比较运算来检测轧辊的颤纹(日语:ビビリマーク)。在该情况下,轧辊的颤纹是指磨削缺陷的一种,是在轧辊的表面生成的周期性的花纹状的缺陷。颤纹能够通过在磨削后的轧辊上薄薄地涂布白垩而目视识别。另外,颤纹伴随着轧制的进行而转印到金属带。

现有技术文献

专利文献

专利文献1:日本专利第2964887号公报

专利文献2:日本特开平11-77532号公报

发明内容

发明所要解决的课题

但是,根据专利文献1中记载的方法,如果不是在发生一定大小的异常振动之后,则不能识别振动的发生。因此,在专利文献1记载的方法中,在检测到颤振的时刻,已经在金属带的一部分上发生了颤痕,其结果是,产品的成品率降低。另一方面,颤痕虽然在磨削轧辊的时刻通过目视或涂布白垩也不能识别,但是在冷轧工序时由于轧机的振动而明显化这一点上与颤纹不同。因此,根据专利文献2记载的方法,即使在磨削轧辊时对颤纹进行检测来进行轧辊的合格与否判定,也不能抑制在轧制时发生颤痕。

本发明是鉴于上述课题而完成的,其目的在于提供能够抑制在轧制金属带时发生颤痕的轧辊的磨削合格与否判定装置及磨削合格与否判定方法。另外,本发明的另一目的在于提供金属带的轧制方法,其能够抑制在轧制金属带时发生颤痕,从而提高金属带的制造成品率。

用于解决课题的手段

本发明涉及的轧辊的磨削合格与否判定装置具备:振动计数据取得部,其使用设置于辊磨削机的振动计取得使用该辊磨削机磨削轧辊时的振动计数据;振动信息取得部,其通过前述振动计数据的频率解析来取得前述轧辊磨削时的振动信息;频谱上限设定部,设定基于在使用前述轧辊的轧机中的使用方式所决定的特定频带及频谱上限值;和磨削合格与否判定部;基于前述振动信息的前述特定频带中的频谱值和前述频谱上限值来判定前述轧辊的磨削的合格与否。

前述振动信息取得部取得的前述轧辊磨削时的振动信息可以是选自前述轧辊的粗磨削工序的磨削道次中的1个或2个以上磨削道次中的振动信息。

前述频谱上限设定部可以基于使用前述轧辊的轧机的颤振发生频率来设定前述特定频带。

本发明涉及的轧辊的磨削合格与否判定方法包括:振动计数据取得步骤,其使用设置于辊磨削机的振动计取得使用该辊磨削机磨削轧辊时的振动计数据;振动信息取得步骤,其通过前述振动计数据的频率解析来取得前述轧辊磨削时的振动信息;频谱上限设定步骤,其设定基于在使用前述轧辊的轧机中的使用方式所决定的特定频带及频谱上限值;和磨削合格与否判定步骤,其基于前述振动信息的前述特定频带中的频谱值和前述频谱上限值来判定前述轧辊的磨削的合格与否。

在前述振动信息取得步骤中取得的前述轧辊磨削时的振动信息可以是选自前述轧辊的粗磨削工序的磨削道次中的1个或2个以上磨削道次中的振动信息。

前述粗磨削工序中的每1磨削道次的磨石切入量可以为30~200μm。

前述粗磨削工序中的磨石旋转用电动机的电流值可以是每1mm磨石宽度为1.0~1.6A。

前述频谱上限设定步骤可以包括基于使用前述轧辊的轧机的颤振发生频率设定前述特定频带的步骤。

前述轧机可以是串列式轧机的最终机架或最终机架的一个上游侧的机架中的任一者的轧机,前述轧辊可以是该轧机的支承辊。

本发明涉及的金属带的轧制方法包括:轧辊决定步骤,其使用本发明涉及的轧辊的磨削合格与否判定方法来决定安装于轧机的轧辊;和轧制步骤,其利用安装有通过前述轧辊决定步骤决定的轧辊的轧机来进行金属带的轧制。

发明的效果

根据本发明,能够提供能够抑制在轧制金属带时发生颤痕的轧辊的磨削合格与否判定装置及磨削合格与否判定方法。另外,根据本发明,能够提供金属带的轧制方法,其能够抑制在轧制金属带时发生颤痕,从而提高金属带的制造成品率。

附图说明

图1是示出作为本发明的一个实施方式的辊磨削机的构成的图。

图2是示出作为本发明的一个实施方式的轧辊的磨削合格与否判定装置的构成的图。

图3是示出轧辊磨削时的振动信息的一例的图。

图4是示出使用磨石宽度100mm的磨石进行轧辊磨削时的磨石旋转用电动机的电流值的一例的图。

图5是示出使用本发明的一个实施方式的磨削装置进行磨削的、使用轧辊的轧机的构成的图。

具体实施方式

以下,参照附图对本发明的一个实施方式进行说明。

金属带的冷轧工序中的轧机的异常振动称为颤振(chattering),因颤振而在金属带的表面形成的周期性的花纹称为颤痕(chatter mark)。本实施方式中,将在金属带的表面形成为0.5~10μm左右的振幅的凹凸的颤痕作为处理对象。其多由于金属带的厚度变动而发生。这样的表面形成有微小凹凸的颤痕大多难以通过设置于冷轧机的出口侧的测厚仪来检测。另外,冷轧后的金属带的表面也难以通过目视观察来判定。这样的轻度的颤痕大多在进行电镀处理等表面处理后检测,或者在金属带的压制成型后首次检测。

到目前为止,大多认为成为颤痕的发生原因的颤振是由于构成轧机的轴承、齿轮的啮合、联轴器(coupling)等的晃动而引起的。在该情况下,对从设置于轧机的振动计取得的振动数据进行解析,当特定频带中的振动的大小大于预先设定的阈值时,能够检测颤振。但是,本申请发明人发现,在颤痕发生的原因之中存在起因于轧辊的磨削的原因。另外,还发现了由于将轧辊安装于轧机前利用辊磨削机(roll grinder)对轧辊的磨削状态而在轧辊的表面发生微小的凹凸,若使用这样的轧辊进行冷轧工序,则通过与特定轧制条件的组合会使轧机的振动变大。本发明是基于这样的发现而完成的。

需要说明的是,这可以认为是在磨削轧辊时在轧辊上发生了某种不均匀的状态。但是,与作为轧辊的磨削缺陷而能够通过目视等进行判别的颤纹不同,由于将因轧辊的磨削而发生的不均匀状态与使用该轧辊的轧机或轧制条件进行组合才导致颤痕这一缺陷,在这一点上颤痕与轧辊的颤纹不同。而且,颤纹的问题在于,由于轧辊的花纹被转印在作为被轧制材料的金属带的表面而发生的缺陷,因此对与金属带直接接触的工作辊进行磨削时的缺陷成为对象。与此相对,颤痕的问题在于,在将轧辊安装于轧机的状态下发生的振动,因此着眼于对质量大的支承辊或中间辊进行磨削时的不均匀性。

〔辊磨削机〕

图1是示出作为本发明的一个实施方式的辊磨削机的构成的图。如图1所示,本实施方式中使用的辊磨削机由使用圆筒型磨削磨石的辊磨削机构成。成为辊磨削机的磨削对象的轧辊1在轧机中使用后,使用起重机等被搬运至辊车间(roll shop)。然后,从轴承箱抽出轧辊1,通过自然放冷冷却至常温后,逐个设置于辊磨削机。

辊磨削机具备:磨削头3,其对磨削磨石2进行支承;双轴工作台4,其驱动磨削头3在轧辊1的轴向及接近方向上移动;及辊支承装置(辊卡盘5、辊旋转电动机6、尾座7、支座8),其对轧辊1进行支承并使其旋转。

辊支承装置具备:辊卡盘5,其从轴向的一端侧对轧辊1进行支承;辊旋转电动机6,其以规定转速驱动轧辊1旋转;尾座7,其从轴向的另一端侧对轧辊1进行支承;及支座8,其以颈部对轧辊1进行支承。尾座7具有将轧辊1的轴心与辊旋转电动机6的旋转轴的轴心对准的功能。尾座7的与轧辊1的接触部呈圆锥状的形状,并具有下述构造:将圆锥的尖端压入在轧辊1的轴端部的中心开设的锪孔或固定夹具的锪孔,对座的位置进行微调整而使芯伸出。磨削时的轧辊1的转速由辊磨削机的控制用控制器23进行控制。

双轴工作台4形成为在引导件9a及引导件9b上移动的构造,并形成为下述构造:沿着与轧辊1的轴向平行地配置的引导件9a横向移动,除此之外,使磨削磨石2沿着引导件9b在与轧辊1的轴心垂直的方向上移动。通过使用伺服电动机(servomotor)的位置控制进行双轴工作台4沿着引导件9a及引导件9b的移动,由此控制磨削磨石2的磨削位置和切入量。在磨削时,从轧辊1的轴向的一侧的端部向另一侧的端部进行磨削,接着从另一侧的端部向一侧的端部进行磨削。将这样的磨削磨石2进行1次往复的单位称为横移(traverse)。通常的磨削过程分为将磨削量设定为较大的粗磨削、和用于对轧辊1的表面进行精加工的精磨削的工序。一般而言,粗磨削的横移数为80~150次左右,精磨削的横移数为5~15次左右。

在此,粗磨削是指通过切入来除去轧辊1的表面,将发生疲劳层、微观龟裂的部分除去的磨削工序。另一方面,精磨削是指用于将轧辊的表面粗糙度调整为规定范围的弱磨削工序。

磨削头3对磨削磨石2、磨石旋转用电动机10、传递磨削动力的滑轮11和传送带12进行支承。但是,有时也利用磨石旋转用电动机10直接旋转驱动磨削磨石2,而不是利用滑轮11和传送带12的动力传递方式。磨石切入量是指,以在各横移前轧辊1与磨削磨石2接触的状态为基准,磨削中的轧辊1的表面与磨削磨石2的轴心部的接近量。但是,有时也难以利用传感器等检测磨削磨石2与轧辊1的接触。因此,在进行粗磨削工序或精磨削工序的最初的磨削(第1横移)时,由操作人员确认磨削磨石2与轧辊1的接触状态,在以后的横移中,有时也将磨石旋转用电动机10的消耗电流值设定为与第1横移中的消耗电流值相同的磨削条件。或者,有时也通过将磨石旋转用电动机10的消耗电流值直接作为设定值使用来实施磨削,而不使用磨石切入量。

磨石切入量的控制通过利用NC装置控制磨削磨石2的位置来进行,该NC装置使用伺服电动机。通常,磨石切入量越大,每1次横移的磨削量越增加,因此能够缩短辊磨削所需要的时间。另一方面,在磨石切入量大的情况下,磨石旋转用电动机10的负荷过大,有时在轧辊1的表面发生花纹状的缺陷。而且,有时在磨削头3上附设有磨削磨石2的修整装置。其是使构成磨削磨石2的表面的磨粒与金刚石等接触来恢复磨削磨石2的锋利度的装置。

在此,在图1示出的辊磨削机上设置有辊磨削机的控制用计算机21。辊磨削机的控制用计算机21从作为上位计算机的商用计算机22取得成为磨削对象的轧辊1的尺寸信息、磨削量、及表面完成粗糙度的目标值等与轧辊1在轧机中的使用状态相关的信息,设定辊磨削机的磨削条件,发送至辊磨削机的控制用控制器23。

辊磨削机的磨削条件至少包括磨削时的辊转速、磨削磨石转速、及磨石切入量(或磨石旋转用电动机10的设定电流值)这3个设定条件,从粗磨削到精磨削在每次横移中设定。但是,这些辊磨削机的磨削条件有时由操作人员一边确认轧辊1的磨削状态一边被适当修正。在该情况下,被修正的辊磨削机的磨削条件被发送至辊磨削机的控制用计算机21。另外,在设定作为辊磨削机的磨削条件的上述操作条件时,有时也具备设定表,其考虑成为磨削对象的轧辊1的直径、表面的硬度、磨削前的表面粗糙度等因素。另一方面,作为磨削磨石2的条件,考虑磨削磨石2的粒度号、磨石直径(初始磨石直径、当前磨石直径)、磨削磨石2的累积磨削时间、利用修整装置进行修整后的总磨削量(总磨削距离)等因素。

在此,初始磨石直径是指从磨削磨石2被制造出来后,在辊磨削中被首次使用前的磨石直径,当前磨石直径是指在开始对磨削对象的轧辊1进行磨削前测定的磨石直径。磨石直径是选定磨削磨石2的外周部的多个位置,并利用测微计(micrometer)来测定。另外,也可以预先在磨削磨石2的侧面标注半径方向上1~5mm间距的标记,并通过从这样的标记读取磨石直径来确定。磨削磨石2在初始磨石直径为850~950mm、外径为450~600mm左右的情况下被废弃。

辊磨削机的控制用控制器23以下述方式控制各机器:相对于通过辊磨削机的控制用计算机21设定的辊磨削机的操作条件的控制目标值而言,使从磨削开始至磨削结束的各横移的、磨削时的辊转速、磨削磨石转速及磨石切入量(或磨石旋转用电动机10的电流值)成为其控制目标值。另外,辊磨削机的控制用控制器23取得驱动磨削时的磨削磨石2的电动机电流值的实际值。需要说明的是,在能够测量磨削中的辊转速、磨削磨石转速及磨石切入量的实际值的情况下,辊磨削机的控制用控制器23取得它们的实际值。将这样取得的数据作为用于解析辊磨削的操作状态的数据发送至辊磨削机的控制用计算机21。需要说明的是,图1的辊磨削机的控制用计算机21和辊磨削机的控制用控制器23也可以由单一的控制用计算机构成。

在此,将轧辊的磨削中的粗磨削工序与精磨削工序的磨削条件进行比较的例子示于表1。粗磨削工序的从开始至结束的磨削道次数为80~150道次,而精磨削工序的从开始至结束的磨削道次数为1~20道次。精磨削工序是用于调整轧辊的表面粗糙度的磨削工序,因此可以是少的磨削道次数。对于每1个磨削道次的磨石切入量的设定值而言,在粗磨削工序中为30~200μm,而在精磨削工序中为1~29μm。这是基于下述不同点:粗磨削工序以除去轧辊的表面并且将表面的轮廓调整为目标形状为目的,而精磨削工序以表面粗糙度的调整为目的。而且,对于磨削道次中的向轧辊的主体长度方向的磨削磨石的传送速度而言,在粗磨削工序中为500~1000mm/分钟,在精磨削工序中为100~300mm/分钟。像这样,在精磨削工序中,为了调整表面粗糙度,防止颤纹这样的磨削缺陷的发生,以低传送速度进行磨削。需要说明的是,对于磨削磨石的转速、圆周速度,在粗磨削工序和精磨削工序中为大致相同的设定值。

表1

另一方面,上述的粗磨削工序与精磨削工序的磨削条件的不同能够通过磨石旋转用电动机的电流值来判别。图4示出使用磨石宽度100mm的磨石进行轧辊磨削时的磨石旋转用电动机的电流值的一例。本例表示在将粗磨削工序的磨削道次设为80横移、将精磨削工序的磨削道次设为15横移的情况下的磨石旋转用电动机的电流值的实测值。需要说明的是,图中的曲线表示每个横移的电流值的平均值。如图4所示,在粗磨削工序中,虽然观察到电流值有随着磨削道次的增加而略降低的倾向,但是在整个粗磨削工序中,几乎没有观察到电流值的显著变化。与此相对,在精磨削工序中,电流值随着磨削道次的增加而降低,在精磨削工序的从开始至结束之间,电流值大致减半。这是因为,精磨削工序以表面粗糙度的调整为目的,因此,越接近最终道次越为轻度的磨削条件,从而防止颤纹这样的磨削缺陷的发生。

在上述的磨削工序中,精磨削结束的轧辊1被移动至磨削完毕的辊保管区域,并按顺序返回辊更换装置,安装于轧机。另外,本实施方式的辊磨削机具备振动计13。振动计13能够设置于可测定磨削时的振动的任意位置。但是,优选设置于磨削头3及辊支承装置中的任一者。更优选接近辊磨削机的磨削头3的磨削磨石2的位置。这是因为易于检测在磨削磨石2与轧辊1的接触部发生的振动。

〔轧辊的磨削合格与否判定装置〕

图2是示出作为本发明的一个实施方式的轧辊的磨削合格与否判定装置的构成的框图。本实施方式的轧辊的磨削合格与否判定装置是在结束利用辊磨削机磨削轧辊1后、或在轧辊1的磨削工序的途中,进行轧辊1的磨削状态的合格与否判定的装置。该合格与否判定是指下述判定:是否适合将磨削后的轧辊1安装于轧机来进行金属带的轧制。

如图2所示,本实施方式的轧辊的磨削合格与否判定装置31具备:振动计数据取得部31a,其取得利用振动计13取得的振动数据;振动信息取得部31b,其将取得的振动计数据转换为振动信息;频谱上限设定部31c,其设定基于在使用轧辊1的轧机中的使用方式所决定的特定频带及频谱上限值;及磨削合格与否判定部31d,其进行轧辊1的磨削的合格与否判定。轧辊的磨削合格与否判定装置31从在振动信息取得部31b取得的振动信息来确定特定频带中的频谱值,通过与频谱上限设定部31c中设定的频谱上限值的比较来进行轧辊1的磨削的合格与否判定。

在此,轧辊的磨削合格与否判定装置31能够通过个人计算机、工作站等运算处理装置来实现,例如以CPU、ROM、RAM等为主要构成部件。

〔振动计数据取得部〕

振动计数据取得部31a从设置于辊磨削机的振动计13取得振动数据。振动计13所检测的信号为振动位移、振动速度或振动加速度。振动位移能够通过振动速度的时间积分来计算,振动速度能够通过将振动加速度进行时间积分来计算。因此,振动计13的输出可以是任意的信号,其在后述振动信息取得部31b中被转换为适当的振动信息。

利用振动计13检测的信号的取样频率为100Hz以上,优选为400Hz以上。更优选为1000Hz以上。例如,在得到磨削头3的振动加速度作为振动计13检测的信号的情况下,利用振动计13收集的数据为以上述取样频率得到的时间序列的加速度数据。振动计数据取得部31a为了除去从振动计13取得的时间序列的加速度数据的噪声,每隔规定的数据特定时间(例如,1.0秒)进行振动加速度的平均化处理。到此为止是振动计数据取得部31a的功能。需要说明的是,对于上述取样频率、数据特定时间而言,即使在振动计13检测的信号为振动位移、振动速度的情况下,也以同样的条件取得即可。

〔振动信息取得部〕

振动信息取得部31b将在振动计数据取得部31a中被进行平均化处理后的振动计13的时间序列数据转换为表示频谱值的关系的振动信息,前述频谱值表示辊磨削时的振动频率及其振动强度。例如,在利用振动计13收集振动加速度数据的情况下、在使用振动速度作为振动信息的情况下,振动信息取得部31b将进行平均化处理后的振动计13的时间序列的振动加速度数据进行时间积分,从而转换为振动速度的时间序列数据。然后,振动信息取得部31b对转换后的振动速度的时间序列数据进行高速傅里叶变换方式的频率解析,得到振动信号中包含的频率成分及其频谱值,作为轧辊1磨削时的振动信息。

需要说明的是,作为轧辊1磨削时的振动信息,也可以使用代替振动速度而基于振动位移通过同样的方法进行处理而得到的振动信息。振动位移能够通过将振动速度进行时间积分来计算,对于所计算的振动位移,能够通过傅里叶变换得到频率成分及其频谱值,能够将其作为轧辊1磨削时的振动信息。另外,也能够直接使用通过测量得到的振动加速度。在该情况下,能够使用通过对于利用振动计数据取得部31a收集的加速度数据进行傅里叶变换而得到的频率成分与其频谱值的关系。图3是示出通过频率解析振动加速度的时间序列数据而得到的轧辊磨削时的振动信息的一例。

本实施方式中,对于如上得到的轧辊1磨削时的振动信息,特别是优选使用粗磨削工序结束前的5~10横移(磨削道次)的轧辊1磨削时的振动信息。另外,优选设定选自粗磨削工序中的1个或2个以上的磨削道次,使用所设定的磨削道次中的振动信息。但是,也可以设定粗磨削工序的多个磨削道次,使用这些磨削道次中的振动信息的平均值。精磨削是对轧辊1的表面粗糙度进行最终调整的工序,这是因为,在轧辊1的表面形成的微小凹凸大多在大致粗磨削工序结束的时刻已经形成,在粗磨削工序中赋予的微小凹凸对轧制中的颤振发生造成影响。如上所述,由振动信息取得部31b取得的轧辊1磨削时的振动信息被发送至磨削合格与否判定部31d。

〔频谱上限设定部〕

频谱上限设定部31c设定基于在使用轧辊1的轧机中的使用方式所决定的特定频带及频谱上限值。在此,“轧机中的使用方式”是指将轧辊1安装于轧机并用于轧制时的方式,包含辊类别及应用机架的信息。辊类别是指对于轧辊1是工作辊还是支承辊的区别,是指基于在机架中使用时的功能或配置的区别。需要说明的是,在六辊轧机的情况下,也可以增加中间辊作为区别。而且,也可以区别是上辊还是下辊。这是因为,根据在轧机的机架内的哪个位置使用轧辊1而对颤振发生的影响度不同。

另一方面,应用机架是指在串列式轧机(tandem mill)中使用时的机架。机架能够通过机架编号来识别。一般而言,这是因为颤振容易在后段机架发生,根据应用机架的不同,对颤振的影响度也不同。而且,作为与在轧机中的使用方式相关的信息,也可以包含使用成为磨削对象的轧辊1的预定的轧制周期的信息等。这是因为,轧制周期包含能够将成为轧制对象的金属带的类别进行区别的信息,例如,成为轧制对象的金属带是薄材料还是厚材料,是硬质材料还是软质材料等,根据这些条件会影响到是否容易发生颤振。

在此,使用本实施方式的轧辊的轧机以连续式冷轧机为主要对象,主要以4~6机架的串列式轧机为对象。图5是示出使用本发明的一个实施方式的磨削装置进行磨削的、使用轧辊的轧机的构成的图。如图5所示,轧机从通板方向的入口侧起依次具备第1~第4(#1~#4)机架。需要说明的是,图中省略了轧机中附带的其它装置(例如,入口侧的开卷机、焊接机及打环机,以及出口侧的切断机及卷绕机等装置)。构成图5示出的轧机的各机架为四辊轧机,具备上下的工作辊及上下的支承辊。图中,符号S表示钢板、符号41表示工作辊、符号42表示支承辊、符号43a表示张力计辊、符号43b表示偏导辊、符号44表示包含电动机的驱动装置、符号45表示壳体。需要说明的是,根据需要,也可以将用于检测颤振的振动计设置于壳体45。作为振动计,优选压电元件型振动传感器,但也可以使用其它方式的振动计。这是因为,通过设置振动计,从而容易确定在轧机中发生的颤振的振动频率。

在各机架上侧的支承辊的上部设置有由负荷传感器47构成的轧制载荷检测器。另外,在各机架上分别设置有:辊速度控制机,其为变更工作辊的辊圆周速度的电动机;和变更辊间隙的辊间隙控制机。而且,在各机架间的张力计辊43a上设置有检测钢板S的张力的张力计。另外,在第1机架及第4机架的出口侧设置有检测钢板S的板厚的测厚仪48。需要说明的是,在轧机中具备辊更换装置。在辊更换装置中具备能够在轨道上沿轧辊的轴向移动的台车,辊更换装置在将使用后的轧辊抽出后装入磨削后的轧辊。使用后的轧辊在安装有轴承箱的状态下,使用起重机、搬运台车搬送至辊车间。

另外,对成为磨削对象的所有轧辊1赋予辊编号,通过该辊编号能够将辊磨削的操作状态与轧机中的使用方式关联。即,根据辊编号来确定各轧辊1在轧机中使用时的辊类别和应用机架。新购入的轧辊1有时也在使用一定期间后变更所应用的机架,但至少在利用辊磨削机磨削轧辊1时,安装于轧机时的机架等的使用方式处于确定的状态。

另外,频谱上限设定部31c基于如上所确定的轧辊1在轧机中的使用方式来设定特定频带及频谱上限值。特定频带是指基于轧辊1在轧机中的使用方式,在辊磨削时所关注的频带。在此,本实施方式中,基于轧辊1在轧机中的使用方式来设定特定频带的理由如下。

即,在连续式轧机中,由于从第1机架至最终机架的轧制速度增加,因此与之对应的轧辊1也在后段机架的转速比前段机架大的条件下使用。另外,一般而言,由于中间辊、支承辊的辊径比工作辊大,因此工作辊以比支承辊大的转速来使用。由此,用于连续式轧机的轧辊1根据其辊类别、应用机架这样的在轧机中的使用方式的不同,轧制中的转速也不同。需要说明的是,对于由至少3个机架以上的连续轧机构成的串列式轧机,优选以最终机架或最终机架的一个上游侧机架中的任一者的轧机为对象来确定轧辊在轧机中的使用方式。这是因为在串列式轧机中,在后段机架容易发生颤振。另外,更优选以安装于轧机的支承辊为对象进行轧辊的合格与否判定。这是因为,与工作辊相比,支承辊(back roll)的质量大,从而使轧机的振动持续的效果明显。同样地,在六辊轧机的情况下,更优选以与工作辊相比质量大的支承辊或中间辊为对象进行轧辊的合格与否判定。

另一方面,颤振以与轧机的自然振动频率大致一致的频率发生,其不会由于机架而发生明显变化。因此,作为与由颤振引起的轧机的1个振动周期对应的、轧辊1旋转时的旋转角而言,轧制速度越大的后段机架,旋转角越大,轧制速度越低的前段机架,旋转角越小。另外,在辊径小的工作辊中旋转角大,在辊径大的支承辊中旋转角小。但是,利用辊磨削机磨削轧辊1时的辊转速通常不考虑这样的在轧机中的使用方式,而是预先通过辊磨削机的控制用计算机21或商用计算机22进行设定。

如上所述,作为轧辊1磨削时的振动频率而应当关注的频带应当根据轧辊1在轧机中的使用方式进行变更,本实施方式中,基于轧辊1在轧机中的使用方式来设定辊磨削时的特定频带。由此,能够将轧制中发生的颤振与辊磨削时的振动行为联系起来。即,在轧辊的辊磨削中,以颤纹等为对象,以往已知有着眼于因辊磨削机的刚性等而发生的磨削时的振动的方法。这是辊磨削机本身的振动的问题,是与辊磨削机的固有振动一致的磨削时的振动所产生的问题。与此相对,本实施方式着眼于在进行轧辊的辊磨削时,与安装有该轧辊的轧机的固有振动一致的振动,问题在于在辊磨削时是否产生与这样的轧机的固有振动对应的频率的振动。

另一方面,本实施方式中,基于在使用轧辊1的轧机中的使用方式来设定频谱上限值的理由如下。即,在轧辊1为质量大的支承辊的情况下,由于使轧机的振动持续的效果强,因此在磨削轧辊1时,磨削中所允许的凹凸小。因此,需要将辊磨削机中的振动也抑制得较低。另一方面,在轧辊1为质量较小的工作辊的情况下,由于使轧机的振动持续的效果弱,因此在磨削轧辊1时,即使磨削中被赋予的凹凸的程度较大,也是允许的。

而且,由于在连续式轧机的前段机架中发生的颤振少,因此应用于前段机架的支承辊即使在轧辊1的磨削中被赋予的凹凸的程度较大,也是允许的。但是,由于在后段机架中容易发生颤振,因此在磨削轧辊1时,磨削中所允许的凹凸小。因此,本实施方式中,基于轧辊1在轧机中的使用方式设定作为辊磨削时的振动所允许的频谱上限值。

轧辊1在轧机中的使用方式基于轧辊1的辊编号而存储于作为上位计算机的商用计算机22,直接或经由辊磨削机的控制用计算机21发送至频谱上限设定部31c。

在此,关于频谱上限设定部31c中设定的特定频带及频谱上限值,基于使用作为磨削对象的轧辊1的轧机中的过去的实际操作来设定即可。例如,作为轧机中的使用方式,在确定辊类别和应用机架(例如,第3机架的上支承辊等)的基础上,预先积累关于在此使用的轧辊1的辊磨削时的振动信息与轧机中的颤振发生状况的关系的实际数据,根据发生颤振的轧辊1的辊磨削时的振动信息来设定频谱上限值即可。另外,基于发生颤振时的轧制速度来设定特定频带即可。

通过这样的方法,从而基于轧机中的过去的实际操作,按照每个辊类别、应用机架,将特定频带及频谱上限值保存在频谱上限设定部31c。然后,频谱上限设定部31c从上位计算机取得成为磨削对象的轧辊1的辊类别和应用机架的信息,由此来设定特定频带和频谱上限值并发送至磨削合格与否判定部31d。

需要说明的是,能够从作为辊磨削机的磨削信息而得到的频谱分布中选择任意的频带来作为特定频带。也可以设定2个以上的频带域来作为所选择的频带域。此时,可以与各个特定频带对应地分别设定所对应的频谱上限值,也可以使用相同的频谱上限值。对于特定频带的频率的带宽而言,也能够选择任意的带宽。在用于轧机的前段机架的轧辊1和用于后段机架的轧辊1中,对于特定频带,后者选择高的频带,但也可以选择一部分重复的频带作为它们的范围。

〔磨削合格与否判定部〕

磨削合格与否判定部31d根据辊磨削机的磨削时的振动信息来确定上述特定频带中的频谱值,将其频谱值与频谱上限值进行比较,在所确定的频谱值大于频谱上限值的情况下判定为不合格,在不大于频谱上限值的情况下判定为合格。需要说明的是,在特定频带设定为2个以上的情况下,可以在任一个特定频带中的频谱值大于频谱上限值的情况下判定为不合格,也可以在任意的特定频带中的频谱值都大于频谱上限值的情况下判定为不合格。能够基于轧机中的过去的实际操作适当设定。

对于判定为合格的轧辊1而言,作为其它检查项目,对照目视下的外观不良的有无、精加工表面粗糙度的检查、颤纹的检查等其它的作为轧辊1的检查基准,判断最终的磨削适合与否,从而安装于轧机进行使用。另一方面,对由磨削合格与否判定部31d判定为不合格的轧辊1进行再磨削。

〔特定频带的设定〕

本实施方式中,频谱上限设定部31c中的特定频带的设定优选基于使用成为磨削对象的轧辊1的轧机的颤振发生频率进行设定。这能够通过将轧机中的颤振发生频率转换为辊磨削机中的磨削时的频率来进行。

具体而言,将振动计设置于使用轧辊1的轧机的壳体等。所设置的振动计优选设置于连续式轧机的每个机架。然后,基于设置于轧机的振动计的输出来确定发生颤振的机架。然后,确定发生颤振的机架的振动频率及此时轧辊1的旋转速度。在该情况下,将发生颤振时的轧机的振动频率称为颤振发生频率。

例如,在颤振发生频率为Q(Hz)、发生颤振的机架的轧辊1的旋转速度为V(mm/s)的情况下,有可能在该轧辊1上以V/Q(mm)的间距形成周期性的不均匀状态。此时,在磨削轧辊1时应当关注的特定频率ω(Hz)能够使用磨削轧辊1时的辊转速Ω(1/s)和辊径D(mm)并通过以下示出的公式(1)求出。

ω=Ω·D/(V/Q)…(1)

但是,由于在颤振发生频率、发生颤振的机架的轧辊1的旋转速度中产生统计上的偏差,因此优选使通过公式(1)求出的值具有一定的带宽来作为特定频带。具体而言,对于通过公式(1)计算的特定频率ω设定±25%左右的带宽来作为特定频带。需要说明的是,带宽能够基于过去的实际操作适当设定。

需要说明的是,由于颤振发生频率与轧机的自然振动频率大致一致,因此即使不是直接测定在轧制中发生的颤振的振动频率的结果,也可以将预先辨识的轧机的自然振动频率作为颤振发生频率,并通过上述方法设定特定频带。在这一点上,本实施方式的特征在于,不是像以往的技术中的颤纹那样着眼于轧辊的精磨削工序中的辊磨削机的自然振动频率,而是着眼于使用磨削后轧辊的轧机的自然振动频率。另外,本实施方式的特征在于,基于这样的轧辊在轧机中的使用方式来决定在辊磨削时应当关注的振动频率。另外,本实施方式是在将轧辊安装于轧机前进行轧辊的合格与否判定,因此能够减少在轧制操作中更换不良轧辊的操作,从而提高轧机的钢带生产效率。

实施例

〔实施例1〕

作为实施例1,在由四辊轧机构成的5个机架的连续式冷轧机中,在对第4机架的支承辊进行辊磨削时进行轧辊的辊磨削的合格与否判定。作为辊磨削对象的轧辊的尺寸为:直径1260~1451mm、筒长1750mm、含轴全长2300mm。辊磨削机的磨削磨石使用氧化铝系磨石,磨削时的磨石直径为480~915mm、磨石宽度为100mm。磨削磨石的转速设定为510rpm,以使磨削磨石旋转的电动机的电流值在粗磨削时为140A、在精磨削时的精磨削工序的第1道次为80A的方式设定磨石切入量,并与磨削道次一起逐渐下降。

粗磨削工序以在整个筒上往复的方式进行横移,在粗磨削中为120道次,在精磨削中为8道次。对于传送速度而言,在粗磨削中为1000mm/分钟,在精磨削中为从300mm/分钟逐渐下降,在最终横移中为100mm/分钟。另外,辊磨削机的振动是利用设置于磨削头的加速度计以取样频率1000Hz测定加速度。需要说明的是,在振动信息取得部31b中,从粗磨削工序中的最终5道次的磨削过程中的振动计数据取得与振动加速度相关的振动信息。另外,根据磨削对象的轧辊在轧机中的使用方式决定的特定频带为40Hz,因此,将带宽作为±10Hz,从而将特定频带设定为30~50Hz。另一方面,对于频谱上限值而言,基于过去的实际操作,将特定频带中的振动加速度设定为0.1m/sec

此时,以多次时机(chance)对轧辊实施磨削,其结果是,有时在特定频带的范围内、即34Hz附近的频率下,加速度大于频谱上限值,因此,在这样的情况下,在磨削合格与否判定部判定为不合格。对于判定为不合格的轧辊而言,将粗磨削工序中的切入量减少约20%并进行再磨削,重新利用磨削合格与否判定装置进行判定,其结果为合格。

本实施例中,这样判定轧辊的合格与否,仅将合格的轧辊安装于连续式冷轧机的第4机架的支承辊,从而执行冷轧。作为轧制条件,以板厚0.6~1.2mm、板宽950~1300mm的普通钢为对象,对所有的金属带将最高轧制速度设定为1100mpm以上,从而进行冷轧。其结果是,在作为对象的金属带的冷轧中未检测到颤振。

另一方面,在未使用磨削合格与否判定装置而通过通常的目视来进行合格与否判定的比较例中,相对于作为更换支承辊的基准的轧制量,在进行1/3左右的轧制的时刻发生了颤振,因此在中断轧制的基础上进行了支承辊的更换。由此,在金属带的一部分上发生了由于板厚变动、表面缺陷引起的不良部分,并且由于紧急更换了支承辊而导致生产率降低。

〔实施例2〕

作为实施例2,是示出将本发明应用于在由四辊轧机构成的4个机架的连续式冷轧机中使用的轧辊的例子。本实施例的轧机是与上述实施例1的轧机不同的轧机,其与在上述实施例1的轧机中使用的轧辊的辊径为相同程度,但使用了筒长比上述实施例1中短的轧辊。本实施例中,以这样的4个机架的连续式冷轧机的第3机架的支承辊为对象,在磨削轧辊时进行合格与否判定。

磨削轧辊时的磨削磨石的磨石直径为480~915mm,磨石宽度为100mm。磨削磨石的转速设定为510rpm,以使磨削磨石旋转的电动机的电流值在粗磨削时为135A、在精磨削时的精磨削工序的第1道次为70A的方式设定磨石切入量,并与磨削道次一起逐渐下降。另外,磨削轧辊时的轧辊的转速从粗磨削工序至精磨削工序恒定为6rpm。

在此,作为磨削对象的轧辊使用直径1355mm的轧辊和直径1420mm的轧辊。本实施例中,使用相同的辊磨削机对它们进行磨削。在该情况下,由于轧辊的直径不同,因此轧辊的重量也不同。因此,在将轧辊装载在辊磨削机上使轧辊旋转时,在任何情况下辊磨削机的自然振动频率都为40Hz且没有变化。但是,在本实施例使用的辊磨削机中,根据作为磨削对象的轧辊的种类、重量、或者磨削磨石的磨石直径等条件的不同,有时辊磨削机的自然振动频率会发生变化,确认了在此情况下的辊磨削机的自然振动频率为30~50Hz的范围。

另一方面,上述两种轧辊均安装于上述轧机的相同的机架,在该机架上,在轧制速度(该机架的工作辊的圆周速度)为900m/分钟的情况下,确认了在轧机的固有频率、即620~700Hz下发生颤振。像这样,根据由轧机的过去的实际操作得到的轧机的固有频率、发生颤振的轧制速度、及各轧辊的直径,使用辊磨削时的转速来计算各轧辊的特定频带。其结果是,直径1355mm的轧辊的特定频带为17.7~19.9Hz、直径1420mm的轧辊的特定频带为18.5~20.9Hz。

因此,在轧辊磨削时,根据由振动信息取得部取得的振动信息计算与各轧辊对应的特定频带中的频谱值的平均值,与预先设定的频谱上限值进行比较。所设定的频谱上限值基于过去的颤振发生实际情况,对任意的轧辊都将振动加速度设定为0.1m/sec

因此,将这些轧辊以不同的轧制时机(chance)安装于上述机架,以板厚0.6~1.2mm、板宽950~1300mm的普通钢为对象,将所有金属带的最高轧制速度设定为900mpm进行冷轧。其结果是,本实施例中,在使用判定为不合格的轧辊(直径1355mm)的情况下,相对于生产计划中预定的处理量(进行轧制的钢带的总重量),在进行其1/5的处理量的轧制的时刻,在安装有该轧辊的轧制机架发生了颤振,未能实施预定量的轧制。另一方面,本实施例中,在使用判定为合格的轧辊(直径1420mm)的情况下,未发生颤振,能够实施生产计划中预定的全部量的轧制。

以上,对应用了由本申请发明人完成的发明的实施方式进行了说明,但本发明并不限定于构成本实施方式的本发明的公开的一部分的记述和附图。即,本领域技术人员等基于本实施方式做出的其它实施方式,实施例及运用技术等全部包含在本发明的范畴内。

产业上的可利用性

根据本发明,能够提供能够抑制在轧制金属带时发生颤痕的轧辊的磨削合格与否判定装置及磨削合格与否判定方法。另外,根据本发明能够提供金属带的轧制方法,其能够抑制在轧制金属带时发生颤痕,从而提高金属带的制造成品率。

附图标记说明

1 轧辊

2 磨削磨石

3 磨削头

4 双轴工作台

5 辊卡盘

6 辊旋转电动机

7 尾座

8 支座

9a、9b 引导件

10 磨石旋转用电动机

11 滑轮

12 传送带

13 振动计

21 辊磨削机的控制用计算机

22 商用计算机

23 辊磨削机的控制用控制器

31 轧辊的磨削合格与否判定装置

31a 振动计数据取得部

31b 振动信息取得部

31c 频谱上限设定部

31d 磨削合格与否判定部

41 工作辊

42 支承辊

43a 张力计辊

43b 偏导辊

44 驱动装置

45 壳体

47 负荷传感器

48 测厚仪

S 钢板

技术分类

06120115928871