掌桥专利:专业的专利平台
掌桥专利
首页

一类小RNA分子及其类似物在抗衰老中的应用

文献发布时间:2023-06-19 10:05:17



技术领域

本发明属于代谢性疾病治疗领域。具体地,涉及一类小RNA分子及其类似物的抗衰老作用。

背景技术

抵抗或逆转衰老是人类自古以来的终极梦想之一。之前的研究发现,代谢干预、衰老细胞清除、干细胞或体液回输等治疗方法能够在一定程度上减缓或改善哺乳动物的衰老表型。然而,距离安全高效的对抗或逆转人类衰老的目标仍然十分遥远

近年来,有研究发现在小鼠中过表达四个能够将体细胞重编程为多能干细胞(pluripotent stem cells)的转录因子(Oct4,Sox2,Klf4,c-Myc)能够显著提高早衰症小鼠的寿命,并在一定程度上改善正常衰老小鼠与人类衰老细胞的衰老表型

因此,本领域迫切需要开发新的安全且有效的抗衰老的方法和药物组合物。

发明内容

本发明的目的就是提供了一种安全且有效的抗衰老的方法和药物组合物。

本发明第一方面,提供了一种活性成分的用途,所述的活性成分选自下组:

(a).miR-302家族的微小RNA,所述miR-302家族的微小RNA包括:miR-302 或经修饰的miR-302衍生物;或核心序列为5’-AAGUGCU-3’、长度为16-28nt、功能与miR-302相同或基本相同的微小RNA或经修饰的miRNA衍生物;

(b).前体miRNA,所述的前体miRNA能在宿主内加工成(a)中所述的 miR-302;

(c).多核苷酸,所述的多核苷酸能被宿主转录形成(b)中所述的前体 miRNA,并加工形成(a)中所述的微小RNA;

(d).表达载体,所述表达载体含有(a)中所述的miR-302、或(b)中所述的前体miRNA、或(c)中所述的多核苷酸;

(e).(a)中所述的微小RNA的激动剂;

其中,所述的活性成分用于制备一药物组合物或制剂,所述药物组合物或制剂用于选自下组的一种或多种应用:

(i)延缓或逆转正常体细胞的衰老;

(ii)促进正常体细胞的体外扩增和/或体内扩增;

(iii)抑制SA-β-Gal的表达和/或活性;

(iv)促进H3K9me3的表达和/或活性;

(v)抑制P16蛋白的表达和/或活性;

(vi)促进Ⅲ型胶原蛋白COL3A1的表达和/或活性;

(vii)抑制PAI-1的表达和/活性。

在另一优选例中,所述的抗衰老不依赖于多能向细胞重编程,也不增加致癌风险。

在另一优选例中,所述的药物组合物或制剂还用于抑制肿瘤细胞。

在另一优选例中,所述的制剂包括膳食补充剂、食品添加剂、试验用试剂。

在另一优选例中,所述的药物组合物包括所述的活性成分和药学上可接受的载体。

在另一优选例中,(a)中所述的核心序列位于微小RNA的5’端的前8个nt以内(如第1-7位或第2-8位)。

在另一优选例中,所述的微小RNA的长度为16-28nt,并且其序列特征满足下式:5’-(N)AAGUGCUN…-3’,式中,N代表任意核苷酸,(N)代表1个或0个N。

在另一优选例中,所述的微小RNA的长度为18-26nt。

在另一优选例中,所述的“功能与miR-302相同或基本相同”是指保留了 miR-302(例如hsa-miR-302c-3p)的≥40%,且≤500%的抗衰老的功能。

在另一优选例中,所述的抗衰老的功能包括选自下组的一种或多种功能:

促进正常体细胞的体外扩增和/或体内扩增;

抑制SA-β-Gal的表达和/或活性;

促进H3K9me3的表达和/或活性;

抑制P16蛋白的表达和/或活性;和

促进Ⅲ型胶原蛋白COL3A1的表达和/或活性。

在另一优选例中,所述的miR-302的序列如SEQ ID NO.:1所示(UAAGUGCUUCCAUGUUUCAGUG)。

在另一优选例中,所述的miR-302来源于哺乳动物,优选地,来源于人、大鼠、或小鼠。

在另一优选例中,所述的微小RNA为UAAGUGCUUCCUACAAAGUCAC(SEQ ID No.: 11,即mut1)

在另一优选例中,所述的药物组合物还包括额外的抗衰老活成分。

在另一优选例中,所述的经修饰的miRNA衍生物,其修饰选自下组的一种或多种修饰形式:核苷酸的糖基修饰、核苷酸之间连接方式的修饰、胆固醇修饰、锁核苷酸修饰、肽段修饰、脂类修饰、卤素修饰、烃基修饰、和核酸修饰。

在另一优选例中,所述的核苷酸的糖基修饰包括2-O-甲基的糖基修饰、2-O- 甲氧乙酯的糖基修饰、2-O-烷基的糖基修饰、2-氟代的糖基修饰、糖环修饰、锁核苷酸修饰;和/或

所述的核苷酸之间连接方式的修饰包括硫代磷酸修饰、磷酸烷基化修饰;和/ 或

所述的核酸修饰包括“TT”修饰。

在另一优选例中,(a)中所述经修饰的miRNA衍生物是具有式I所示结构的化合物单体或其多聚体:

(X)n-(Y)m

式I

在式I中,

各X为(a)中所述的微小RNA;

各Y独立地为促进微小RNA施药稳定性的修饰物;

Y连接于X的左侧、右侧或中间;

n为1-100的(较佳地1-20)正整数(较佳地n为1、2、3、4或5);

m为1-1000的(较佳地1-200)正整数;

各“-”表示接头、化学键、或共价键。

在另一优选例中,所述的接头是长度为1-10个碱基的核酸序列。

在另一优选例中,所述的Y包括(但不限于)胆固醇、类固醇、甾醇、醇、有机酸、脂肪酸、酯、单糖、多糖、氨基酸、多肽、单核苷酸、多核苷酸。

在另一优选例中,(c)中所述的多核苷酸具有式II所示的结构:

Seq

式II

式II中,

Seq正向为能在宿主中被加工成所述的微小RNA核苷酸序列;

Seq反向为与Seq正向基本上互补或完全互补的核苷酸序列;

X为位于Seq正向和Seq反向之间的间隔序列,并且所述间隔序列与Seq正向和Seq反向不互补;

并且式II所示的结构在转入宿主细胞后,形成式III所示的二级结构:

式III中,Seq正向、Seq反向和X的定义如上述,

||表示在Seq正向和Seq反向之间形成的碱基互补配对关系。

在另一优选例中,(c)中所述的多核苷酸具有SEQ ID No:3或6所示的氨基酸序列:

在另一优选例中,(d)中所述的表达载体包括:病毒载体和非病毒载体。

在另一优选例中,(e)中所述miR-302的激动剂选自下组:促进miR-302表达的物质、提高miR-302活性的物质、或其组合。

在另一优选例中,所述的药学上可接受的载体选自下组:水、盐水、脂质体、脂质、蛋白、蛋白-抗体缀合物、肽类物质、纤维素、纳米凝胶、或其组合。

在本发明的第二方面,提供了一种药物组合物,所述的药物组合物含有活性成分,和药学上可接受的载体,其中,所述的活性成分选自:

(a).miR-302家族的微小RNA,所述miR-302家族的微小RNA包括:miR-302 或经修饰的miR-302衍生物;或核心序列为5’-AAGUGCU-3’、长度为16-28nt、功能与miR-302相同或基本相同的微小RNA或经修饰的miRNA衍生物;

(b).前体miRNA,所述的前体miRNA能在宿主内加工成(a)中所述的 miR-302;

(c).多核苷酸,所述的多核苷酸能被宿主转录形成(b)中所述的前体 miRNA,并加工形成(a)中所述的微小RNA;

(d).表达载体,所述表达载体含有(a)中所述的miR-302、或(b)中所述的前体miRNA、或(c)中所述的多核苷酸。

在本发明的第三方面,提供了一种筛选促进miR-302的候选化合物的方法,包括步骤:

(a)将加入测试化合物的细胞培养体系作为实验组;将不加入测试化合物的细胞培养体系作为对照组;

(b)测试实验组和对照组中SA-β-Gal蛋白和/或P16蛋白的表达量和/或活性;测试实验组和对照组中H3K9me3蛋白和/或Ⅲ型胶原蛋白COL3A1的表达量和/或活性;

其中,当测试组中SA-β-Gal蛋白和/或P16蛋白的表达量和/或活性低于高于对照组,并且H3K9me3蛋白和/或Ⅲ型胶原蛋白COL3A1的表达量和/或活性显著高于对照组,则表明该测试化合物为促进miR-302的候选化合物。

在另一优选例中,步骤(b)中还包括:

对于所获得的候选化合物,进一步测试所述候选化合物对实验组和对照组中的细胞产生miR-302的影响;

其中,当实验组中的miR-302数量显著高于对照组,则表明所述候选化合物为miR-302的促进剂。

在另一优选例中,所述的细胞为体细胞。

在另一优选例中,所述的细胞选自下组:成纤维细胞、血管内皮细胞、间充质干细胞、上皮细胞(包括皮肤上皮细胞)、肝脏细胞、或其组合。

在本发明的第四方面,提供了一种体外非治疗性的抑制SA-β-Gal蛋白和/ 或P16蛋白的表达量和/或活性;促进H3K9me3蛋白和/或Ⅲ型胶原蛋白COL3A1 的表达和/或活性;和/或抑制PAI-1的表达和/活性的方法,所述方法包括步骤:

向细胞培养体系中加入本发明第二方面所述的药物组合物或miR-302活性成分,从而抑制SA-β-Gal蛋白和/或P16蛋白的表达量和/或活性;和/或促进H3K9me3蛋白和/或Ⅲ型胶原蛋白COL3A1的表达和/或活性。

在本发明的第五方面,提供了一种体外非治疗性的促进正常体细胞增殖的方法,包括步骤:

在miR-302活性成分存在下,并在适合生长的条件下,培养一正常体细胞,从而促进所述正常体细胞的增殖,其中,所述miR-302活性成分是如本发明第一方面中所述的活性成分。

在另一优选例中,所述的细胞为真核细胞,较佳地人或非人哺乳动物的细胞。

在另一优选例中,所述的细胞为体细胞。

在另一优选例中,所述的细胞选自下组:正常细胞、肿瘤细胞。

本发明第六方面,提供了一种抑制SA-β-Gal蛋白和/或P16蛋白的表达量和/或活性、和/或促进H3K9me3蛋白和/或Ⅲ型胶原蛋白COL3A1的表达和/ 或活性、和/或抗衰老的方法,包括步骤:

向需要的对象施用本发明第二方面所述的药物组合物或miR-302活性成分,从而抑制SA-β-Gal蛋白和/或P16蛋白的表达量和/或活性、和/或促进 H3K9me3蛋白和/或Ⅲ型胶原蛋白COL3A1的表达和/或活性、和/或抗衰老。

在另一优选例中,所述需要的对象为哺乳动物,较佳地,为人或非人哺乳动物(例如小鼠、或大鼠)。

应理解,在本发明范围内中,本发明的上述各技术特征和在下文(如实施例)中具体描述的各技术特征之间都可以互相组合,从而构成新的或优选的技术方案。限于篇幅,在此不再一一累述。

附图说明

图1显示了通过转基因手段过表达miR-302家族miRNA能够逆转人类细胞衰老。

A.Q-RT-PCR检测HFF1-scr和HFF1-302细胞中的hsa-miR-302c-3p表达水平。**:P<0.01,n=3,双尾t-test。

B.左侧:HFF1-scr和HFF1-302细胞的代表性β-半乳糖苷酶染色照片(上方图,蓝色为SA-β-Gal染色阳性)和H3K9me3免疫荧光染色照片(下方图,绿色荧光为H3K9me3染色阳性)。右侧:左侧两类染色的定量统计结果。**:P<0.01, n=5,双尾t-test。

C.Q-RT-PCR检测HFF1-scr和HFF1-302细胞中的p16和Col3a1基因的 mRNA表达水平。**:P<0.01,n=3,双尾t-test。

D.定量统计HFF1-scr和HFF1-302细胞的短期增殖速率。细胞增殖用CCK-8 法检测。纵轴代表相对于第一天的细胞增殖倍率,横轴代表天数。**:P<0.01, n=3,双尾t-test。

E.定量统计HFF1-scr和HFF1-302细胞的长期增殖能力。细胞数量用计数法检测。纵轴代表每一代细胞总数相对于起始细胞总数的相对倍率。横轴代表细胞传代次数。**:P<0.01,n=3,双尾t-test。

F.HFF1-scr和HFF1-302细胞总蛋白样本的免疫印记Western检测结果。每列(泳道)代表一个独立的重复,每种细胞各有3个重复,如图中标记。此外, H1列代表人多能干细胞H1系的总蛋白样本。每行代表这里检测的一个目标蛋白,左侧标记为每行检测的目标蛋白名称。

G.Q-RT-PCR检测HFF1-Tonscr和HFF1-Ton302细胞中的hsa-miR-302c-3p 表达水平。DOX-代表无DOX诱导的正常培养条件下的细胞。DOX+代表加入了DOX 诱导后48小时后的细胞。**:P<0.01,n=3,双尾t-test。

H.定量统计DOX诱导后不同时间点上的HFF1-Tonscr和HFF1-Ton302细胞中的β-半乳糖苷酶染色结果。纵轴为染色阳性细胞比率。横轴为DOX诱导开始之后的天数。**:P<0.01,n=9,双尾t-test。

I.定量统计DOX诱导后不同时间点上的HFF1-Tonscr和HFF1-Ton302细胞中的H3K9me3免疫荧光染色结果。纵轴为染色阳性细胞比率。横轴为DOX诱导开始之后的天数。**:P<0.01,n=5,双尾t-test。

图2显示了利用人工合成的miR-302家族miRNA类似物能够逆转人类细胞衰老。

A.定量统计HFF1细胞在转染hsa-miR-302c-3p mimic(+302mimic)和 Scramblemimic(+scr mimic)后的β-半乳糖苷酶染色(SA-β-Gal,n=9)和 H3K9me3免疫荧光染色(H3K9me3,n=4)结果。两种mimic转染浓度均为200nM。染色时间为转染后第8天。纵轴代表染色阳性细胞比率。**:P<0.01,双尾 t-test。

B.Q-RT-PCR检测上述A中两种转染后细胞中的p16基因的mRNA表达水平。 **:P<0.01,n=3,双尾t-test。

C.定量统计HFF1细胞在转染不同浓度的hsa-miR-302c-3p mimic(+302 mimic)和Scramble mimic(+scr mimic)后第8天的β-半乳糖苷酶染色 (SA-β-Gal,n=10)和H3K9me3免疫荧光染色(H3K9me3,n=4)结果。纵轴代表染色阳性细胞比率。横轴代表转染浓度。**代表每种染色系列200nM与0nM 数据点的差异P<0.01,双尾t-test。

D.定量统计HFF1细胞在转染hsa-miR-302c-3p mimic(+302mimic)和 Scramblemimic(+scr mimic)后的短期增殖倍率。细胞增殖用CCK-8法检测。纵轴代表相对于第一天的细胞增殖倍率,横轴代表天数。**:P<0.01,n=3,双尾t-test。两种mimic转染浓度均为200nM。

图3显示了miR-302家族miRNA具有广谱抗癌功能。

A.双色荧光细胞生长竞争实验的原理示意图。将过表达Scramble(Scr)对照的GFP标记慢病毒或过表达候选miRNA(miR)的iRFP标记慢病毒分别感染目标细胞,并等比例混合(起点)。然后将混合的细胞连续传代(终点)。最后用FACS 分析定量比较iRFP/GFP细胞比例在终点相对于起点的相对富集率。

B.用Scramble(Scr)对照或has-miR-302c-3p(302)分别作为候选miR,在不同人类细胞中进行上述双色荧光细胞生长竞争实验的统计结果汇总。纵轴:候选miR的相对富集率。横轴:不同的细胞系。大括号标出的是各种人类肿瘤细胞系。**:P<0.01,n=3,双尾t-test。

C.Cal27-Scr和Cal27-302细胞的裸鼠皮下移植瘤生长曲线统计结果。 Tumorvolume=肿瘤长径×肿瘤短径

图4显示了建立人内皮细胞传代衰老模型。

A.左侧:HUVEC细胞的代表性β-半乳糖苷酶(SA-β-Gal)染色照片(上方图,蓝色为阳性染色)和代表性PAI-1免疫荧光染色照片(下方图,红色荧光为阳性染色,蓝色荧光为所有细胞核染色)。右侧:左侧两类染色的定量统计结果,按阳性染色占所有细胞%计算。**:P<0.01,双尾t-test,左侧上下分别n=7和n=3。HUVEC-Y:早期代数的HUVEC细胞,HUVEC-O:传代衰老后的 HUVEC细胞,下同。

B.左侧:HUVEC-Y和HUVEC-O细胞的代表性H3K9me3免疫染色照片(上方图),和代表性Ki67免疫荧光染色照片(下方图)。上下图中绿色荧光均代表阳性染色,蓝色荧光均代表所有细胞的核染色。右侧:左侧两类染色的定量统计结果。**:P<0.01,双尾t-test,左侧上下图分别n=5和n=6。

图5显示了miR-302家族miRNA有效逆转人内皮细胞衰老。

A.转基因HUVEC-O细胞的衰老细胞标记物β-半乳糖苷酶(SA-β-Gal) 染色和内皮细胞衰老标记物PAI-1免疫荧光染色阳性比例统计,按阳性染色占所有细胞%计算。**:P<0.01,双尾t-test,SA-β-Gal染色的n=10,PAI-1 免疫荧光染色n=7。HUVEC-O-302:过表达miR-302的HUVEC-O细胞, HUVEC-O-SCR:过表达SCR对照的HUVEC-O细胞。

B.转基因HUVEC-O细胞的年青细胞标记物H3K9me3和细胞增殖标记物Ki67 的免疫荧光染色阳性比例统计,按阳性染色占所有细胞%计算。**:P<0.01,双尾t-test,H3K9me3染色的n=7,Ki67免疫荧光染色n=8。

C.miRNA类似物转染后的HUVEC-O细胞的衰老细胞标记物β-半乳糖苷酶 (SA-β-Gal)染色和衰老标记物PAI-1免疫荧光染色阳性比例统计,按阳性染色占所有细胞%计算。**:P<0.01,双尾t-test,SA-β-Gal染色的n=11,PAI-1 免疫荧光染色n=10。mimic-302:转染miR-302类似物的HUVEC-O细胞, mimic-SCR:转染SCR对照类似物的HUVEC-O细胞。下同。

D.miRNA类似物转染后的HUVEC-O细胞的年青细胞标记物H3K9me3和细胞增殖标记物Ki67的免疫荧光染色阳性比例统计,按阳性染色占所有细胞%计算。 **:P<0.01,双尾t-test,H3K9me3染色的n=10,Ki67免疫荧光染色n=10。

图6显示了miR-302的衰老拮抗作用高度依赖于其5’端种子序列

A.miR-302c-3p(302c)及其系列突变体的RNA序列。SCR为scramble负对照。红色为5’端2-8nt位置的种子序列。蓝色下划线代表突变后的序列。

B.通过双色荧光细胞生长竞争实验在传代衰老的HFF-1细胞中测试上述 miR-302c系列突变体抗衰老效果的统计结果汇总。**:P<0.01,双尾t-test, n=3。纵轴代表导入302突变体的细胞相对于对照细胞的Log2增殖倍率(FC)。下同。

C.通过双色荧光细胞生长竞争实验在HUVEC-O细胞中测试上述miR-302c 系列突变体抗衰老效果的统计结果汇总。**:P<0.01,双尾t-test,n=3。

D.基于上述B和C的数据计算的各miR-302突变体的相对抗衰老效率(%Eff) 汇总表。计算方法:%Eff=(FC-100%)/(FC of 302c)。表中列头代表细胞类型,行头代表miR-302突变体名称。±号左侧为平均值,右侧为标准误(Standard Error)。

图1-6中的误差条(Error Bar)代表标准误(Standard Error)。

具体实施方式

本发明人经过广泛而深入的研究,首次意外地发现,miR-302能够通过高效地延缓或逆转正常体细胞的衰老过程,从而具有抗衰老功能。此外,这种抗衰老作用不导致多能向重编程,因而与多能向重编程无关。进一步的试验还证明,miR-302不仅不会导致正常体细胞的致癌风险上升,相反可以还可抑制多种不同肿瘤细胞的生长。因此,miR-302是一类极其安全而有效的抗衰老的活性成分。在此基础上,完成了本发明。

术语

如本文所用,“miR-302”,“miRNA-302”,“本发明的miRNA”、“本发明的微小RNA”等可互换使用,指miR-302家族miRNA,它是具有5’端 (N)AAGUGCU特征的16-28nt总长度的小RNA分子(其中N代表任意核苷酸(A、 U、C、G),(N)代表1个或0个N)。

如本文所用,术语“H3K9me3”指组蛋白H3赖氨酸9三甲基化(H3 lysine9trimethylation,H3K9me3)。

如本文所用,术语“SA-β-gal”指衰老相关的β-半乳糖苷酶 (senescence-associatedβ-galactosidase)。

如本文所用,术语“P16蛋白”指CDKN2A基因的蛋白表达产物,是一种细胞衰老标记物。

衰老和抗衰老

如本文所用,“衰老(aging)”指随时间增加,有机体在构成物质、组织结构、生理功能等方面发生的丧失和退化过程。在本发明中,衰老指生物学衰老。

如本文所用,“抗衰老”是指延缓、阻滞、减少、停止和/或逆转衰老效果或进程。

细胞衰老是这样的现象,其导致单独细胞无法持续分裂,使其在数次分裂之后停滞。为了检测细胞衰老,一般使用细胞染色测试,其检测衰老相关的标志物(如β-半乳糖苷酶活性)。衰老的细胞可以干扰整个有机体的重要功能和从而导致某些障碍。整个有机体的衰老伴随着某些障碍(比如疾病、并发症和症状)增加的风险。

一些代表性的衰老细胞标记物或标志包括(但并不限于):SA-β-半乳糖苷酶

一些代表性的年青细胞标记物包括(但并不限于):H3K9me3

miRNA及其前体

微小RNA(microRNA,简称miRNA)是近年来在线虫,果蝇和植物,哺乳动物等真核生物中发现的一种内源性的长度为22个核苷酸左右的非编码单链小 RNA。它在表达上具有组织和时间的特异性,通过与靶mRNA的碱基互补配对而在转录后水平上对基因的表达进行负调控,导致mRNA的降解或翻译抑制,是调节其他功能基因表达的重要调控分子。越来越多的证据表明miRNA虽然微小,但它通过与靶mRNA形成完全或者不完全互不配对从而对生物体的各种生命过程有着至关重要的作用。如本文所用,所述的“miRNA”是指一类RNA分子,从可形成miRNA前体的转录物加工而来。成熟的miRNA通常具有18-26个核苷酸(nt)(更特别的约19-22nt),也不排除具有其它数目核苷酸的miRNA分子。 miRNA通常可被Northern印迹检测到。

人来源的miRNA可被从人细胞中分离。如本文所用,“分离的”是指物质从其原始环境中分离出来(如果是天然的物质,原始环境即是天然环境)。如活体细胞内的天然状态下的多聚核苷酸和多肽是没有分离纯化的,但同样的多聚核苷酸或多肽如从天然状态中同存在的其他物质中分开,则为分离纯化的。

miRNA可从前体miRNA(Precursor miRNA,Pre-miRNA)加工而来,所述的前体miRNA可折叠成一种稳定的茎环(发夹)结构,所述的茎环结构长度一般在 50-100bp之间或更长。所述的前体miRNA可折叠成稳定的茎环结构,茎环结构的茎部两侧包含基本上互补的两条序列。所述的前体miRNA可以是天然的或是人工合成的。

前体miRNA可被剪切生成miRNA,所述的miRNA可与编码基因的mRNA的至少一部分序列基本上互补。如本文所用,“基本上互补”是指核苷酸的序列是足够互补的,可以以一种可预见的方式发生相互作用,如形成二级结构(如茎环结构)。通常,两条“基本上互补”的核苷酸序列互相之间至少有70%的核苷酸是互补的;优选的,至少有80%的核苷酸是互补的;更优选的,至少有90%的核苷酸是互补的;进一步优选的,至少有95%的核苷酸是互补的;如98%、 99%或100%。一般地,两条足够互补的分子之间可以具有最多40个不匹配的核苷酸;优选的,具有最多30个不匹配的核苷酸;更优选的,具有最多20个不匹配的核苷酸;进一步优选的,具有最多10个不匹配的核苷酸,如具有1、2、 3、4、5、8、11个不匹配的核苷酸。

如本申请所用,“茎环”结构也被称作“发夹”结构,是指一种核苷酸分子,其可形成一种包括双链区域(茎部)的二级结构,所述的双链区域由该核苷酸分子的两个区域(位于同一分子上)形成,两个区域分列双链部分的两侧;其还包括至少一个“环”结构,包括非互补的核苷酸分子,即单链区域。即使该核苷酸分子的两个区域不是完全互补的,核苷酸的双链部分也可保持双链状态。例如,插入、缺失、取代等可导致一个小区域的不互补或该小区域自身形成茎环结构或其它形式的二级结构,然而,该两个区域仍可基本上互补,并在可预见的方式中发生相互作用,形成茎环结构的双链区域。茎环结构是本领域技术人员所熟知的,通常在获得了一条具有一级结构的核苷酸序列的核酸后,本领域技术人员能够确定该核酸是否能形成茎环结构。

本发明所述的miRNA是指:微小RNA-302(miR-302)家族,所述miR-302家族包括:miR-302或经修饰的miR-302衍生物,其功能与miR-302-相同或基本相同。

在另一优选例中,所述的微小RNA来源于人或非人哺乳动物;较佳地所述的非人哺乳动物为大鼠、小鼠,鼠和人的miR-302家族序列完全一致。所述的“功能与miR-302相同或基本相同”是指保留了miR-302c-3p的≥40%、≥50%、≥ 60%、≥70%、≥80%、≥90%的抗衰老的功能(例如,抑制SA-β-Gal蛋白的表达和/或活性)。

本发明还包括miRNA变体和衍生物。此外,广义上的miRNA衍生物也可包括miRNA变体。本领域的普通技术人员可以使用通用的方法对miR-302进行修饰,修饰方式包括(但不限于):甲基化修饰、烃基修饰、糖基化修饰(如2-甲氧基-糖基修饰、烃基-糖基修饰、糖环修饰等)、核酸化修饰、肽段修饰、脂类修饰、卤素修饰、核酸修饰(如“TT”修饰)等。

一类优选的miRNA分子是表1中所列出的miRNA分子。

一种特别优选的miR-302例子是hsa-miR-302c-3p (mirbaseAccession=MIMAT0000717)。

其RNA序列为5’-UAAGUGCUUCCAUGUUUCAGUG-3’(SEQ ID No:1)

对应的DNA序列为:5’-TAAGTGCTTCCATGTTTCAGTG-3’(SEQ ID No:2)

在本发明中,其他一些合适的miR-302的序列可参见公共数据库,例如

表1

表2

多核苷酸构建物

根据本发明所提供的miRNA序列,可设计出在被导入后可被加工成可影响相应的mRNA表达的miRNA的多核苷酸构建物,也即所述多核苷酸构建物能够在体内上调相应的miRNA的量。因此,本发明提供了一种分离的多核苷酸(构建物),所述的多核苷酸(构建物)可被人细胞转录成前体miRNA,所述的前体 miRNA可被人细胞剪切且表达成所述的miRNA。

作为本发明的一种优选方式,所述的多核苷酸构建物含有式II所示的结构:

Seq

式II

式II中,

Seq

式I所示的结构在转入细胞后,形成式III所示的二级结构:

式III中,Seq

||表示在Seq

通常,所述的多核苷酸构建物位于表达载体上。因此,本发明还包括一种载体,它含有所述的miRNA,或所述的多核苷酸构建物。所述的表达载体通常还含有启动子、复制起点和/或标记基因等。本领域的技术人员熟知的方法能用于构建本发明所需的表达载体。这些方法包括体外重组DNA技术、DNA合成技术、体内重组技术等。所述的表达载体优选地包含一个或多个选择性标记基因,以提供用于选择转化的宿主细胞的表型性状,如卡拉霉素、庆大霉素、潮霉素、氨苄青霉素抗性。

在本发明中,所述的启动子可以是组成型、诱导型、或其组合。

药物组合物及施用方法

如本文所用,术语“活性成分”或“miR-302活性成分”指的是可用于本发明的miR-302、miR-302衍生物或其前体序列、或含有其的表达载体。优选地,所述的活性成分选自下组:

(a).miR-302家族的微小RNA,所述miR-302家族的微小RNA包括:miR-302 或经修饰的miR-302衍生物;或核心序列为5’-AAGUGCU-3’、长度为16-28nt、功能与miR-302相同或基本相同的微小RNA或经修饰的miRNA衍生物(一类优选的微小RNA是总长度为16-28nt且其序列特征满足下式的微小RNA: 5’-(N)AAGUGCUN…-3’,式中N代表任意核苷酸(A/U/C/G),(N)代表1个或0个N);

(b).前体miRNA,所述的前体miRNA能在宿主内加工成(a)中所述的 miR-302;

(c).多核苷酸,所述的多核苷酸能被宿主转录形成(b)中所述的前体 miRNA,并加工形成(a)中所述的微小RNA;

(d).表达载体,所述表达载体含有(a)中所述的miR-302、或(b)中所述的前体miRNA、或(c)中所述的多核苷酸。

如本文所用,术语“有效量”或“有效剂量”是指可对人和/或动物产生功能或活性的且可被人和/或动物所接受的量。

如本文所用,术语“药学上可接受的”的成分是适用于人和/或哺乳动物而无过度不良副反应(如毒性、刺激和变态反应)的,即具有合理的效益/风险比的物质。术语“药学上可接受的载体”指用于治疗剂给药的载体,包括各种赋形剂和稀释剂。

本发明的药物组合物含有安全有效量的本发明的活性成分以及药学上可接受的载体。这类载体包括(但并不限于):盐水、缓冲液、葡萄糖、水、甘油、乙醇、及其组合。通常药物制剂应与给药方式相匹配,本发明的药物组合物的剂型为注射剂、口服制剂(片剂、胶囊、口服液)、透皮剂、缓释剂。例如用生理盐水或含有葡萄糖和其他辅剂的水溶液通过常规方法进行制备。所述的药物组合物宜在无菌条件下制造。

本发明所述的活性成分的有效量可随给药的模式和待治疗的疾病的严重程度等而变化。优选的有效量的选择可以由本领域普通技术人员根据各种因素来确定(例如通过临床试验)。所述的因素包括但不限于:所述的活性成分的药代动力学参数例如生物利用率、代谢、半衰期等;患者所要治疗的疾病的严重程度、患者的体重、患者的免疫状况、给药的途径等。通常,当本发明的活性成分每天以约0.00001mg-50mg/kg动物体重(较佳的0.0001mg-10mg/kg动物体重) 的剂量给予,能得到令人满意的效果。例如,由治疗状况的迫切要求,可每天给予若干次分开的剂量,或将剂量按比例地减少。

本发明所述的药学上可接受的载体包括(但不限于):水、盐水、脂质体、脂质、蛋白、蛋白-抗体缀合物、肽类物质、纤维素、纳米凝胶、或其组合。载体的选择应与给药方式相匹配,这些都是本领域的普通技术人员所熟知的。

体外抗衰老的方法

本发明提供了一种体外非治疗性抗衰老方法,以及抑制SA-β-Gal蛋白和 /或P16蛋白的表达量和/或活性和/或促进H3K9me3蛋白和/或Ⅲ型胶原蛋白 COL3A1的表达和/或活性的方法。

典型地,该方法包括:向培养的细胞体系内加入本发明药物组合物或本发明活性成分,从而延缓和/或逆转所述细胞的衰老进程;抑制SA-β-Gal蛋白和/或P16蛋白的表达量和/或活性;和/或促进H3K9me3蛋白和/或Ⅲ型胶原蛋白COL3A1的表达和/或活性。

在另一优选例中,所述的细胞为体细胞(somatic cells),尤其是正常的体细胞。

本发明的主要优点包括:

(a)本发明首次意外地发现,miR-302是一种可应用于正常体细胞的抗衰老的活性成分。

(b)miR-302的抗衰老作用不导致多能干细胞特征出现,因而与多能向重编程无关,也回避了因导致目标体细胞的多能向重编程而破坏其正常功能并使其产生致癌性的风险。

(c)miR-302不仅不会导致正常体细胞的致癌风险上升,而且可抑制多种不同肿瘤细胞的生长。

下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。下列实施例中未注明具体条件的实验方法,通常按照常规条件,例如Sambrook等人,分子克隆:实验室手册(New York: Cold Spring HarborLaboratory Press,1989)中所述的条件,或按照制造厂商所建议的条件。除非另外说明,否则百分比和份数是重量百分比和重量份数。

材料和通用方法

实施例中采用miR-302是hsa-miR-302c-3p,其RNA序列为 5’-UAAGUGCUUCCAUGUUUCAGUG-3’(SEQ ID No:1);对应的DNA序列为: 5’-TAAGTGCTTCCATGTTTCAGTG-3’(SEQ ID No:2)。

为了构建精确的miRNA过表达载体,采用了本发明人前期发表的 SA-miR(smallaccurate-miR)设计方法

直接合成了以下SAmiR表达序列:(所有DNA序列默认左侧为5’端,右侧为3’端)

SA-miR302c:(表达hsa-miR-302c-3p,黑体部分为对应hsa-miR-302c-3p 的DNA序列)

SA-SCR:(表达scramble对照miRNA,黑体部分为其对应的DNA序列)

通过标准分子克隆方法,将上述SA-miR302c和SA-SCR分别克隆到了组成型慢病毒表达载体plko.1-puro和强力霉素(Dox)诱导性慢病毒表达载体 pLVX-TetOne-Puro上,以及携带荧光标记的慢病毒载体上。

载体构建方法包括:

1.1基于组成型慢病毒表达载体plko.1-puro的表达质粒

这是来自Addgene的通用型小RNA表达载体(可购自Addgene; https://www.addgene.org/8453/)。将SA-miR302c和SA-SCR分别克隆到了它的AgeI+EcoRI位点之间(插入后破坏了AgeI位点),位于U6启动子之后。得到了plko1-SA-miR302c和plko1-SA-SCR两个组成型慢病毒表达质粒。

1.2基于Dox诱导性慢病毒表达载体pLVX-TetOne-Puro的表达质粒

诱导性慢病毒载体pLVX-TetOne-Puro购买自优宝生物公司(货号VT9002,http://www.youbio.cn/product/vt9002)。该载体是集调控与应答功能于一体的四环素诱导载体。

将上述SA-miR302c和SA-SCR及部分周边序列分别PCR扩增出来克隆到了这个载体的多克隆位点中的EcoRI+BamHI之间,得到pTeton-SA-miR302c和 pTeton-SA-SCR两个Dox诱导性慢病毒表达质粒。

1.3基于荧光标记的组成型慢病毒载体的plko1-SA-SCR-GFP, plko1-SA-SCR-iRFP,plko1-SA-miR302c-iRFP质粒

携带H2BGFP绿色荧光标记的组成型慢病毒表达载体plko1-GFP来自 Addgene(addgene,Plasmid#25999)。与方法1.1类似,将合成的SA-miR302c 和SA-SCR分别克隆到了它的AgeI+EcoRI位点之间(插入后破坏了AgeI位点)。得到了plko1-SA-SCR-GFP和plko1-SA-miR302c-GFP。

携带H2BRFP绿色荧光标记的组成型慢病毒表达载体plko1-RFP来自 Addgene(addgene,Plasmid#26001)。与方法1.1类似,将合成的SA-miR302c 和SA-SCR分别克隆到了它的AgeI+EcoRI位点之间(插入后破坏了AgeI位点)。得到了plko1-SA-SCR-RFP和plko1-SA-miR302c-RFP。

为了便于流式细胞仪检测,通过PCR扩增,获得来自 pmiRFP670-N1(addgene,Plasmid#79987)的远红荧光蛋白iRFP表达序列,并将其插入到了上述两个质粒中的AgeI+XbaI位点之间替换RFP表达序列。得到了plko1-SA-SCR-iRFP和plko1-SA-miR302c-iRFP。

HFF-1人类皮肤成纤维细胞购自中国科学院干细胞库(编号:SCSP-109)。所述细胞进行了长期传代,以模拟细胞衰老表型。

其它细胞来源如下(所有细胞培养均按厂家说明书给出的标准步骤操作):

Cal27人舌鳞状细胞癌细胞,中乔新舟(ZQ0606)。

SCC9人舌鳞状细胞癌细胞,ATCC(CRL-1629)

SCC25人舌鳞状细胞癌细胞,ATCC(CRL-1628)

MEWO人黑色素瘤细胞,ATCC(HTB-65)

A431人皮肤鳞状细胞癌细胞,ATCC(CRL-1555)

786-0人肾透明细胞腺癌细胞,中国科学院干细胞库(TCHu186)

PC3人前列腺癌细胞,中国科学院干细胞库(TCHu158)

5637人膀胱癌细胞,中国科学院干细胞库(TCHu 1),

PANC-1人胰腺癌细胞,中国科学院干细胞库(TCHu 98)

3.1慢病毒包装

病毒包装用标准的293T包装细胞结合PEI质粒转染方法:首先将病毒包装体质粒psPAX2(Addgene:12260),病毒包膜质粒pMD2.G(Addgene:12259)和慢病毒表达质粒按DNA质量比例4:2:1混合成包装DNA。随后按200ul无血清 DMEM+3μg包装DNA+9μg PEI(聚醚酰亚胺)的比例混合配置转染液。室温孵育 15分钟后将转染液加入293T细胞培养液中转染细胞。转染后48小时后收集含病毒的细胞培养上清液。用0.45μm孔径过滤器过滤清洁得到病毒悬液。

3.2慢病毒转染目标细胞

在正常生长状态下的目标细胞培养基中加入30%体积的病毒悬液和0.1%终浓度的基因转染增强剂Polybrene(聚凝胺)混匀,并开始计时。计时24小时后换正常培养基。计时48小时后加入嘌呤霉素(puro)(1ug/ml)药筛。能在药筛条件下稳定存活的细胞即为稳定转染了慢病毒的细胞(本文中用到慢病毒载体均为puro抗性。)

细胞与动物组织总RNA提取均采用Trizol裂解液配合Zymo公司的 Direct-zolRNA MiniPrepPlus试剂盒(R2070)进行。完全按说明书标准步骤操作。

mRNA的Q-RT-PCR按标准步骤进行。首先用SuperScript III ReverseTranscriptase(ThermoFisher,18080093)对总RNA样本进行逆转录得到cDNA。然后用BrightGreen 2X qPCRMasterMix-ROX(abm,MasterMix-R)进行定量PCR 反应。

miRNA的Q-RT-PCR首先用miScript II RT Kitqigen(Qiagen,218161)对总RNA样本进行逆转录得到cDNA,然后用miScript SYBR Green PCR Kit (Qiagen,218073)进行定量PCR反应。均按说明书步骤操作。

在96孔板内每孔种1000个细胞。随后每天使用购自碧云天公司的Cell CountingKit-8试剂盒(简称CCK8,产品编号C0038),按说明书方法测定其中一组孔内的细胞活性。

用标准的胰蛋白酶Trypsin方法将目标细胞消化成悬液,加入台帕蓝区分死细胞,随后在显微镜下用血球计数板计数活细胞数量。

利用购自翊圣生物公司的Cell Senescenceβ-Galactosidase Staining Kit细胞衰老β-半乳糖苷酶染色试剂盒(40754ES60)。按说明书操作对目标细胞染色过夜。随后在显微镜下拍照。每组随机取9个视野,计算阳性细胞数与相对比例。

首先用4%多聚甲醛固定细胞。随后按标准细胞免疫荧光染色步骤进行染色分析。所用抗体为一抗:H3K9me3抗体(abcam,ab8898),二抗:Alexa

miRNA类似物为购自上海吉玛制药技术有限公司的miRNA mimic。由该公司基于来自sanger miRNA数据库(

细胞转染使用碧云天的Lipo8000

使用柱式动物组织/细胞总蛋白抽提试剂盒(雅酶,PC201)提取细胞蛋白,用BCA蛋白定量试剂盒(雅酶,ZJ101)进行定量。然后使用SDS-PAGE蛋白上样缓冲液(5×,雅酶,LT101)使蛋白变性。使用Omni-PAGE

将100ul的肿瘤细胞悬液注射到5周龄的裸鼠腋下皮下,每只小鼠注射1 ×10

实施例1:通过转基因手段过表达miR-302家族miRNA能够逆转正常人类细胞的衰老

在本实施例中,为了证明在细胞内过表达miR-302家族miRNA能够逆转人类细胞衰老,构建了能够在细胞内持续性过表达hsa-miR-302c-3p(简称 miR-302c-3p)的组成型慢病毒表达质粒plko1-SA-miR302c和plko1-SA-SCR。

将其包装成慢病毒后分别感染了传代衰老的人类成纤维细胞HFF-1,并通过嘌呤霉素(puromycin)药筛得到了稳转细胞株HFF1-302和HFF1-SCR。 Q-RT-PCR分析确认HFF1-302细胞中的miR-302c-3p表达水平相对于对照 HFF1-SCR细胞大幅度上调(图1A)。

与对照细胞相比,miR-302c-3p过表达细胞中的衰老现象出现了显著的逆转,具体表现为:衰老细胞标记物β-半乳糖苷酶

出乎意料的是,在这些HFF1-302细胞中并未检测到任何人多能干细胞标记蛋白OCT3/4和NANOG

实施例2

miR-302的抗衰老作用是快速生效且具有累积性效果

为了确定用miR-302c-3p逆转细胞衰老所需要的作用时间,构建了可被Dox 诱导的miR-302c-3p过表达慢病毒载体pTeton-SA-miR302c和对照载体 pTeton-SA-SCR。将它们包装成慢病毒并分别稳定感染HFF-1人成纤维细胞后药筛得到了对应的稳转细胞株HFF1-Ton302和HFF1-TonSCR。

Q-RT-PCR显示,在这些细胞中可以用Dox诱导实现严谨可控的 miR-302c-3p诱导过表达(图1F)。利用这些细胞获得的结果表明:miR-302c-3p 过表达在短至4天内即可产生对细胞衰老的显著逆转效果,这种效果会随着 miR-302c-3p过表达时间的延长而持续增强(图1G-H)。这些数据提示, miR-302c-3p的抗衰老作用是快速生效且具有累积性效果的。

实施例3

利用人工合成的miR-302家族miRNA类似物能够逆转人类细胞衰老。

进入临床应用的miRNA治疗药物通常以miRNA类似物(miRNA mimic)的形式出现。miRNA类似物是人工合成的,模拟成熟的目标miRNA或目标miRNA前体序列结构的核酸分子或核酸类似物分子。其作用机制是被细胞摄取后转化为细胞内的成熟目标miRNA或目标miRNA类似分子来发挥跟目标RNA相同或类似的作用。

在本实施例中,为了证明人工合成的miR-302家族miRNA类似物能够作为抗衰老药剂使用,使用纳米转染试剂将商业化的人工合成miR-302c-3p类似物或对照类似物转染进入了传代衰老的人类成纤维细胞HFF1中。

结果表明,与对照类似物相比,miR-302c-3p类似物转染显著逆转了细胞衰老。衰老细胞标记物β-半乳糖苷酶的染色阳性比例显著下降,同时年青细胞标记物H3K9me3的染色阳性比例显著上升(图2A),衰老标记基因P16的表达水平显著下降(图2B),细胞增殖能力显著增强(Fig2D)。同时,在一定浓度范围内,miR-302c-3p类似物的细胞衰老逆转效应表现出剂量依赖性(图2C),与典型的药物作用效果相似,这进一步提示了miR-302家族miRNA类似物的抗衰老药用潜力。

实施例4

miR-302的抗衰老作用不导致致癌风险的上升

之前有报道发现属于miR-302家族的miRNA miRNA-372和miRNA-373能够特异性抑制Ras基因突变体所导致的致癌基因诱导性细胞衰老 (Oncogene-Induced Senescence),并据此推断这类miRNA可能具有致癌性

在本实施例中,为了评估miR-302家族miRNA的潜在致癌性,通过双色荧光生长竞争实验(示意图见图3A),系统性评估了miR-302家族miRNA对各类人类肿瘤细胞生长的具体影响。

与上述文献报道截然不同的是,本发明的结果明确显示,miR-302家族 miRNA具有强烈的且广谱性的抗癌作用。它一方面可以显著促进衰老的人成纤维细胞生长,另一方面却强烈抑制了所测试的所有10种不同类型的人类肿瘤细胞的生长(图3B)。

对其中一种肿瘤细胞(Cal27)进行了裸鼠体内移植实验。结果显示, miR-302家族miRNA在动物体内同样能够强烈抑制肿瘤生长(图3C)。

因此,这些体外和体内实验结果表明,miR-302家族miRNA在人类细胞中是广谱性的抗癌因子,具有良好的安全性。这也进一步说明,miR-302逆转正常人类细胞衰老的功能显著不同于之前被报道的两种致癌性功能(促进多能向细胞重编程与阻滞致癌基因诱导性细胞衰老)。

实施例5miR-302能够有效拮抗人类内皮细胞衰老

在人类真皮(中胚层)的HFF-1细胞已证实了miR-302具有衰老拮抗作用。在本实施例中,进一步检验了这种抗衰老作用是否适用于不同的组织/细胞类型。选择了来自人类内皮组织(内胚层)的HUVEC细胞(人脐静脉血管内皮细胞) 为模型。使用内皮细胞生长培养基2型(PromoCell,C-22011)培养HUVEC(人脐静脉血管内皮细胞)。培养-传代-冻存均按标准步骤进行

5.1HUVEC细胞的衰老模型的建立

通过传代衰老法建立了HUVEC细胞的衰老模型。对早期代数的HUVEC细胞 (命名为HUVEC-Y)进行连续传代,到~26次细胞倍增(10

结果表明,与HUVEC-Y相比,HUVEC-O细胞表现出经典的细胞衰老表型,具体表现为:

1)衰老细胞标记物β-半乳糖苷酶和已知的衰老标记物PAI-1

2)年青细胞标记物H3K9me3的染色阳性比例显著下调(图4B);

3)细胞增殖标记物Ki67的染色阳性比例显著下调(图4B)。

这些数据说明HUVEC-O是一种成功的内皮细胞衰老模型。

5.2miR-302在HUVEC细胞中具有抗衰老作用

同样将plko1-SA-miR302c和对照plko1-SA-SCR慢病毒分别导入了HUVEC- 细胞,并药筛得到了稳转细胞株HUVEC-O-302和HUVEC-O-SCR。

结果表明,与对照细胞相比,miR-302c-3p过表达HUVEC-O细胞中的衰老现象出现了显著的逆转,具体表现为:1)衰老细胞标记物β-半乳糖苷酶和衰老标记物PAI-1的染色阳性比例显著下降(图5A);2)年青细胞标记物H3K9me3 的染色阳性比例显著上升(图5B);3)细胞增殖标记物Ki67的染色阳性比例显著上升(图5B)。

5.3miR-302家族miRNA类似物在内皮细胞中具有抗衰老作用

为了证明人工合成的miR-302家族miRNA类似物同样能够在内皮细胞中发挥抗衰老作用,同样将人工合成miR-302c-3p类似物(mimic-302)或对照类似物(mimic-SCR)转染进入了HUVEC-O细胞中。

与mimic-SCR对照相比,mimic-302转染显著逆转了内皮细胞衰老,具体表现为:

1)衰老细胞标记物β-半乳糖苷酶和已知的衰老标记物PAI-1的染色阳性比例显著下降(图5C);

2)年青细胞标记物H3K9me3的染色阳性比例显著上升(图5D);

3)细胞增殖标记物Ki67的染色阳性比例显著上升(图5D)。

实施例6miR-302的衰老拮抗作用高度依赖于其5’端种子序列

已知miRNA的功能普遍高度依赖于其5’端2-8nt的种子序列。为了确认 miR-302家族miRNA的衰老拮抗功能是否依赖于其5’端种子序列。在本实施例中,以hsa-miR-302c-3p(302c)为基础构建了一系列突变体miRNA(图6A)。

利用前面双色荧光细胞生长竞争实验技术,系统性测试了这些突变体 miRNA在传代衰老的HFF-1和HUVEC细胞中的潜在生长促进能力。方法如下:

双色荧光细胞生长竞争实验同实施例4。miR-302c突变体的表达通过构建 SAmiR表达载体plko1-SA-miRNA-iRFP的方法来实现。合成的具体SAmiR表达序列如下(所有序列左侧为5’端):

mut0:(表达mut0,黑体部分为对应mut0的DNA序列)

mut1:(表达mut1,黑体部分为对应mut1的DNA序列)

mut2:(表达mut2,黑体部分为对应mut2的DNA序列)

mut3:(表达mut3,黑体部分为对应mut3的DNA序列)

mut5:(表达mut5,黑体部分为对应mut5的DNA序列)

mut6:(表达mut6,黑体部分为对应mut6的DNA序列)

结果

如图6B,6C和6D所示,与scramble对照(SCR)相比,原始的302c在两种衰老细胞中均表现出显著的生长促进能力,正确反映了其衰老拮抗功能。

突变包括其整个种子序列的5’端2-9nt位置之后(mut0),这种衰老拮抗功能就完全消失了。仅突变其2-4nt位置三个碱基(mut6)或7-9nt位置三个碱基 (mut5),同样足以破坏其绝大部分衰老拮抗功能。突变其12nt-22nt位置的全部序列对其衰老拮抗功能没有显著影响(mut1)。而10nt-22nt(mut2)和 9nt-22nt(mut3)位置突变的效应具有细胞类型特异性,在HFF-1细胞中显著削弱了衰老拮抗功能,而在HUVEC细胞中的效果则不明显。

因此,上述结果确认了miR-302家族miRNA的衰老拮抗功能高度依赖于其 5’端种子序列,与经典的miRNA功能特征一致。

实施例7:利用miR-302增强外源细胞的体内移植能力和细胞治疗效果

已有研究显示通过在基因组中转入衰老拮抗蛋白表达基因的方法能够显著提高外源细胞在移植到动物体内的存活能力和细胞效果

基于miR-302的显著抗衰老能力,在本实施例中,提出预先导入miR-302 或其类似物是一种增强外源细胞的体内移植能力和细胞治疗效果的安全有效新技术。

一种方法包括步骤:在外源细胞移植入体内之前,首先用体外转染方法(如与实施例1-6中类似的方法),进行miR-302或其类似物转染,然后再将转染后的细胞移植到体内。必要时,可对效果进行评价。

以细胞治疗中常用的间充质干细胞(MSC)为例,技术有效性评价方法可包括:

1)荧光标记MSC,并转染miR-302或其类似物以及对照类似物,然后移植到体内并测量其存活时间和治疗效果。

2)用两种不同颜色的荧光标记分别标记MSC,并分别转染miR-302类似物或对照类似物,然后将两种不同颜色的MSC等量混合,注射到体内,观察两种颜色比例随时间的变化情况。

讨论

microRNA(miRNA)是一类约22nt的小RNA分子,主要在转录后步骤中调控其它基因的表达水平。miRNA的功能严重依赖于其5’端约8个核苷酸的种子序列。具有相同种子序列的不同miRNA集合被称为miRNA家族。属于同一家族的 miRNA一般被认为具有高度近似的功能

miR-302家族miRNA是一个以AAGUGCU为种子序列的保守miRNA家族,其序列特征可以归纳为具有5’端(N)AAGUGCU特征的16-28nt总长度的RNA分子 (其中N代表任意核苷酸,(N)代表1个或0个N),或其结构类似物。

内源的miR-302家族miRNA在人类和小鼠中均在多能干细胞中特异性高表达,而极少表达于成体组织/细胞中

之前的研究显示miR-302家族具有辅助体细胞多能向重编程的作用,它们在体细胞中的过表达能够显著促进由转录因子或其他miRNA介导的多能向重编程效率

在本发明中,通过转基因手段在细胞内过表达miR-302家族miRNA,能够显著逆转正常人类细胞的衰老,且无诱发多能向重编程的迹象,这说明miR-302 家族miRNA具有不依赖于多能向重编程过程的抗衰老作用。

同时,通过对大量不同类型和来源的人类肿瘤细胞进行体内外检测,结果明确显示miR-302家族miRNA具有强烈的且广谱性的抗癌功能,进一步说明这类miRNA在人类细胞中的作用是非致癌性的。

此外,结果还表明,人类细胞中导入人工合成的miR-302家族miRNA类似物也能够产生显著的衰老逆转作用。

因此,miR-302家族miRNA及其类似物是一类高效的且无导致多能向重编程与无致癌性的安全抗衰老药物,在人类衰老的预防/逆转,人类寿命延长,衰老相关人类疾病的治疗,人类细胞的体外传代衰老抵抗等方向中都有广泛的应用价值。

在本发明提及的所有文献都在本申请中引用作为参考,就如同每一篇文献被单独引用作为参考那样。此外应理解,在阅读了本发明的上述讲授内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。

参考文献

1.Shetty AK,Kodali M,Upadhya R et al.Emerging Anti-Aging Strategies -Scientific Basis and Efficacy.Aging Dis 2018;9:1165-1184.

2.Ocampo A,Reddy P,Martinez-Redondo P et al.In Vivo Amelioration ofAge-Associated Hallmarks by Partial Reprogramming.Cell 2016;167:1719-1733e1712.

3.Suh MR,Lee Y,Kim JY et al.Human embryonic stem cells express aunique set of microRNAs.Dev Biol 2004;270:488-498.

4.Judson RL,Babiarz JE,Venere M et al.Embryonic stem cell-specificmicroRNAs promote induced pluripotency.Nat Biotechnol 2009;27:459-461.

5.Anokye-Danso F,Trivedi CM,Juhr D et al.Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. CellStem Cell 2011;8:376-388.

6.Sandmaier SE,Telugu BP.MicroRNA-Mediated Reprogramming of SomaticCells into Induced Pluripotent Stem Cells.Methods Mol Biol 2015;1330:29-36.

7.Lin SL,Chang DC,Lin CH et al.Regulation of somatic cellreprogramming through inducible mir-302expression.Nucleic Acids Res 2011;39:1054-1065.

8.Ge Y,Zhang L,Nikolova M et al.Strand-specific in vivo screen ofcancer-associated miRNAs unveils a role for miR-21(*)in SCC progression. NatCell Biol 2016;18:111-121.

9.Debacq-Chainiaux F,Erusalimsky JD,Campisi J et al.Protocols todetect senescence-associated beta-galactosidase(SA-betagal)activity,abiomarker of senescent cells in culture and in vivo.Nat Protoc 2009;4: 1798-1806.

10.Liu B,Wang Z,Zhang L et al.Depleting the methyltransferase Suv39h1improves DNA repair and extends lifespan in a progeria mouse model. NatCommun 2013;4:1868.

11.Rodier F,Campisi J.Four faces of cellular senescence.J Cell Biol2011;192:547-556.

12.Surazynski A,Jarzabek K,Haczynski J et al.Differential effects ofestradiol and raloxifene on collagen biosynthesis in cultured human skinfibroblasts.Int J Mol Med 2003;12:803-809.

13.Affinito P,Palomba S,Sorrentino C et al.Effects of postmenopausalhypoestrogenism on skin collagen.Maturitas 1999;33:239-247.

14.Lin SL,Chang DC,Chang-Lin S et al.Mir-302reprograms human skincancer cells into a pluripotent ES-cell-like state.RNA 2008;14:2115-2124.

15.Voorhoeve PM,le Sage C,Schrier M et al.A genetic screen implicatesmiRNA-372and miRNA-373as oncogenes in testicular germ cell tumors.Cell 2006;124:1169-1181.

16.Zhao,W.,et al.,Endothelial CDS2 deficiency causes VEGFA-mediatedvascular regression and tumor inhibition.Cell Res,2019.29(11):p.895-910.

17.Douglas E.Vaughan et al,Plasminogen Activator Inhibitor-1Is aMarker and a Mediator of Senescence,Arteriosclerosis,Thrombosis,and VascularBiology.2017;37:1446–1452;

18.Koji Yamamoto et al,Plasminogen activator inhibitor-1is a majorstress-regulated gene:Implications for stress-induced thrombosis in agedindividuals,PNAS January 22,2002 99(2)890-895.

19.Yan,P.,et al.,FOXO3-Engineered Human ESC-Derived Vascular CellsPromote Vascular Protection and Regeneration.Cell Stem Cell,2019.24(3):p.447-461 e8 。

序列表

<110> 中国科学院上海生命科学研究院

<120> 一类小RNA分子及其类似物在抗衰老中的应用

<130> P2020-0180

<150> CN2019107918411

<151> 2019-08-26

<160> 11

<170> SIPOSequenceListing 1.0

<210> 1

<211> 22

<212> RNA

<213> 智人(Homo sapiens)

<400> 1

uaagugcuuc cauguuucag ug 22

<210> 2

<211> 22

<212> DNA

<213> 智人(Homo sapiens)

<400> 2

taagtgcttc catgtttcag tg 22

<210> 3

<211> 142

<212> DNA

<213> 人工序列(Artificial Sequence)

<400> 3

ccggctgtct caagaaagaa tgaaggaatc gtgttgcgct agcctcagta agtgcttcca 60

tgtttcagtg cttcctgtca gacactgaaa catggttgca ctatctgcgg cacgtgcctt 120

tgcatctcga caggaacttt tt 142

<210> 4

<211> 142

<212> DNA

<213> 人工序列(Artificial Sequence)

<400> 4

ccggctgtct caagaaagaa tgaaggaatc gtgttgcgct agcctcagca acaagatgaa 60

gagcaccaat cttcctgtca gaattggtgc tcttctactt gtatctgcgg cacgtgcctt 120

tgcatctcga caggaacttt tt 142

<210> 5

<211> 142

<212> DNA

<213> 人工序列()

<400> 5

ccggctgtct caagaaagaa tgaaggaatc gtgttgcgct agcctcagtt tcacgaacca 60

tgtttcagtg cttcctgtca gacactgaaa catggaacgt gattctgcgg cacgtgcctt 120

tgcatctcga caggaacttt tt 142

<210> 6

<211> 142

<212> DNA

<213> 人工序列()

<400> 6

ccggctgtct caagaaagaa tgaaggaatc gtgttgcgct agcctcagta agtgcttcct 60

acaaagtcac cttcctgtca gagtgacttt gtaggttgca ctatctgcgg cacgtgcctt 120

tgcatctcga caggaacttt tt 142

<210> 7

<211> 142

<212> DNA

<213> 人工序列()

<400> 7

ccggctgtct caagaaagaa tgaaggaatc gtgttgcgct agcctcagta agtgcttggt 60

acaaagtcac cttcctgtca gagtgacttt gtaccttgca ctatctgcgg cacgtgcctt 120

tgcatctcga caggaacttt tt 142

<210> 8

<211> 142

<212> DNA

<213> 人工序列()

<400> 8

ccggctgtct caagaaagaa tgaaggaatc gtgttgcgct agcctcagta agtgctaggt 60

acaaagtcac cttcctgtca gagtgacttt gttccttgca ctatctgcgg cacgtgcctt 120

tgcatctcga caggaacttt tt 142

<210> 9

<211> 142

<212> DNA

<213> 人工序列()

<400> 9

ccggctgtct caagaaagaa tgaaggaatc gtgttgcgct agcctcagta agtggaacca 60

tgtttcagtg cttcctgtca gacactgaaa catggaacca ctatctgcgg cacgtgcctt 120

tgcatctcga caggaacttt tt 142

<210> 10

<211> 142

<212> DNA

<213> 人工序列()

<400> 10

ccggctgtct caagaaagaa tgaaggaatc gtgttgcgct agcctcagtt tctgcttcca 60

tgtttcagtg cttcctgtca gacactgaaa catggttgca gattctgcgg cacgtgcctt 120

tgcatctcga caggaacttt tt 142

<210> 11

<211> 22

<212> RNA

<213> 人工序列()

<400> 11

uaagugcuuc cuacaaaguc ac 22

相关技术
  • 一类小RNA分子及其类似物在抗衰老中的应用
  • 一类阿片和神经肽FF受体多靶点分子BN-9的二硫键环化类似物及其制备方法与应用
技术分类

06120112413562