掌桥专利:专业的专利平台
掌桥专利
首页

用于电动车辆的使用三重有源桥的集成车载充电器和辅助功率模块

文献发布时间:2023-06-19 18:27:32


用于电动车辆的使用三重有源桥的集成车载充电器和辅助功率模块

相关申请的交叉引用

本申请要求2020年6月2日提交的美国临时申请63/033,246的权益,将该申请的公开内容通过引用以其整体并入。

技术领域

本发明涉及电动车辆的车载充电系统,并且特别是用于高压负载和低压负载的车载充电系统。

背景技术

功率电子器件是现代电动车辆(EV)的组成部分方面。功率电子器件将来自电源的能量变换成不同形式,用于各种电负载。例如,车载充电器(OBC)接受AC输入并将AC输入转换成高压DC输出(例如,400V)以给推进电池充电。同样作为示例,辅助功率模块(APM)将高压DC总线电压降低到低压DC总线(例如,12V ),以给非推进负载供电并给低压电池充电。OBC和APM通常是分离的单元,这产生高成本、大尺寸和冗余组件。

已做出各种努力将OBC与APM集成,使得它们共享同一冷却系统。例如,相移三端口转换器(PS-TPC)生成三个具有特定相位角的交流电压。功率流由每个端口的相位差控制。基本操作类似于功率网的功率流控制,尽管详细的拓扑可能有所不同,诸如图1中(参见,例如,S. Y. Kim,I. Jeong,K. Nam和H. S. Song的“Three-port full bridge converterapplication as a combined charger for PHEVs”(5th IEEE Vehicle Power andPropulsion Conference, VPPC ’09, 2009, pp. 461-465中))。主要挑战在于高电流应力。如果任何两个端口具有不匹配的电压,例如

为了适于EV应用,还引入了新的控制自由度。后调节是引入这种新的控制自由度的一种解决方案。如图2中所示,在两个端口处添加附加级来调节输出功率流(例如,参见Y.K. Tran和D. Dujic的“A multiport isolated DC-DC converter”(ConferenceProceedings - IEEE Applied Power Electronics Conference and Exposition -APEC, 2016, vol. 2016-May, pp. 156-162中);Y. K. Tran和D. Dujic的“A multiportmedium voltage isolated DC-DC converter”(IECON Proceedings, 2016, pp. 6983-6988中);Y. K. Tran,F. D. Freijedo和D. Dujic的“Multiport energy gateway”(IETElectr. Power Appl., vol. 13, no. 10, pp. 1524-1534, Oct. 2019中))。由于降压的宽占空比范围,该后调节类型具有良好的电压增益。此外,三端口LLC始终处于谐振,从而产生高效率,尽管电流应力现在转移到降压级亦如此。此外,该多级设计产生高成本。

因此,对包括集成OBC和APM的低成本功率转换系统仍有持续需求,以将AC输入转换为用于各种电动车辆负载——包括推进负载和非推进负载——的两个DC输出。

发明内容

提供了一种包括三重有源桥(TAB)的功率转换系统。该功率转换系统包括功率因数校正(PFC)模块和三端口转换器(TPC)模块,无需后调节或附加级。PFC模块提供整流和功率因数校正,并且TPC模块包括集成的OBC和APM,各自经由三绕组变压器电感耦合到PFC模块的输出。OBC和APM物理集成到公共外壳中。功率转换系统能够适应单相和三相AC输入两者,并且包括具有低电流应力的最少部件,从而实现低成本和高效率。功率转换系统是双向的,并且能够从任何端口之间自由地传输功率,这是现有技术系统中的显著缺点。当前实施例也能够用单个设计适应400V和800V电池情景。

在一个实施例中,PFC模块包括功率因数校正整流器。功率因数校正整流器适于将单相AC或三相AC转换成用于TPC模块的初级侧全桥的DC总线电压。初级侧全桥经由三绕组变压器电感耦合到OBC和APM,使得第一绕组电连接到初级侧电压馈送全桥,第二绕组电连接到OBC电流馈送全桥,并且第三绕组电连接到APM电流馈送全桥。OBC全桥适于将第二绕组的AC输出转换成用于高压电池的第一DC电压,并且APM全桥适于将第三绕组的AC输出转换成用于低压电池的第二DC电压,第一DC电压大于第二DC电压。

在另一个实施例中,OBC包括开关,用于在电流馈送高压输出和电压馈送低压输出之间交替高压端口。类似地,APM包括开关,用于在电流馈送高压输出和电压馈送低压输出之间交替低压端口。APM可以替代地包括附加输出端口、例如并联连接到APM全桥的电压馈送输出,结合现有的电流馈送低压输出端口。在该配置中,取决于电池负载,本发明可以用作车载充电器或车外充电器,用于满足不同的功率需求。

在这些和其他实施例中,TPC模块包括双输出DC-DC转换器,其能够同时对高压电池和低压电池充电。TPC模块也可以配置成双向的,来以最小的电流应力同时实现所有端口之间的能量自由流动。当根据附图和所附权利要求查看时,本发明的这些和其他特征和优点将从本发明的以下描述中变得清楚。

附图说明

图1是现有技术相移三端口转换器的电路图,其中输出功率流由每个端口的相位差控制。

图2是现有技术的两级谐振三端口转换器的电路图,在三个端口中的两个端口处具有附加级,以调节输出功率流。

图3是根据本发明一个实施例的用于将三相AC输入转换为用于高压电池和低压电池的相应第一和第二DC输出的功率转换系统的电路图。

图4是根据本发明一个实施例的用于将单相AC输入转换为用于高压电池和低压电池的相应第一和第二DC输出的系统的电路图。

图5包括用于单相AC输入的模拟波形,其实现近似250 VDC高压输出和10 VDC低压输出。

图6包括用于本发明功率转换系统的低压全桥的模拟波形。

图7是具有三端口模块的功率转换系统的电路图,该三端口模块在高压端口和低压端口中的每个处具有两种模式操作。

图8是具有四端口模块的功率转换系统的电路图,该四端口模块在一个高压端口和两个低压端口处具有两种模式操作。

具体实施方式

如本文所讨论的,本发明的功率转换系统包括使用三重有源桥(TAB)的集成车载充电器(OBC)和辅助功率模块(APM)(即,OBC和APM物理集成到同一外壳中)。为了提供TAB并且如图3-4中所示,功率转换系统10包括功率因数校正(PFC)模块12和具有三绕组变压器16的三端口转换器(TPC)模块14。PFC模块12为单相和三相操作提供整流和功率因数校正,并且TPC模块14将PFC模块12的DC输出转换成用于高压电池18的高压DC输出和用于低压电池20的低压DC输出。

更具体地,PFC模块12为单相AC输入和三相AC输入提供整流和功率因数校正。如图3-4中所示,PFC模块12包括PFC整流器22。PFC整流器22包括用于整流和功率因数校正的六开关升压转换器拓扑,但是在其他实施例中可以包括其他拓扑。由串联连接的Cp1和Cp2形成的滤波电容器并联连接在PFC整流器22和初级侧全桥24之间,以滤波和平滑掉DC总线轨26、28中的DC总线电压。在如图3中所示的三相操作中,PFC整流器22将三相AC输入的每一相转换成DC电流。在如图4中所示的单相操作中,PFC整流器22的前三个支路(Q1-Q6)形成交错电路,并且最后一个支路(Q7-Q8)被重新配置为承载中性电流。为了克服DC总线电压上的二次谐波(跨滤波电容器Cp1和Cp2),PFC模块12包括小的联接电容,从而在DC总线电压上产生高振荡。

还如图3-4中所示,TPC模块14包括三绕组变压器16,具有第一绕组30、第二绕组32和第三绕组34。三绕组变压器16将初级侧全桥24的AC输出与OBC电流馈送全桥36的AC输入和APM电流馈送全桥38的AC输入耦合。OBC连接到第二变压器绕组32,并且包括谐振电感器(LSI)和全桥36。APM电连接到第三变压器绕组34,并且还包括谐振电感器(LS2)和全桥38。在三绕组变压器的电压馈送初级侧处,TPC模块14包括上面讨论的电压馈送全桥拓扑24,使得电压馈送全桥24、OBC电流馈送全桥36和APM电流馈送全桥38形成三重有源桥。因此,TPC模块14的高压部分(OBC)耦合到向推进系统供应功率的高压电池18,而TPC模块14的低压部分(APM)耦合到向辅助负载供应低压功率的低压电池20。例如,图5包括用于单相AC输入的模拟波形,其实现近似250VDC高压输出和10 VDC低压输出。

如上面指出的,PFC模块12包括PFC整流器22,其向初级侧全桥24提供经调节的电压,而OBC全桥36为电流馈送并且APM全桥38为电流馈送。为了提供经调节的DC总线电压,控制器提供作为电压源逆变器的开关Q1-Q8的开环前馈控制。当向次级侧的APM全桥38分配适当的占空比时,可以使PFC侧DC总线电压与V

还如图3-4中所示,TPC模块14包括低通滤波器,该低通滤波器包括连接在车载充电器全桥36和高压电池18的第一输出端口之间的第一和第二电感器Lo1、Lo2以及滤波电容器Col、Co2。TPC模块14还包括低通滤波器,该低通滤波器包括连接在辅助功率模块全桥38和低压电池20的第二输出端口之间的平滑电感器Lo3、Lo4和滤波电容器。电感器Lo1、Lo2耦合在相应全桥36、38的分支和相应输出端口之间,并且电感器Lo1、Lo2使对应箝位电容器Chv、Clv处的电压升压,从而提供相同的功率输出,但是在较低电压下。高压箝位电容器Chv并联连接到车载充电器全桥36,并且低压箝位电容器Clv并联连接到辅助模块全桥38。

如图7中可选地示出的,TPC模块14可以包括第一开关40以向第一输出提供多种操作状态以及第二开关42以向第二输出提供多种操作状态。例如,第一开关40可以在400V和800V之间变化第一输出端口,并且第二开关42可以在12V和48V之间变化第二输出端口。更具体地,第一开关40是具有第一位置S1和第二位置S2的双掷开关。在第一位置S1中,高压电池18连接到电流馈送端口(经由耦合的电感器Lo1、Lo2)。在第二位置S2中,箝位电容器Chv直接连接到高压电池18,从而提供具有较高电压和较低电流的电压馈送端口。在该位置中,耦合电感器Lo1、Lo2是寄生负载,其可以可选地用于测量和校正DC偏置。类似地,第二开关42是具有第一位置S3和第二位置S4的双掷开关。在第一位置S3中,低压电池20连接到电流馈送端口(经由耦合电感器Lo3、Lo4)。在第二位置S4中,箝位电容器Clv直接连接到低压电池20,从而提供具有较高电压和较低电流的电压馈送端口。如图8中进一步所示,TPC模块14包括与12V端口同时操作的附加48V端口。特别地,添加的端口44并联连接到低压箝位电容器Clv,并且因此被电压馈送,而现有的12V端口被电流馈送。添加的端口44被示为与低压全桥38相结合,然而,添加的端口44可以取而代之被添加到高压全桥36,进一步可选地作为车载充电器或者作为车外充电器,以满足不同的充电需求。

以上描述为本发明当前实施例的描述。在不脱离本发明的精神和更广泛的方面的情况下,可以进行各种变更和改变。本公开是为了说明的目的而呈现的,并且不应该被解释为对本发明的所有实施例的详尽描述,或者将权利要求的范围限制到结合这些实施例说明或描述的特定元件。对元件以单数形式的任何引用(例如使用冠词“一”、“一个”、“该”或“所述”)不应被解释为将该元件限制为单数。

相关技术
  • 电动汽车使用的电机控制器八桥臂集成封装功率模块
  • 电动汽车使用的电机控制器八桥臂集成封装功率模块
技术分类

06120115572951