掌桥专利:专业的专利平台
掌桥专利
首页

技术领域

本发明属于物理信息深度学习、土壤水热计算技术领域,具体涉及水热耦合的土壤水深度学习方法和土壤水热运移监测系统。

背景技术

土壤水分状况在水文模拟、水资源管理、气候预测和旱涝灾害监测中起着至关重要的作用。土壤温度是生态环境中的另一个重要因素,对作物生长和土壤微生物活性有很大影响。对土壤水分、温度及其分布状态进行精准的模拟和预测对于生态环境修复和农业水土资源高效利用具有重要的应用价值。在传统模拟中,基于物理过程的方程是主要工具,土壤水分过程用Richardson-Richards(RRE)方程描述,而非饱和土壤热传递可用对流色散形式的方程进行描述。然而物理方程存在着参数多、求解困难以及难以应用于复杂环境的问题,传统水热运移模型多以有限差分法进行数值模拟,此类模型往往需要已有的实验数据对模型参数进行优化与调整。但由于已知边界条件的误差,模拟结果往往存在着一定的误差。此外,土壤参数关系在实际环境中测量困难,这也是传统模型难以准确估计的,亟需效率更高、适用性更强的方法应对这类问题。

发明内容

本发明是为了解决上述问题而进行的,目的在于提供水热耦合的土壤水深度学习方法和土壤水热运移监测系统,能够在考虑土壤水热耦合作用的基础上,为数据驱动的土壤物理信息预测提供更具解释性和普适性的解决方案。

为了实现以上目的,本发明采用了以下方案:

<方法>

本发明提供水热耦合的土壤水深度学习方法,其特征在于,包括以下步骤:

步骤1,土壤水与土壤温度固定深度的时间序列数据获取;

步骤2,基于土壤水动力学及本构关系构建土壤水状态网络与参数子网络;

土壤水神经网络包括一个近似土壤基质势时空状态的网络

式中,W与B表示待训练的网络参数,右下角的角标表示参数所属的神经网络;t表示时间;z表示土壤深度;

步骤3,针对土壤热运移过程构建土壤温度状态网络与热导率子网络;

采用近似土壤温度时空状态的网络

步骤4,训练步骤2中的土壤水神经网络,得到土壤水与通量时空分布;

步骤5,联合步骤4土壤水网络的输出耦合训练土壤温度状态网络与参数子网络,得到温度时空分布,并无监督反演出热导率关系或强非线性的导水率关系。

优选地,本发明提供的水热耦合的土壤水深度学习方法,还可以具有这样的特征:在步骤4中,根据Richardson-Richards方程与时间序列的含水率测量数据设定损失函数,训练步骤2中的土壤水神经网络;损失函数为:

式中,

通过训练,时空域上的含水率与土壤水通量能够由该组土壤水神经网络得到:

优选地,本发明提供的水热耦合的土壤水深度学习方法,还可以具有这样的特征:步骤5采用如下子步骤反演土壤水热参数,顺序训练;

步骤5-1、无监督反演土壤热导率;

根据土壤热运移方程与温度测量数据设定损失函数训练步骤3中的土壤热神经网络,完成时空域上温度分布的学习以及土壤热导率的反演:

式中,

用该损失函数训练土壤温度状态网络与热导率参数子网络,得到土壤温度时空分布,并无监督反演热导率;

步骤5-2、无监督反演土壤导水率强非线性端:

根据土壤水热耦合约束设定损失函数训练步骤2中的土壤导水率参数子网络与步骤3中的土壤热神经网络,完成非线性较强的导水率的无监督反演,从而提高对土壤水通量的估计精度;损失函数的设定如下:

式中,

用该损失函数训练土壤温度状态网络与导水率参数子网络,得到土壤温度时空分布,并无监督反演具有强非线性的导水率湿润端。

优选地,本发明提供的水热耦合的土壤水深度学习方法,还可以具有这样的特征:在步骤5-2中,γ

式中,

<系统>

进一步,本发明还提供了土壤水热运移监测系统,其特征在于,包括:

数据获取部,获取土壤水与土壤温度固定深度的时间序列数据;

土壤水网络构建部,基于土壤水动力学及本构关系构建土壤水状态网络与参数子网络;土壤水神经网络包括一个近似土壤基质势时空状态的网络

式中,W与B表示待训练的网络参数,右下角的角标表示参数所属的神经网络;t表示时间;z表示土壤深度;

土壤温度网络构建部,针对土壤热运移过程构建土壤温度状态网络与热导率子网络;采用近似土壤温度时空状态的网络

土壤水与通量时空分布获取部,训练土壤水网络构建部构建的土壤水神经网络,得到土壤水与通量时空分布;

温度时空分布获取部,联合分布情况获取部中土壤水网络的输出耦合训练土壤温度状态网络与参数子网络,得到温度时空分布,并无监督反演出热导率关系或强非线性的导水率关系;

控制部,与数据获取部、土壤水网络构建部、土壤温度网络构建部、土壤水与通量时空分布获取部、温度时空分布获取部均通信相连,控制它们的运行。

优选地,本发明提供的土壤水热运移监测系统,还可以包括:输入显示部,与控制部均通信相连,用于让用户输入操作指令,并进行相应显示。

优选地,本发明提供的土壤水热运移监测系统,还可以具有这样的特征:输入显示部能够根据相应的操作指令,对数据获取部获取的数据进行显示,对土壤水网络构建部构建的土壤水状态网络与参数子网络进行显示,对土壤温度网络构建部构建的土壤温度状态网络与热导率子网络进行显示,对土壤水与通量时空分布获取部得到的土壤水与通量时空分布情况进行显示,对温度时空分布获取部得到的温度时空分布与热导率关系或强非线性的导水率关系进行显示。

优选地,本发明提供的土壤水热运移监测系统,还可以具有这样的特征:在土壤水与通量时空分布获取部中,根据Richardson-Richards方程与时间序列的含水率测量数据设定损失函数,训练土壤水网络构建部中的土壤水神经网络;损失函数为:

式中,

通过训练,时空域上的含水率与土壤水通量能够由该组土壤水神经网络得到:

优选地,本发明提供的土壤水热运移监测系统,还可以具有这样的特征:温度时空分布获取部采用如下步骤5-1~5-2反演土壤水热参数;

步骤5-1、无监督反演土壤热导率;

根据土壤热运移方程与温度测量数据设定损失函数训练步骤3中的土壤热神经网络,进行时空域上温度分布的学习以及土壤热导率的反演:

式中,

用该损失函数训练土壤温度状态网络与热导率参数子网络,得到土壤温度时空分布,并无监督反演热导率;

步骤5-2、无监督反演土壤导水率强非线性端:

根据土壤水热耦合约束设定损失函数训练步骤2中的土壤导水率参数子网络与步骤3中的土壤热神经网络,完成非线性较强的导水率的无监督反演;损失函数的设定如下:

式中,

用该损失函数训练土壤温度状态网络与导水率参数子网络,得到土壤温度时空分布,并无监督反演具有强非线性的导水率湿润端。

优选地,本发明提供的土壤水热运移监测系统,还可以具有这样的特征:在步骤5-2中,γ

式中,

发明的作用与效果

与现有技术相比,本发明所提供的水热耦合的土壤水深度学习方法和土壤水热运移监测系统具有如下优点:

(1)本发明通过设计水热状态主干网络与参数子网络的架构完成土壤水热系统的模拟,并基于此架构提出两种顺序训练方法,完成土壤水热信息互补,在物理信息神经网络技术中实现了土壤水热运移过程的耦合,应对复杂的土壤监测环境具有更好的适用性;

(2)本发明避免了传统模型求解过程中参数过多、求解过程复杂等问题,不需要复杂的参数关系作为先验条件,不需要已知边界条件与土壤参数关系,仅需要固定深度土壤水分与温度的时序数据,就能够精确模拟土壤水分温度分布状态。并且,本发明同时完成了土壤水热的正演(时空上的水热动态学习)和反演问题(对相关水热参数进行了无监督反演)。

(3)相比于直接对土壤水热运移物理方程求解,本发明提出的水热计算的深度学习框架训练易收敛,能够获得更好的时空含水率与温度的正演结果。

(4)本发明在无监督的情况下准确反演土壤导热率与具有强非线性的土壤导水率(土壤热导率和土壤导水率的非线性恢复),实现土壤水通量的精确估计。

综上,本发明在考虑土壤水热耦合作用的基础上,为数据驱动的土壤物理信息预测提供了更具解释性和普适性的解决方案。

附图说明

图1为本发明实施例涉及的方法原理图;

图2为本发明实施例构建的用于计算土壤水热运移的多物理信息神经网络的结构示意图;

图3为本发明实施例涉及的土壤水神经网络含水率和水通量密度随观测深度数量变化的相对误差图;

图4为本发明实施例涉及的温度在时空域与剖面上的正演结果与传统的DNN方法的对比示意图;

图5为本发明实施例涉及的无监督重构的热导率与真值的对比图;其中,(a)、(b)、(c)分别为粘土、壤土和砂壤土下训练数据含水率直方图;(d)、(e)、(f)分别粘土、壤土和砂壤土下本发明估计的热导率与真实热导率的对比;

图6为本发明实施例涉及的利用RRE约束与土壤水热耦合约束下无监督恢复的土壤导水率关系的对比图;其中,(a)、(b)、(c)分别为粘土,壤土和砂壤土下训练数据含水率直方图;(d)、(e)、(f)分别粘土、壤土和砂壤土下本发明重构的导水率与真实土壤导水率的对比;

图7为本发明实施例涉及的利用RRE约束与土壤水热耦合约束下的对时空域上土壤水通量的计算结果对比图;其中,(a)、(b)、(c)分别表示在-1、-9、-17厘米深度处仅利用RRE约束的土壤水通量估计结果;(d)、(e)、(f)表示在-1、-9、-17厘米深度处同时利用水热约束的土壤水通量估计结果。

具体实施方式

以下结合附图对本发明涉及的水热耦合的土壤水深度学习方法(深度学习框架下的土壤水热耦合运移计算方法)和土壤水热运移监测系统的具体实施方案进行详细地说明。

<实施例>

如图1所示,本发明实施例采用的水热耦合的土壤水深度学习方法包括如下步骤:

步骤1,首先获取观测数据,即固定深度的连续时间的土壤含水率观测数据与土壤温度数据。主要采集地表20cm的观测数据,土壤含水率测量采集三个深度(1厘米,9厘米,17厘米处);土壤温度主要采集五组(即深度为1厘米,5厘米,9厘米,13厘米,17厘米处)或四组(深度为1厘米,7厘米,13厘米,19厘米处)。

步骤2,基于土壤水动力学系统构建土壤水状态网络与参数子网络,如图2所示。土壤水神经网络由一个近似土壤基质势时空状态的网络

式中,W与B代表待训练的网络参数,右下角的角标代表参数所属的神经网络;t代表时间;z是土壤深度。

步骤3,针对土壤热运移过程构造土壤温度状态网络与热导率子网络,如图2所示。土壤温度由一个近似土壤温度时空状态的网络

步骤4,训练步骤2中的土壤水神经网络,得到土壤水与通量时空分布。

根据Richardson-Richards方程与时间序列的含水率测量数据设定损失函数训练步骤2中的土壤水神经网络:

其中:

式中,

通过训练,时空域上的含水率与土壤水通量能够由该组土壤水神经网络得到:

在网络训练过程中,对于优化器,采用Adam方法进行初级训练,并采用L-BFGS-B(Byrd等人,1995)对每个训练过程的结果进行微调。Adam优化器衰减率设为0.99,衰减步长设为500,为其设置了至少100000步以确保稳定的结果。L-BFGS-B的超参数maxiter、maxfun、maxcor、maxls和ftol分别设置为50000、50000、50、50和2.220446049250313×10

步骤5,联合步骤4土壤水网络的输出耦合训练土壤温度状态网络与参数子网络,得到温度时空分布,并无监督反演出热导率关系或强非线性的导水率关系。步骤5中的反演土壤水热参数,采用顺序训练,其运用包含以下几个子步骤:

步骤5-1、无监督反演土壤热导率:

根据土壤热运移方程与温度测量数据设定损失函数训练步骤3中的土壤热神经网络,完成时空域上温度分布的学习以及土壤热导率的反演:

其中,

式中,

图4为本发明实施例温度在时空域与剖面上的正演结果与传统的DNN方法的对比示意图。图5为本发明实施例无监督重构的热导率与真值的对比示意图,其中图5(a)、(b)、(c)分别为粘土、壤土和砂壤土下训练数据含水率直方图;图5(d)、(e)、(f)分别粘土、壤土和砂壤土下本发明估计的热导率与真实热导率的对比。结果表明,在本发明的水热耦合深度学习框架中,土壤温度状态能够得到很好的学习,同时无监督反演的土壤热导率精度较高。

步骤5-2、无监督反演土壤导水率强非线性端:

根据土壤水热耦合约束设定损失函数训练步骤2中的土壤导水率参数子网络与步骤3中的土壤热神经网络,完成非线性较强的导水率的无监督反演,从而提高对土壤水通量的估计精度。损失函数的设定如下:

其中,

式中,

在步骤5-2中引入自适应权重系数是为了平衡水热方程在神经网络上的约束作用。γ

式中,

图6为本发明实施例在利用RRE约束与土壤水热耦合约束下无监督恢复的土壤导水率关系的对比示意图,其中图6(a)、(b)、(c)分别为粘土、壤土和砂壤土下训练数据含水率直方图;图6(d)、(e)、(f)分别粘土、壤土和砂壤土下本发明重构的导水率与真实土壤导水率的对比。图7为本发明实施例在利用RRE约束与土壤水热耦合约束下的对时空域上土壤水通量的计算结果对比示意图,其中图7(a)、(b)、(c)表示在-1、-9、-17厘米深度处仅利用RRE约束的土壤水通量估计结果;图7(d)、(e)、(f)表示在-1、-9、-17厘米深度处同时利用水热约束的土壤水通量估计结果。结果表明,土壤水热耦合约束有助于无监督反演非线性强的土壤导水率。基于精确的土壤导水率的恢复,时空上的土壤水通量的估计精度也大幅上升。

以上不同的测试结果体现了本发明的主要特征与优点。与现有技术模拟水热耦合的模型相比,本发明不需要知道边界条件,也无需利用实验数据对模型调参,仅利用固定深度土壤水分与土壤温度时间序列数据就能够精确拟合时空域上的土壤水分状态,并能无监督反演土壤参数本构关系与土壤热导率。基于此,土壤水分通量能够被有效地估计。本发明有效避免了现有模型求解时所需要的复杂参数关系,求解条件简单,同时又具有较好的可解释性。

进一步,本实施例还提供了能够自动实现上述本发明方法的土壤水热运移监测系统,该系统包括数据获取部、土壤水网络构建部、土壤温度网络构建部、土壤水与通量时空分布获取部、温度时空分布获取部、输入显示部以及控制部。

数据获取部执行上文步骤1所描述的内容,获取土壤水与土壤温度固定深度的时间序列数据。

土壤水网络构建部执行上文步骤2所描述的内容,基于土壤水动力学及本构关系构建土壤水状态网络与参数子网络。

土壤温度网络构建部执行上文步骤3所描述的内容,针对土壤热运移过程构建土壤温度状态网络与热导率子网络。

土壤水与通量时空分布获取部执行上文步骤4所描述的内容,得到土壤水与通量时空分布。

温度时空分布获取部执行上文步骤5所描述的内容,得到温度时空分布,并无监督反演出热导率关系或强非线性的导水率关系。

输入显示部与控制部均通信相连,用于让用户输入操作指令,并进行相应显示。例如,输入显示部能够根据相应的操作指令,对数据获取部获取的数据进行显示,对土壤水网络构建部构建的土壤水状态网络与参数子网络进行显示,对土壤温度网络构建部构建的土壤温度状态网络与热导率子网络进行显示,对土壤水与通量时空分布获取部得到的土壤水与通量时空分布情况进行显示,对温度时空分布获取部得到的温度时空分布与热导率关系或强非线性的导水率关系进行显示。具体显示方式可以为文字(含数据)、列表、静态趋势图或者动态变化过程示意图。

控制部与数据获取部、土壤水网络构建部、土壤温度网络构建部、土壤水与通量时空分布获取部、温度时空分布获取部、输入显示部均通信相连,控制它们的运行。

以上实施例仅仅是对本发明技术方案所做的举例说明。本发明所涉及的水热耦合的土壤水深度学习方法和土壤水热运移监测系统并不仅仅限定于在以上实施例中所描述的内容,而是以权利要求所限定的范围为准。本发明所属领域技术人员在该实施例的基础上所做的任何修改或补充或等效替换,都在本发明的权利要求所要求保护的范围内。

相关技术
  • 一种土壤水热耦合运移试验装置
  • 一种土壤水热耦合运移试验装置及方法
技术分类

06120115586545