掌桥专利:专业的专利平台
掌桥专利
首页

一种低损耗低磁致伸缩取向硅钢材料及其制备方法

文献发布时间:2023-06-19 16:09:34



技术领域

本发明涉及硅钢材料技术领域,具体涉及一种低损耗低磁致伸缩取向硅钢材料及其制备方法。

背景技术

取向硅钢是指含有3wt%Si,厚度为0.18-0.30mm的铁硅合金材料,沿着轧制方向具有易磁化的强Goss织构,主要用于制作变压器铁心。取向硅钢在工频50Hz条件下,具有优异的磁性能,如0.23mm取向硅钢的损耗P

超薄取向硅钢是指厚度≤0.1mm的铁硅合金带材,用于制作阳极饱和电抗器、扼流线圈、中频变压器等器件的铁心。超薄硅钢在400Hz中频条件下,具有优异的磁性能,中频损耗P

磁滞伸缩是取向硅钢及超薄硅钢带材的重要性能指标之一,其产生原理主要由于材料内部90°磁畴在磁化过程中转动和数量的变化所导致,目前降低取向硅钢带材磁致伸缩噪声的方法主要有提高Goss织构取向度、提高涂层张力、减薄钢板厚度、降低残余应力等。近年来,随着技术的提升,取向硅钢二次再结晶Goss晶粒偏差角降低到3-5°范围内,接近极限值,很难继续降低Goss晶粒偏差角。残余应力是带材加工过程中不可避免的,在应用过程中很难完全去除应力。

由上所述,取向硅钢仅适用于工频50Hz条件下,而超薄取向硅钢仅适用于中频400Hz条件下,两种带材均无法同时适用于工频和中频条件下。同时由于带材表面张应力涂层厚度薄,导致磁滞伸缩水平高。

发明内容

因此,本发明要解决的技术问题在于克服现有取向硅钢无法兼顾工频和中频,同时磁滞伸缩水平高的缺陷,从而提供一种低损耗低磁致伸缩取向硅钢材料及其制备方法。

为此,本发明提供了一种低损耗低磁致伸缩取向硅钢材料的制备方法,包括如下步骤:

S1:选取取向硅钢带;

S2:对取向硅钢带进行至少一次冷轧;

S3:对冷轧后的取向硅钢带进行再结晶退火;

S4:在退火后的取向硅钢带表面涂覆氧化镁涂层,然后二次退火;

S5:在二次退火后的取向硅钢带表面涂覆张应力涂层,然后烧结;

S6:细化磁畴,得到所述低损耗低磁致伸缩取向硅钢材料;

步骤S2中所述冷轧总压下率为15%-25%。

进一步地,所述步骤S2中,冷轧时,轧制辊的前张应力为15-20KN,轧制辊的后张应力为10-15KN,总轧制力10-15T。

所述步骤S1中,选取的取向硅钢带厚度0.18mm-0.20mm,带材宽度为200mm-350mm。

所述步骤S3中,退火温度为750-800℃,升温到退火温度后,保持5-10min,退火气氛为潮湿的H

所述步骤S4中,涂覆氧化镁的厚度为0.5-1.5μm,涂覆辊两端张力控制在2-5KN,涂覆辊压力0.5-2T;

二次退火的退火温度为1000-1050℃、退火气氛为纯H

所述步骤S5中,涂覆张应力层的厚度为2-3μm,涂覆辊两端张力控制在1-3KN,涂覆辊压力0.5-2T;

烧结温度800-900℃,时间30-60s。

所述步骤S6中,细化磁畴为通过激光照射、等离子喷射或机械刻痕,减小磁畴宽度。

优选地,所述细化磁畴采用激光照射,所述激光电流10-15A,激光频率3000-4500Hz,刻痕速率700-1000mm/s。

本发明还提供一种低损耗低磁致伸缩取向硅钢材料,由上述制备方法制得。

本发明技术方案,具有如下优点:

1.本发明提供的低损耗低磁致伸缩取向硅钢材料制备方法,通过在冷轧过程中,保证辊轧机将取向硅钢带材通过至少一次冷轧获得冷轧带材,并保证冷轧控制总压下率为≤25%,远低于超薄取向硅钢的60%~80%冷轧总压下率,从而保证冷轧仅在带材表层发生形变,沿着厚度方向的次表层、中心层区域仍保留着原始的Goss组织,再结晶退火时仅在带材表面形成一层细小的杂取向晶粒组织,而次表层和中心仍保留着原始态Goss大晶粒组织,从而保证后续二次退火过程中保留的Goss晶粒具有足够大的尺寸优势和表面能优势吞噬表面的细小组织,再次获得完整单一的Goss组织,使得得到的材料磁感高、损耗低。

2.本发明通过对原始母材的选择以及压下率的控制,最终获得的带材厚度控制在0.135-0.17mm范围内,避免了由于厚度薄(≤0.1mm)导致的板型控制难题,减少了带材出现边裂、褶皱、断带的现象。

3.传统取向硅钢材料二次退火时,由于内部的结构问题,必须限制退火的升温速度,一般为10-20℃/h;而本发明提供的低损耗低磁致伸缩取向硅钢材料制备方法中,由于在二次退火时保留的Goss晶粒具有足够大的尺寸,可以采用中温退火技术,升温速度快,退火保温时间短,大幅提供生产效率,同时节约大量能源。

4.本发明提供的低损耗低磁致伸缩取向硅钢材料制备方法,在不改变带材表面涂层总厚度(硅酸镁底层+张应力涂层)的前提下,通过控制涂覆张应力和涂覆压力,合理的调整氧化镁和张应力涂层的厚度结构,降低硅酸镁底层厚度,提高张应力涂层厚度,从而提高涂层张力降低带材磁致伸缩水平。

5.本发明制备得到的低损耗低磁致伸缩取向硅钢材料同时适用于工频和中频条件,且在两种频率条件下带材均能保持低磁致伸缩水平。制备方法操作简单,可以有效降低成本和能源消耗,满足企业高效率、低碳排放的生产需求。

具体实施方式

下面对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

本申请中采用的张应力涂层为中国专利文献CN110229549A中的涂层,涂层主要成分为磷酸二氢镁,硅溶胶,铬酸酐,乙烯双(氧乙烯基)双[3-(叔丁基-4-羟基-间甲苯基)丙酸酯]、双[3-(3,5-二叔丁基-4-羟基)苯基]丙酸三甘醇酯、丁基辛基二苯胺、高分子酚酯中的一种或几种,氰基乙酰氧乙基甲基丙烯酸酯、羟甲基双丙酮丙烯酰胺、水性醇酸树脂乳液中的一种或几种,具体采用该专利实施例1中的配比和制备方法。

实施例1

本实施例提供一种低损耗低磁致伸缩取向硅钢材料,具体制备方法如下:

材料选取:纵剪厚度为0.18mm、宽度350mm取向硅钢带材,牌号为宝钢B18R065;

酸洗:将上述硅钢带材送至酸洗槽中进行酸洗,酸洗槽中为浓度5wt%的盐酸水溶液,酸洗槽中设置有加热片,保证酸洗的温度为75℃,酸洗时间为10min,得到无底层的取向硅钢带材;

冷轧:通过二十辊轧机经过一次冷轧工序,其中,

压下率为25%,总轧制力为15T,轧制辊的前张应力20KN,轧制辊的后张应力15KN,最终冷轧得到厚度0.135mm;

再结晶退火:在潮湿的H

涂覆氧化镁:涂覆辊两端张力2KN,涂覆辊压力2T,涂层厚度约1.5μm;

中温退火:将涂覆氧化镁的带材送入罩式退火炉中进行退火处理,退火气氛为纯氢气,以200℃/h的升温速率升温至1000℃,保温6h,冷却至室温,向罩式退火炉中通入氮气排出炉内氢气,取出退火后的硅钢带材;

涂覆张应力涂层:涂覆辊两端张力3KN,涂覆辊压力0.5T,烧结温度800℃,时间60s,涂层厚度约3μm;

细化磁畴:涂覆绝缘涂层后,采用激光照射进行细化磁畴处理,所述激光电流10A,激光频率3000Hz,刻痕速率1000mm/s,得到低损耗低磁致伸缩取向硅钢材料。

实施例2

本实施例提供一种低损耗低磁致伸缩取向硅钢材料,具体制备方法如下:

材料选取:纵剪厚度为0.18mm、宽度200mm取向硅钢带材,牌号为宝钢B18R065;

酸洗:将上述硅钢带材送至酸洗槽中进行酸洗,酸洗槽中为浓度25wt%的盐酸水溶液,酸洗槽中设置有加热片,保证酸洗的温度为100℃,酸洗时间为5min,得到无底层的取向硅钢带材;

冷轧:通过二十辊轧机经过一次冷轧工序,其中,

压下率为20%,总轧制力为10T,轧制辊的前张应力15KN,轧制辊的后张应力10KN,最终冷轧得到厚度0.144mm;

再结晶退火:在潮湿的H

涂覆氧化镁:涂覆辊两端张力为5KN,涂覆辊压力0.5T,涂层厚度约0.5μm;

中温退火:将涂覆氧化镁的带材送入罩式退火炉中进行退火处理,退火气氛为纯氢气,以400℃/h的升温速率升温至1050℃,保温2h,冷却至室温,向罩式退火炉中通入氮气排出炉内氢气,取出退火后的硅钢带材;

涂覆张应力涂层:涂覆辊两端张力1KN,涂覆辊压力1T,烧结温度900℃,时间30s,涂层厚度2.8μm;

细化磁畴:涂覆绝缘涂层后,采用激光照射进行细化磁畴处理,所述激光电流10A,激光频率3000Hz,刻痕速率1000mm/s,得到低损耗低磁致伸缩取向硅钢材料。

实施例3

本实施例提供一种低损耗低磁致伸缩取向硅钢材料,具体制备方法如下:

材料选取:纵剪厚度为0.2mm、宽度200mm取向硅钢带材,牌号为宝钢B18R065;

酸洗:将上述硅钢带材送至酸洗槽中进行酸洗,酸洗槽中为浓度20wt%的盐酸水溶液,酸洗槽中设置有加热片,保证酸洗的温度为80℃,酸洗时间为10min,得到无底层的取向硅钢带材;

冷轧:通过二十辊轧机经过一次冷轧工序,其中,

压下率为25%,总轧制力为15T,轧制辊的前张应力20KN,轧制辊的后张应力15KN,最终冷轧得到厚度0.150mm;

再结晶退火:在潮湿的H

涂覆氧化镁:涂覆辊两端张力为3.5KN,涂覆辊压力1.5T,涂层厚度约1.3μm;

中温退火:将涂覆氧化镁的带材送入罩式退火炉中进行退火处理,退火气氛为纯氢气,以400℃/h的升温速率升温至1050℃,保温6h,冷却至室温,向罩式退火炉中通入氮气排出炉内氢气,取出退火后的硅钢带材;

涂覆张应力涂层:涂覆辊两端张力控制在2KN,涂覆辊压力0.5T,烧结温度850℃,时间30s,涂层厚度约2.6μm;

细化磁畴:涂覆绝缘涂层后,采用激光照射进行细化磁畴处理,所述激光电流10A,激光频率3000Hz,刻痕速率1000mm/s,得到低损耗低磁致伸缩取向硅钢材料。

实施例4

本实施例提供一种低损耗低磁致伸缩取向硅钢材料,具体制备方法如下:

材料选取:纵剪厚度为0.18mm、宽度300mm取向硅钢带材,牌号为宝钢B18R065;

酸洗:将上述硅钢带材送至酸洗槽中进行酸洗,酸洗槽中为浓度15wt%的盐酸水溶液,酸洗槽中设置有加热片,保证酸洗的温度为70℃,酸洗时间为10min,得到无底层的取向硅钢带材;

冷轧:通过二十辊轧机经过一次冷轧工序,其中,

压下率为25%,总轧制力为15T,轧制辊的前张应力18KN,轧制辊的后张应力12KN,最终冷轧得到厚度0.135mm;

再结晶退火:在潮湿的H

涂覆氧化镁:涂覆辊两端张力为3.5KN,涂覆辊压力1.5T,涂层厚度控制在0.5μm;

中温退火:将涂覆氧化镁的带材送入罩式退火炉中进行退火处理,退火气氛为纯氢气,以380℃/h的升温速率升温至1050℃,保温4h,冷却至室温,向罩式退火炉中通入氮气排出炉内氢气,取出退火后的硅钢带材;

涂覆张应力涂层:涂覆辊两端张力1.5KN,涂覆辊压力1.6T,烧结温度880℃,时间40s,涂层厚度3μm;

细化磁畴:涂覆绝缘涂层后,采用激光照射进行细化磁畴处理,所述激光电流10A,激光频率3000Hz,刻痕速率1000mm/s,得到低损耗低磁致伸缩取向硅钢材料。

对比例1

本对比例和实施例1的区别在于,总压下率为30%;

对比例2

本对比例和实施例1的区别在于,将涂覆氧化镁的带材进行退火处理是,退火温度为950℃;

对比例3

本对比例和实施例1的区别在于,氧化镁层为2.5μm,张应力涂层为1.5μm。

试验例

对本申请实施例和对比例得到的做性能测试,测试方法中,损耗和磁感测量参照GBT 3655-2000进行测量;磁致伸缩按照IEC 62581-2010进行测量。测试结果如下表1所示,其中工频取向硅钢为宝钢的牌号B18R065,超薄取向硅钢为电工新材料研究所的牌号为8Q1150:

表1各实施例和对比例磁性能测试

从上表可以看出,本申请各实施例工频损耗和所使用的原始材料近似,远远高于超薄取向硅钢;而中频损耗在优于同时优于上述两种硅钢材料,这是由于本申请磁感应强度高,Goss织构所占的比例比超薄取向硅钢,导致损耗低,同时晶粒尺寸大,单位面积内不利于磁化的晶界少,涡流损耗低;由于张应力层的存在,本申请各实施例磁致伸缩水平明显较低。各对比例中,对比例1采用30%的总压下率,由于总压下率的提高,对硅钢的内部结构产生了破坏,因而损耗和磁感均不如于实施例1,由于磁致伸缩水平和磁感相关,也受到了影响;对比例2降低了二次退火的温度,因为退火温度低,导致驱动力不足,二次再结晶不完善,表面的细晶组织未被完全吞噬,损耗和磁感均不如于实施例1,由于磁致伸缩水平也受到了影响;而在对比例3中,改变了氧化镁层和张应力涂层的厚度,由于张应力涂层厚度降低,导致表面张力减小,对比例3中损耗和磁致伸缩水平不如于实施例1。

本实施例提供了显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

技术分类

06120114721570