掌桥专利:专业的专利平台
掌桥专利
首页

用于基于多点多小区单用户的多输入多输出传输的方法、装置和系统

文献发布时间:2023-06-19 11:14:36


用于基于多点多小区单用户的多输入多输出传输的方法、装置和系统

本申请是申请日为2016年01月21日、申请号为201680009002.4、发明名称为“用于基于多点多小区单用户的多输入多输出传输的方法、装置和系统”的发明专利申请的分案申请。

本申请要求于2015年10月30日递交的名为“METHODS,APPARATUSES AND SYSTEMSFOR MULTI-POINT,MULTI-CELL SINGLE-USER BASED MULTIPLE INPUT AND MULTIPLEOUTPUT TRANSMISSIONS(用于基于多点多小区单用户的多输入多输出传输的方法、装置和系统)”的美国专利申请No.14/928,759的优先权,其根据35U.S.C.§119要求于2015年2月23日递交的名为“METHOD FOR MULTI-POINT,MULTI-CELL SINGLE-USER MIMO TRANSMISSION(用于多点多小区单用户多输入多输出传输的方法)”的美国临时申请No.62/119,386和于2015年4月15日递交的名为“DOWNLINK CONTROL SIGNALING TO SUPPORT MULTI-CELL,MULTI-POINT SU-MIMO IN LTE-A SYSTEMS(用于支持LTE-A系统中的多小区多点SU-MIMO的下行链路控制信令)”的美国临时申请No.62/147,972的优先权,上述申请的全部内容通过引用整体被结合于此。

技术领域

所要求保护的发明的实现方式总的涉及无线通信领域,尤其涉及提供长期演进(LTE)无线通信网络中来自相邻传输点的下行链路信道。

背景技术

当前的无线通信标准基于包括两个传输天线元件(被称为“2Tx天线”)的天线配置,这种天线配置部分基于通常依赖演进节点B(eNB)处的2Tx天线的当前部署假设。由于与具有四个天线元件(4Tx)或八个天线元件(8Tx)的eNB的网络部署相关联的高成本,在不远的将来许多eNB可能依旧包括2Tx天线(被称为“2Tx eNB”)。因此,在传统的单点单小区多输入多输出(MIMO)传输方案中,可以同时被发送给用户设备(UE)的传输层的最大数量通常被限制为两个传输层。因此,在许多情况下,无论UE的接收能力如何,UE都仅能接收来自服务eNB的两个下行链路传输。

正在开发包括四个接收天线元件的UE(被称为“4Rx UE”),并且将在不远的将来投入使用。因为大多数eNB可能仍旧包括2Tx天线,所以在峰值数据速率增强方面,这些2TxeNB可能无法提供对4Rx UE的充分利用。

附图说明

通过以下结合附图的详细描述,实施例将易于被理解。为了便于描述,相似的附图标记表示相似的结构元件。实施例通过示例的方式而非限制于附图的图示中的方式被示出。

图1示出了根据各种示例实施例的宽带无线接入(BWA)网络;

图2示出了根据各种示例实施例的诸如用户设备(UE)电路和/或演进节点B(eNB)电路之类的电子设备电路的组件;

图3示出了根据各种示例实施例的UE设备的示例组件;

图4示出了根据各种实施例的可以由UE执行以确定用于多小区多点单用户(SU)多输入多输出(MIMO)传输的准协同定位(QCL)假设的过程;

图5示出了根据各种实施例的可以由UE执行以确定用于多小区多点SU-MIMO传输的QCL假设的另一过程;

图6示出了根据各种实施例的可以由UE执行以确定用于多小区多点SU-MIMO传输的QCL假设的另一过程;

图7示出了根据各种实施例的可以由eNB执行以辅助多小区多点SU-MIMO传输的过程;以及

图8示出了根据各种实施例的可以由eNB执行以辅助多小区多点SU-MIMO传输的另一过程。

具体实施方式

以下的详细说明参考附图。在不同的附图中可以使用相同的附图标记来标识相同或相似的元件。在以下描述中,出于说明而非限制性的目的,描述了诸如特定的结构、架构、接口、技术等等的具体细节,以便提供对所要求保护的发明的各个方面的透彻理解。然而,对于受益于本公开的本领域技术人员来说,显然的是,可以在离开这些具体细节的其它示例中实践所要求保护的本发明的各个方面。在某些情况下,省略对于众所周知的装置、电路和方法的描述,以避免因不必要的细节模糊本发明的描述。

说明性的实施例的各个方面将使用本领域技术人员通常采用的术语描述,以将其工作的实质传达给本领域技术人员。然而,对于本领域技术人员显然的是,替代的实施例可以仅仅使用所描述方面中的一些而实践。出于说明的目的,阐述了具体的数字、材料和配置以便提供对说明性的实施例的透彻理解。然而,对于本领域技术人员显然的是,替代的实施例可以在没有该具体细节的情况下实践。在其他情况下,省略或简化众所周知的特征,以避免模糊示出的实施例。

此外,各种操作将以最有助于理解说明性的实施例的方式被描述为多个离散操作;然而,描述的顺序不应被解释为意指这些操作必然依赖于顺序。特别地,这些操作不需要按照呈现的顺序来执行。

短语“在各种实施例中”、“在一些实施例中”等被重复使用。该短语通常不指代相同实施例;然而,它也可能指代相同实施例。除非上下文另有规定,术语“包含”“具有”和“包括”是同义词。短语“A或B”、“A/B”和“A和/或B”表示(A)、(B)或(A和B)。类似于短语“A和/或B”,短语“A/B”和“A或B”表示(A)、(B)或(A和B)。出于本公开的目的,短语“A和B中的至少一个”是指(A)、(B)或(A和B)。描述可以使用短语“在实施例中”,“在一些实施例中”和/或“在各种实施例中”,所述短语可以各自指代一个或多个相同的或不同的实施例。此外,关于本公开的实施例使用的术语“包含”、“包括”、“具有”之类是同义的。

示例的实施例可以被描述为以流程图、流程图示、数据流程图、结构图、或框图的方式被描绘的过程。虽然流程图可以将操作描述为有顺序的过程,但是许多操作可以并行或同时地执行。此外,可以重新布置操作的顺序。当其操作被完成时过程可以被终止,但也可以具有未在(一个或多个)图中包括的附加步骤。过程可以对应于方法、功能、过程、子进程、子程序等等。当过程对应于一个功能时,其终止可以对应于函数返回到调用函数和/或主函数。

如本文所使用的,术语“电路”指代配置以提供所述功能的硬件组件、作为这些硬件组件的一部分、或者包括这些硬件组件,该硬件组件例如专用集成电路(ASIC)、电子电路、逻辑电路、(共享的、专用的或组合)处理器和/或(共享的、专用的或组合)存储器。在一些实施例中,电路可以执行一个或多个软件或固件程序以提供至少一些所述功能。示例的实施例可以被描述在由上述一个或多个电路执行的计算机可执行指令(例如程序代码、软件模块和/或功能过程)的一般上下文中。程序代码、软件模块、和/或功能过程可以包括执行特定任务或实现特定数据类型的例程、程序、对象、组件、数据结构等。可以使用现有通信网络中的现有硬件,来实现本文所讨论的程序代码、软件模块和/或功能过程。例如,可以使用现有网络元件或控制节点处的现有硬件来实现本文讨论的程序代码、软件模块和/或功能过程。

如本文所使用的,术语“用户设备”可以被认为同义于或可以在下文中有时指的是客户端、移动电话、移动设备、移动终端、用户终端、移动单元、移动站、移动用户、UE、订户、用户、远程站、接入代理、用户代理、接收器等等,并且可以描述通信网络中的网络资源的远程用户。此外,术语“用户设备”可以包括任何类型的无线/有线设备,例如消费者电子设备、蜂窝电话、智能电话、平板电脑、可穿戴计算设备、个人数字助理(PDA)、台式计算机、和膝上型计算机。

如本文所使用的,术语“网络元件”可以被认为同义于或指的是联网计算机、网络硬件、网络设备、路由器、交换机、集线器、网桥、无线电网络控制器、无线电接入网络设备、网关、服务器、和/或任何其他类似的设备。术语“网络元件”可以描述有线或无线通信网络的物理计算设备,并且被配置为主管虚拟机。此外,术语“网络元件”可以描述在网络和一个或多个用户之间提供数据和/或语音连接性的无线电基带功能的设备。术语“网络元件”可以被认为是“基站”的同义词和/或被称为“基站”。如本文所使用的,术语“基站”可以被认为是同义于或被称为节点B、增强型节点B或演进节点B(eNB)、基站收发器(BTS)、接入点(AP)等,并且可以描述在网络和一个或多个用户之间提供数据和/或语音连接性的无线电基带功能的设备。

还应当注意,本文所使用的术语“信道”可以指的是用于传送数据或数据流的任何有形或无形的传输介质。此外,术语“信道”可以同义于或等同于“通信信道”、“数据通信信道”、“传输信道”、“数据传输信道”、“接入信道”、“数据接入信道”、“链路”、“数据链路”、“载波”、“射频载波”和/或表示数据被传输通过的路径或介质的任何其它类似术语。

本文的实施例涉及辅助多小区多点单用户(SU)多输入多输出(MIMO)传输,其中,通过相邻小区或非服务小区或传输点向UE提供多个传输层。示例实施例提供以下优点:多小区多点SU MIMO传输方案可以提高在诸如室内环境或相对较大城市环境之类的密集部署区域内的吞吐量或数据速率;多小区多点SU MIMO传输方案可以通过从较少负载或低负载传输点向UE分配附加传输资源以提供负载平衡;并且当前部署的基站(例如,eNB)可能不需要升级以包括附加的传输天线元件,从而节省了网络运营商的成本。

图1示出了根据示例实施例的宽带无线接入(BWA)网络100的示例。BWA网络100包括两个UE 105、三个eNB 110(eNB 110-1、eNB 110-2、和eNB 110-3统称为“eNB 110”)和三个小区115(小区115-1、小区115-2、小区115-3统称为“小区115”)。以下描述被提供用于示例的BWA网络100,所述BWA网络100结合由第三代合作伙伴计划(3GPP)技术规范提供的长期演进(LTE)标准而操作。然而,示例实施例在这方面不受限制,并且所描述的实施例可以应用于受益于本文所述原理的其他网络。

参考图1,UE 105中的每一个(统称为“UE 105”)可以是能够运行一个或多个应用并且能够利用eNB 110经由无线电链路(“链路”)接入网络服务的物理硬件设备。UE 105可以包括发送器/接收器(或者替代地,收发器)、存储器、一个或多个处理器、和/或其他相似组件。根据各种实施例,UE 105(被称为“4Rx UE 105”)可以包括四个接收天线元件。UE 105可以被配置为通过链路向/从eNB 110发送/接收数据。UE 105可以被设计为顺序地和自动地执行一系列算术或逻辑操作;被装配为在机器可读介质上记录/存储数字数据;以及通过eNB 110发送和接收数字数据。被包括在UE 105中的无线发送器/接收器(或替代地,收发器)可以被配置为根据一个或多个无线通信协议和/或一个或多个蜂窝电话通信协议(例如3GPP LTE、3GPP LTE-Advanced(LTE-A)和/或包括基于射频(RF)、光学(可见/不可见)等等的任何其它无线通信协议)进行操作。在各种实施例中,UE 105可以包括无线电话或智能电话、膝上型个人计算机(PC)、平板PC、可穿戴计算设备、自主传感器、或其他相似的机器类型通信(MTC)设备、和/或能够记录、存储和/或向/从eNB 110和/或任何其他类似网络元件传送数字数据的任何其他物理或逻辑设备。

eNB 110是被配置为向与eNB 110相关联的地理区域或小区115(例如,与eNB 110-1相关联的小区115-1)内的移动设备(例如,UE 105)提供无线通信服务的硬件计算设备。小区115还可以被称为“服务小区”、“小区覆盖区域”等等。eNB 110可以通过用于每个UE 105的一个或多个链路120向UE 105提供无线通信服务。如图1所示,在eNB 110和UE 105之间的链路120可以包括用于从eNB 110向UE 105发送信息的一个或多个下行链路(或转发)信道。尽管图1中未示出,但链路120还可以包括用于从UE 105向eNB 110发送信息的一个或多个上行链路(或反向)信道。这些信道可以包括物理下行链路共享信道(PDSCH)、物理下行链路控制信道(PDCCH)、物理混合自动重传请求(HARQ)指示符信道(PHICH)、物理控制格式指示符信道(PCFICH)、物理广播信道(PBCH)、物理上行链路共享信道(PUSCH)、物理上行链路控制信道(PUCCH)、物理随机接入信道(PRACH)和/或用于发送/接收数据的任何其它类似的通信信道或链路。

在各种实施例中,eNB 110包括连接到一个或多个天线、一个或多个存储器设备、一个或多个处理器、和/或其他类似组件的发送器/接收器(或者替代地,收发器)。一个或多个发送器/接收器可以被配置为通过可以与发送器和接收器相关联的一个或多个链路向/从其小区115内的一个或多个UE 105发送/接收数据信号。eNB 110或eNB 110的发送器可以被称为“传输点”。在各种实施例中,当BWA网络100采用LTE或LTE-A标准时,eNB 110可以使用演进通用陆地无线电接入(E-UTRA)协议,例如使用用于下行链路通信的正交频分多址(OFDMA)和用于上行链路通信的单载波频分多址(SC-FDMA)。

在诸如BWA网络100之类的许多部署场景中,eNB 110中的一个或多个可以仅包括两个传输天线元件(被称为“2Tx eNB”),部分地由于与升级eNB 110到包括两个以上的传输天线相关联的过高成本。在传统系统中,每个eNB 110可以仅能够为UE 105提供单点单小区MIMO覆盖,其中只有一个服务小区115(例如,如图1所示的服务于单个UE 105的eNB 110-3)能够向UE 105提供下行链路传输。根据各种示例的实施例,UE 105可以不仅从服务小区115,而且可以从具有可用下行链路资源的一个或多个相邻小区115接收传输层。例如,如图1所示,提供服务的2Tx eNB 110-1可以发送两个传输层,并且具有可用下行链路资源的相邻2Tx eNB 110-2也可以提供两个传输层,使得四个传输层的总传输被4Rx UE 105接收。通过执行这样的传输,UE 105可以通过在同时或相似时间解码多达四个传输层来提升峰值数据速率,其中一些层由第一服务小区(例如,服务小区115-1)传输,并且其他层由相邻小区(例如,服务小区115-2)传输。为了在相同频率上空间地分离多个层,4Rx UE 105可以使用具有能够抑制来自干扰层的干扰的接收器的四个接收天线元件。这样的接收器可以是最小均方误差干扰抑制组合(MMSE-IRC)接收器、降低复杂度最大似然(R-ML)接收器、符号层干扰消除(SLIC)或码字干扰消除(CWIC)接收器、和/或其他类似接收器。此外,在一些部署场景中,来自单个eNB 110的层数可能受到信道的传播特性(例如视距)的限制,这可能将被发送的MIMO层数量限制为两个MIMO层。例如,在BWA网络100中,由于各种传播特性,具有多于两个天线元件的服务eNB 110-1仅能够发送两个传输层,而具有可用下行链路资源的相邻eNB 110-2还能够提供两个传输层,使得四个传输层的总传输被4Rx UE 105接收。

在其他实施例中,传输层的数量在不同的传输点或小区115上可以是不同的。例如,eNB 110-1可以发送两个(空间)传输层,并且eNB 110-2可以发送一个传输层(未示出)。在另一示例中,当UE 105位于全部三个小区115覆盖的区域(未示出)内时,eNB 110-1可以发送两个空间传输层,eNB 110-2可以发送一个传输层,并且eNB 110-3可以发送一个传输层。此外,尽管图1示出了三个eNB 110,但是示例实施例提供了相邻小区可以由诸如毫微微小区(femtocell)、微微小区(picocell)或任何其它合适的网络单元之类的小小区(smallcell)提供。上述传输方案可以被称为多小区多点SU-MIMO传输方案。

多点传输可以指代由多个传输点或小区115执行的传输。当多个传输点彼此协调以提供多点传输时,这些传输点被认为是协作多点(CoMP)传输方案的一部分。当前的CoMP传输方案包括动态点选择和联合传输。动态点选择包括从单个传输点的传输,其中传输点可以动态地变化。联合传输(也称为“联合处理”和“协作MIMO”)包括来自多个传输点的同时传输,其中,基于传输点之间相对广泛的回程通信,每个传输点在同一子帧内以相同频率发送。对于大多数CoMP传输方案,通常假设UE 105使用准协同定位的UE专用RS天线端口接收所有MIMO层,这意味着预编码由所有传输点联合执行。

天线端口是由参考信号序列区分的逻辑实体。多个天线端口信号可以在单个物理发送天线元件上被发送,和/或单个天线端口可以横跨多个物理发送天线元件分布。天线端口0-3由小区专用参考信号(CRS)指示或以其他方式与其相关联,天线端口5和7-14由UE专用参考信号(UE专用RS)(也被称为解调参考信号(DMRS)指示或以其他方式与其相关联,并且天线端口15-22由信道状态信息参考信号(CSI-RS)指示或以其它方式与其相关联。当前的规范描述了用于发送空间层的UE专用天线端口被假设为与彼此准协同定位。

术语“准协同定位”指的是,如果通过其传送一个天线端口上的符号的信道的大规模特性可以从通过其传送另一天线端口上的符号的信道而推测,则认为该两个或更多个天线端口准协同定位。大规模信道特性包括延迟扩展、多普勒扩展、多普勒频移、平均增益、平均延迟、接收计时等等中的一个或多个。当两个天线端口准协同定位时,UE 105可以假设从第一天线端口接收的信号的大规模信道特性可以由从第二天线端口接收的信号而推测。例如,当UE 105将对所接收的PDSCH传输进行解码时,UE 105可以使用相关联的UE专用RS来执行信道估计操作。为了执行信道估计操作,UE 105可能需要知道该信道的大规模信道特性。使用当前标准的准协同定位(QCL)假设,被配置用于传输模式1-9的UE 105可以假设对于服务小区来说,CRS天线端口、CSI-RS天线端口、和UE专用RS天线端口是准协同定位的。

被配置用于传输模式10的UE 105可以根据两种QCL类型进行操作,例如A型和B型。当UE 105被配置为A型UE时,UE 105可以假设CRS、UE专用RS、CSI-RS天线端口是准协同定位的,这是用于传输模式1-9的QCL假设。当UE 105被配置为B型UE时,UE 105可以假设与由较高层信令(例如,无线电资源控制(RRC)信令)标识的CSI-RS资源配置相对应的CSI-RS天线端口和与PDSCH相关联的UE专用RS天线端口是准协同定位的。对于被配置用于传输模式10的UE 105,可以由较高层信令(例如,RRC信令)将QCL类型用信号发送给UE 105。当前标准的QCL假设意指所有的传输层都是从相同传输点被发送的,这表明仅仅单点单小区SU-MIMO是被当前标准支持的。

为了提供多小区多点SU-MIMO,示例实施例提供了将用于UE专用RS的当前QCL假设进行调整(或移除),以便适应从不同传输点被发送的不同传输层的信道特性。在一些实施例中,仅仅针对被配置用于传输模式10的UE调整QCL假设。示例实施例提供QCL假设调整,因为与不同传输点相关联的信道可能具有不同的信道特性,所以如果UE 105推断由用于从第一传输点进行传输的天线端口得到的信道特性,用于从第二传输点的传输的天线端口,则可能发生时间和频率同步误差。

尽管未在图1中示出,但每个eNB 110可以是无线电接入网络(RAN)的一部分或与无线电接入技术(RAT)相关联。在通信网络100采用LTE标准的实施例中,RAN可以被称为演进通用陆地无线电接入网络(E-UTRAN)。RAN和其典型功能通常是众所周知的,因此省略了对RAN典型功能的进一步详细描述。此外,尽管未在图1中示出,但BWA网络100可以包括核心网(CN),其可以包括例如一个或多个服务器的一个或多个硬件设备。这些服务器可以向UE105提供各种电信服务。在BWA网络100采用LTE标准的实施例中,CN的一个或多个服务器可以包括具有如3GPP技术规范描述的演进分组核心(EPC)的系统架构演进(SAE)的组件。在该实施例中,CN的一个或多个服务器可以包括诸如包括移动性管理实体(MME)和/或服务通用分组无线电服务支持节点(SGSN)(可以被称为“SGSN/MME”)、服务网关(SGW)、分组数据网络(PDN)网关(PGW)、归属订户服务器(HSS)、接入网络发现和选择功能(ANDSF)、演进分组数据网关(ePDG)、MTC互通功能(IWF)的节点之类的组件、或已知的其他类似的组件。因为SAE核心网的组件和其功能通常是众所周知的,因此省略对SAE核心网的进一步详细描述。还应当注意,上述功能可以由相同的物理硬件设备或单独的组件和/或设备提供。

尽管图1示出了三个小区覆盖区域(例如,小区115)、三个基站(例如,eNB 110)、以及两个移动设备(例如,UE 105),但应当注意在各种示例实施例中,BWA网络100可以包括与图1所示的情况相比服务于更多UE的更多eNB。然而,为了理解本文所述的示例实施例,不必示出所有这些普遍常规的组件。

图2示出了根据各种实施例的电子设备电路200的组件,其可以是eNB电路、UE电路、或一些其他类型的电路。在实施例中,电子设备电路可以是UE 105、eNB 110或一些其他类型的电子设备或可以并入其中或以其他方式作为其的一部分。如图所示,电子设备电路200包括控制电路205、发送电路210、和接收电路215。

根据各种实施例,发送电路210和接收电路215可以与一个或多个天线耦接以辅助例如与eNB 110的空中传输。例如,发送电路210可以被配置为从eNB 110的一个或多个组件接收数字数据,并且将所接收的数字数据转换为模拟信号,用于利用一个或多个天线通过空中接口进行传输。接收电路215可以是可以接收调制无线电波的信号并且转换为例如数字数据的可用信息的任何类型的硬件设备。接收电路215可以与一个或多个天线耦接以捕获无线电波。接收电路215可以被配置为向UE 105的一个或多个其他组件发送由所捕获的无线电波转换来的数字数据。应当注意,发送电路210和接收电路215可以统称为“信号电路”、“信令电路”等。在实施例中,发送电路210和接收电路215可以耦接到控制电路205。在电子设备电路200是UE 105或者以其他方式作为UE 105的一部分的一些实施例中,接收电路215可以是接收器或接收器的一部分,例如MMSE-IRC接收器、R-ML接收器、SLIC或CWIC接收器、和/或任何其他类似合适的接收器。控制电路205可以被配置为执行本文关于UE 105和/或eNB 110描述的控制操作。UE 105电路的组件可以被配置为执行类似于本公开其他地方关于UE 105所描述的那些操作的操作。

在电子设备电路200是UE 105或被并入UE 105或以其它方式作为UE 105一部分的实施例中,天线阵列可以至少包括第一接收天线和第二接收天线。例如,一个或多个天线可以是包括第一接收天线、第二接收天线、第三接收天线和第四接收天线的天线阵列。接收电路215可以被配置为在第一小区(例如,小区115-1)的下行链路信道中接收第一组一个或多个独立数据流。接收电路215还可以被配置为接收第二小区(例如小区115-2)的下行链路信道中的第二组一个或多个独立数据流。接收电路215还可以被配置为从第一小区和/或第二小区接收包括关于第一组或第二组一个或多个独立数据流的参数的指示的控制信息。该指示可以指示用于确定用于独立数据流的接收的信道特性的QCL假设。此外,控制电路205可以被配置为执行本文描述的处理,例如关于图4-图6所述的处理400-600。

在电子设备电路200是传输点和/或下行链路小区(例如,与小区115-1相关联的eNB 110-1)或被并入其中或者以其他方式作为其一部分的实施例中,控制电路205可以被配置为标识控制信息,所述控制信息与由下行链路小区发送的第一独立数据流或者由另一下行链路小区(例如,与小区115-2相关联的eNB 110-2)发送的第二独立数据流的参数相关。在该实施例中,发送电路210可以被配置为向UE 105发送第一独立数据流和控制信息。参数可以指示QCL假设,所述QCL假设用于确定针对第一独立数据流和/或第二独立数据流的接收的信道特性。该指示可以指示用于确定针对独立数据流的接收的信道特性的QCL假设。此外,控制电路205可以被配置为执行本文所述的处理,诸如关于图7-图8所描述的处理700-800。

图3示出了用于一个实施例的电子设备300的示例的组件。在各种实施例中,电子设备300可以与先前关于图1和图2所描述的UE 105相同或相似。在一些实施例中,电子设备300可以包括至少如示出被耦接在一起的应用电路302、基带电路304、射频(RF)电路306、前端模块(FEM)电路308、以及一个或多个天线310。

应用电路302可以包括一个或多个应用处理器。例如,应用电路302可以包括例如但不限于一个或多个单核或多核处理器的电路。(一个或多个)处理器可以包括通用处理器和专用处理器(例如,图形处理器、应用处理器等)的任何组合。处理器可以与存储器/存储设备耦接,和/或可以包括存储器/存储设备,并且可以被配置为执行存储在存储器/存储设备中的指令,以使得各种应用和/或操作系统能够在系统上运行。

基带电路304可以包括例如但不限于一个或多个单核或多核处理器的电路。基带电路304可以包括一个或多个基带处理器和/或控制逻辑,以处理从RF电路306的接收信号路径接收到的基带信号,并且生成用于RF电路306的发送信号路径的基带信号。基带电路304可以与应用电路302接口,用于生成和处理基带信号,并且用于控制RF电路306的操作。例如,在一些实施例中,基带电路304可以包括第二代(2G)基带处理器304a、第三代(3G)基带处理器304b、第四代(4G)基带处理器304c、和/或用于其他现有的、开发中的或将来待开发的世代(例如,第五代(5G),6G等)的(一个或多个)其他基带处理器304d。基带电路304(例如,基带处理器304a-d中的一个或多个)可以处理能够通过RF电路306与一个或多个无线电网络进行通信的各种无线电控制功能。无线电控制功能可以包括但不限于信号调制/解调、编码/解码、无线电频移等等。在一些实施例中,基带电路304的调制/解调电路可以包括快速傅里叶变换(FFT)、预编码、和/或星座映射/解映射功能。在一些实施例中,基带电路304的编码/解码电路可以包括卷积、咬尾卷积(tail-biting convolution)、turbo、Viterbi和/或低密度奇偶校验(LDPC)编码器/解码器功能。调制/解调和编码器/解码器功能的实施例不限于这些示例,并且可以在其他实施例中包括其他合适的功能。

在一些实施例中,基带电路304可以包括协议栈的元件,例如包括诸如物理(PHY)、介质访问控制(MAC)、无线电链路控制(RLC)、分组数据融合协议(PDCP)和/或无线电资源控制(RRC)元件的演进通用陆地无线电接入网络(E-UTRAN)协议的元件。基带电路304的中央处理单元(CPU)304e可以被配置为运行用于PHY、MAC、RLC、PDCP和/或RRC层的信令的协议栈的元件。在一些实施例中,基带电路可以包括一个或多个音频数字信号处理器(DSP)304f。(一个或多个)音频DSP304f可以包括用于压缩/解压缩和回波消除的元件,并且可以在其他实施例中包括其他合适的处理元件。在一些实施例中,基带电路304的组件可以适当地被组合在单个芯片、单个芯片组中,或者被放置在相同的电路板上。在一些实施例中,基带电路304和应用电路302的构成组件中的一些或全部可以一起被实现在例如片上系统(SOC)上。

在一些实施例中,基带电路304可以提供与一个或多个无线电技术兼容的通信。例如,在一些实施例中,基带电路304可以支持与E-UTRAN和/或其他无线城域网(WMAN)、无线局域网(WLAN)、无线个人域网(WPAN)的通信。基带电路304被配置为支持多于一个无线协议的无线电通信的实施例可以被称为多模式基带电路。

RF电路306可以允许实现使用通过非固体介质的经调制的电磁辐射与无线网络进行通信。在各种实施例中,RF电路306可以包括开关、滤波器、放大器等等以辅助与无线网络的通信。RF电路306可以包括接收信号路径,所述接收信号路径可以包括用于对从FEM电路308接收的RF信号进行下变频并且向基带电路304提供基带信号的电路。RF电路306还可以包括发送信号路径,所述发送信号路径可以包括对基带电路304提供的基带信号进行上变频并且向FEM电路308提供RF输出信号用于传输的电路。

在一些实施例中,RF电路306可以包括接收信号路径和发送信号路径。RF电路306的接收信号路径可以包括混频器电路306a、放大器电路306b、和滤波器电路306c。RF电路306的发送信号路径可以包括滤波器电路306c和混频器电路306a。RF电路306还可以包括合成器电路306d,用于合成供接收信号路径和发送信号路径的混频器电路306a使用的频率。在一些实施例中,接收信号路径的混频器电路306a可以被配置为基于由合成器电路306d提供的合成频率,对从FEM电路308接收的RF信号进行下变频。放大器电路306b可以被配置为对经下变频的信号进行放大,并且滤波器电路306c可以是被配置为从经下变频的信号中去除不想要的信号以生成输出基带信号的低通滤波器(LPF)或带通滤波器(BPF)。可以将输出基带信号提供给基带电路304用于进一步处理。在一些实施例中,输出基带信号可以是零频基带信号,但这并不是必需的。在一些实施例中,尽管实施例的范围在这方面不受限制,接收信号路径的混频器电路306a可以包括无源混频器。

在一些实施例中,发送信号路径的混频器电路306a可以被配置为基于由合成器电路306d提供的合成频率,对输入基带信号进行上变频,以生成用于FEM电路308的RF输出信号。基带信号可以由基带电路304提供,并且可以由滤波器电路306c滤波。滤波器电路306c可以包括低通滤波器(LPF),但实施例的范围在这方面不受限制。

在一些实施例中,接收信号路径的混频器电路306a和发送信号路径的混频器电路306a可以包括两个或更多混频器,并且可以分别被布置用于正交下变频和/正交或上变频。在一些实施例中,接收信号路径的混频器电路306a和发送信号路径的混频器电路306a可以包括两个或更多混频器,并且可以被布置用于图像抑制(例如,Hartley图像抑制)。在一些实施例中,接收信号路径的混频器电路306a和发送信号路径的混频器电路306a可以分别被布置用于直接下变频和/或直接上变频。在一些实施例中,接收信号路径的混频器电路306a和发送信号路径的混频器电路306a可以被配置用于超外差操作。

在一些实施例中,输出基带信号和输入基带信号可以是模拟基带信号,但实施例的范围在这方面不受限制。在一些替代的实施例中,输出基带信号和输入基带信号可以是数字基带信号。在这些替代的实施例中,RF电路306可以包括模数转换器(ADC)和数模转换器(DAC)电路,并且基带电路304可以包括数字基带接口用于与RF电路306进行通信。

在一些双模实施例中,单独的无线电IC电路可以被提供以处理每个频谱的信号,但实施例的范围在这方面不受限制。

在一些实施例中,合成器电路306d可以是分数-N合成器或分数N/N+1合成器,但实施例的范围在这方面不受限制,因为其它类型的频率合成器也可能是合适的。例如,合成器电路306d可以是delta-sigma合成器、倍频器、或包括具有分频器的锁相环的合成器。合成器电路306d可以被配置为基于频率输入和分频器控制输入来合成供RF电路306的混频器电路306a使用的输出频率。在一些实施例中,合成器电路306d可以是分数N/N+1合成器。

在一些实施例中,频率输入可以由压控振荡器(VCO)提供,但这并非要求。取决于所期望的输出频率,分频器控制输入可以由基带电路304或应用电路302提供。在一些实施例中,可以基于由应用电路302指示的信道,从查询表中确定分频器控制输入(例如,N)。

RF电路306的合成器电路306d可以包括分频器、延迟锁定环(DLL)、多路复用器和相位累加器。在一些实施例中,分频器可以是双模分频器(DMD),并且相位累加器可以是数字相位累加器(DPA)。在一些实施例中,DMD可以被配置为将输入信号除以N或N+1(例如,基于进位输出)以提供分数分频比。在一些示例实施例中,DLL可以包括一组级联、可调谐延迟元件、相位检测器、电荷泵和D型触发器。在这些实施例中,延迟元件可以被配置为将VCO周期拆分成Nd个相等相位的分组,其中Nd是延迟线中的延迟元件的数量。以这种方式,DLL提供负反馈以帮助确保通过延迟线的总延迟是一个VCO周期。

在一些实施例中,合成器电路306d可以被配置为生成载波频率作为输出频率,而在其他实施例中,输出频率可以是载波频率的倍数(例如,载波频率的两倍、载波频率的四倍)并且结合正交发生器和分频器电路使用以生成具有相对于彼此的多个不同相位的载波频率处的多个信号。在一些实施例中,输出频率可以是LO频率(fLO)。在一些实施例中,RF电路306可以包括IQ/极性转换器。

FEM电路308可以包括接收信号路径,所述接收信号路径可以包括被配置为在从一个或多个天线310接收到的RF信号上进行操作,放大接收到的信号,并且将接收到的信号的放大版本提供到RF电路306用于进一步处理的电路。FEM电路308还可以包括发送信号路径,所述发送信号路径可以包括被配置为放大由RF电路306提供的用于传输的信号以由一个或多个天线310中的一个或多个传输的电路。在一些实施例中,FEM电路308可以包括TX/RX开关以在发送模式和接收模式操作之间进行切换。FEM电路308可以包括接收信号路径和发送信号路径。FEM电路的接收信号路径可以包括低噪声放大器(LNA)以放大接收到的RF信号并且提供经放大的接收RF信号作为输出(例如,到RF电路306)。FEM电路308的发送信号路径可以包括用于放大(例如,由RF电路306提供的)输入RF信号的功率放大器(PA)和用于生成用于后续传输(例如,通过一个或多个天线310中的一个或多个)的RF信号的一个或多个滤波器。

在一些实施例中,电子设备300可以包括附加元件,例如存储器/存储设备、显示器、照相机、传感器、和/或输入/输出(I/O)接口(未示出)。

在一些实施例中,RF电路306可以是诸如MMSE-IRC接收器、R-ML接收器、SLIC或CWIC接收器、和/或任何其它合适的接收器之类的接收器,或以其他方式被包括在接收器中。

在电子设备300是UE 105或被并入UE 105或以其它方式作为UE 105的一部分的实施例中,一个或多个天线310可以至少包括第一接收天线和第二接收天线。例如,一个或多个天线310可以是包括第一接收天线、第二接收天线、第三接收天线和第四接收天线的天线阵列。RF电路306可以被配置为在第一下行链路小区(例如,小区115-1)的下行链路信道中接收第一组一个或多个独立数据流。RF电路306还可以被配置为在第二下行链路小区(例如小区115-2)的下行链路信道中接收第二组一个或多个独立数据流。RF电路306还可以被配置为从第一和/或第二下行链路小区接收包括第一或第二组一个或多个独立数据流的参数的指示的控制信息。该指示(或参数)可以指示用于确定针对独立数据流的接收的信道特性的QCL假设。此外,基带电路304可以被配置为执行本文所述的处理,例如关于图4-图6所述的处理400-600。

在电子设备300是传输点和/或下行链路小区(例如,与小区115-1相关联的eNB110-1)或者被并入传输点和/或下行链路小区或以其他方式作为传输点和/或下行链路小区的一部分的实施例中,基带电路304可以被配置为标识与将由下行链路小区发送的第一独立数据流或将由另一下行链路小区(例如,与小区115-2相关联的eNB 110-2)发送的第二独立数据流的参数相关的控制信息。在该实施例中,RF电路306可以被配置为发送第一独立数据流和控制信息到UE 105。指示(或参数)可以指示用于确定针对独立数据流的接收的信道特性的QCL假设。此外,基带电路304可以被配置为执行本文所述的处理,例如关于图7-图8所述的处理700-800。

图4示出了根据各种实施例的可以由UE 105执行以确定针对多小区多点SU-MTMO传输的QCL假设的过程400。在一些实施例中,UE 105可以包括具有存储在其上的指令的一个或多个非暂态计算机可读介质,当所述指令由UE 105执行时,使得UE 105执行过程400。出于说明的目的,处理400将被描述为由相对于图1-3所述的UE 105执行。然而,应当注意,其他类似设备可以执行过程400。尽管图4中示出了具体的示例和操作顺序,但在各种实施例中,这些操作可以被重新排序、被拆分为附加操作、被组合和/或一起被省略。在一些实施例中,图4中示出的操作可以结合关于其他实施例所述的操作,例如由图5-图8中一项或多项所示的那些或关于本文提供的非限制示例所述的一个或多个操作。

参考图4,在操作405处,UE 105可以处理从第一传输点在下行链路信道中接收的第一组一个或多个独立数据流。在操作410处,UE 105可以处理从第二传输点在下行链路信道中接收的第二组一个或多个独立数据流。每个独立的数据流可以对应于传输层(本文也称为“层”)。在一些实施例中,可以由与一个或多个参考信号(例如第一传输点或第二传输点的UE专用RS)相关联的多个天线端口中的至少一个天线端口发送至少一个独立数据流。

在操作415处,UE 105可以处理从第一传输点或第二传输点接收的控制信息。在操作420处,UE 105可以确定QCL假设,所述QCL假设将用于估计对于第一组一个或多个独立数据流的接收或对于第二组一个或多个独立数据流的接收的信道特性。控制信息可以包括QCL假设的指示,所述QCL假设将用于估计对于第一组一个或多个独立数据流的接收或对于第二组一个或多个独立数据流的接收的信道特性。根据各种实施例,UE105可以不假设多个天线端口就多普勒频移、多普勒扩展、平均延迟、或延迟扩展中的至少一个而言是准协同定位的。在一些实施例中,指示可以指示将不使用QCL假设,而在其他实施例中,指示可以指示使用适合的QCL假设。在操作425处,UE 105可以根据准协同定位假设来估计针对第一组一个或多个独立数据流的接收或者针对第二组一个或多个独立数据流的接收的信道特性。

当该指示指示将不使用QCL假设时,UE 105可以假设在预定义的一组物理资源块(PRBS)上的相同信道特性(例如,相同的多普勒频移、多普勒扩展、平均延迟、和延迟扩展)。在该实施例中,UE 105可以在预定义的一组PRB上分别对于来自每个传输点的下行链路信道执行信道估计。预定义的一组PRB可以是PRB捆绑集。PRB捆绑集可以包括两个或更多PRB束。每个PRB束可以包括针对UE 105调度的多个连续或连贯的PRB。UE 105可以假设,PRB束中的连续PRB对于来自服务eNB 110的相应PDSCH传输使用相同的预编码器。每个PRB束可以具有多个相关联的UE专用RS(例如,每个PRB束可以与12个UE专用RS相关联)。在该实施例中,UE 105可以使用在每个天线端口上单独发送的UE专用RS来执行时间频率跟踪操作。时间频率操作可以用于确定对于每个传输点的每个UE专用RS天线端口的时间频率偏移。在一些实施例中,每个UE专用RS天线端口和/或传输点的时间频率偏移可以通过联合处理PRB捆绑集合中捆绑的PRB来计算。使用时间频率偏移,UE 105可以确定从传输点发送的一组PRB的UE专用RS。

当指示指示将使用的适合的QCL假设时,该指示可以指示各个被发送的UE专用RS天线端口(例如,天线端口7-14)和与一个或多个其他RS相关联的一个或多个天线端口准协同定位。其他RS可以包括一个或多个CRS(例如,天线端口0-3)、一个或多个CSI-RS天线端口(例如,天线端口15-22)和/或一个或多个发现RS天线端口(其可以用于发现由小型基站广播的信号)。在该实施例中,eNB 110可以用适合的QCL假设来配置UE 105。例如,eNB 110可以通过RRC信令或通过物理层信令来提供配置信息。例如,可以使用DCI格式2D消息或新DCI格式消息(例如,DCI格式2E消息)中所包括的“PDSCH资源元素(RE)映射和准协同定位”指示符字段来对UE 105指示QCL假设。此外,在一些实施例中,可以在DCI格式2D消息中使用两个或更多“PDSCH RE映射和准协同定位指示符”字段,以指示在经调度的UE专用RS天线端口的子集与CSI-RS天线端口和/或CRS天线端口之间的两个或更多QCL假设。在其他实施例中,可以向UE 105发送两个或更多DCI消息,其中每个DCI消息可以指示与来自相应传输点的传输相关联的一个或多个参数。在该实施例中,一个或多个参数可以包括在一个或多个UE专用RS天线端口与较高层配置的CRS资源和/或与传输点相关联的CSI-RS资源之间的QCL假设。

作为示例,在操作415处,UE 105可以接收一个或多个DCI格式2D消息,每个消息可以包括“PDSCH RE映射和准协同定位指示符”字段。在操作420处,UE 105可以使用两个或多个“PDSCH RE映射和准协同定位指示符”字段中所包含的信息,以确定资源元素映射。例如,当UE 105被配置在用于给定服务小区115的传输模式10中时,UE 105可以由较高层信令配置为具有多达4个参数集,以根据具有意在用于UE 105和给定服务小区115的DCI格式2D消息的检测到的PDSCH/增强物理下行链路控制信道(EPDCCH),对(一个或多个)PDSCH传输进行解码。UE 105可以使用根据检测到的DCI格式2D消息中的“PDSCH RE映射和准协同定位指示符”字段的值的参数集,来确定PDSCH RE映射。“PDSCH RE映射和准协同定位指示符”字段的值可以如下。

表1:DCI格式2D中的PDSCH RE映射和准协同定位指示符字段

用于确定PDSCH RE映射和PDSCH天线端口准协同定位的参数通过较高层信令来配置,每个参数集包括“crs-PortsCount-r11”、“crs-FreqShift-r11”、“mbsfn-SubframeConfigList-r11”、“csi-RS-ConfigZPId-r11”、“pdsch-Start-r11”以及“qcl-CSI-RS-ConfigNZPId-r11”。

除了使用根据“PDSCH RE映射和准协同定位指示符”字段的值的参数集来确定PDSCH RE映射之外,UE 105可以使用“PDSCH RE映射和准协同定位指示符”字段中所包含的值来确定与一个或多个UE专用RS准协同定位的一个或多个其他RS。例如,如果UE 105被配置为“B型”准协同定位类型,则UE 105可以使用所指示的参数集来确定PDSCH天线端口准协同定位。例如,根据当前的标准,被配置在用于服务小区的传输模式10中的UE由较高层参数“qcl-Operation”配置为具有用于服务小区的两个准协同定位类型(例如,A型和B型)中的一个,以根据与天线端口7-14相关联的传输方案对PDSCH传输进行解码。当UE 105被配置为A型UE时,UE 105可以假设服务小区的天线端口0-3和/或7-22就延迟扩展、多普勒扩展、多普勒频移、以及平均延迟而言被准协同定位。当UE 105被配置为B型UE时,UE 105可以假设与由较高层参数“qcl-CSI-RS-ConfigNZPId-r11”标识的CSI-RS资源配置相对应的天线端口15-22,以及与PDSCH相关联的天线端口7-14就多普勒频移、多普勒扩展、平均延迟、和延迟扩展而言被准协同定位。

根据各种实施例,“PDSCH RE映射和准协同定位指示符”字段的值还可以用于指示发送小区的PDSCH RE映射模式。例如,CRS天线端口使用的资源元素可以取决于物理小区ID或基于单频率网络(MBSFN)子帧配置的多播/广播。在这些情况下,PDSCH RE映射可以由CRS天线端口的数量、CRS频率偏移、和/或MBSFN子帧配置来确定。PDSCH RE还可以取决于用于控制信道传输的正交频分复用(OFDM)符号的数量。此外,对于不同的小区和/或传输点,CSI-RS传输也可以不同,因此,CSI-RS资源配置还可以用于确定PDSCH RE。作为PDSCH RE映射的一部分,可以提供一组准协同定位的CRS和CSI-RS天线端口,以指示可以用于估计对应于传输点的时间频率偏移的一个或多个参考信号。可以使用合适的定时和频率偏移补偿功能,对接收到的PDSCH和UE专用RS补偿所估计的偏移量。

图5示出了根据各种实施例的可以由UE 105执行以确定针对多小区多点SU-MFMO传输的QCL假设的过程500。在一些实施例中,UE 105可以包括一个或多个非暂态计算机可读介质,所述非暂态计算机可读介质具有存储在其上的指令,当所述指令由UE 105执行时,使的UE 105执行过程500。出于说明的目的,过程500的操作将被描述为由相对于图1-图3所述的UE 105执行。然而,应当注意,其他类似的设备可以操作过程500。尽管图5示出了具体的示例和操作顺序,但在各种实施例中这些操作可以被重新排序、拆分为附加的操作、被组合和/或被完全省略。在一些实施例中,图5所示的操作可以结合关于其他实施例所述的操作,例如由图4和图6-8中的一个或多个示出的和/或关于本文的非限制性示例所描述的操作。

参考图5,在操作505处,UE 105可以控制与服务小区115相关联的第一传输点的下行链路信道中的第一组一个或多个独立数据流的接收。在操作510处,UE 105可以控制在与非服务小区115相关联的第二传输点的下行链路信道中的第二组一个或多个独立数据流的接收。第一组一个或多个独立数据流中的至少一个单独数据流可以对应于单独的层,并且独立数据流可以由第一传输点的至少一个UE专用RS天线端口(例如,天线端口7-14中的一个或多个)发送。

在操作515处,UE 105可以控制使用一个或多个接收天线元件从第一传输点和/或第二传输点接收控制信息。在操作520处,UE 105可以确定QCL假设,所述QCL假设将用于估计对于第一组一个或多个独立数据流的接收或者对于第二组一个或多个独立数据流的接收的信道特性。在各种实施例中,控制信息可以包括第一或第二组一个或多个独立数据流的参数的指示。该参数可以指示QCL假设,所述QCL假设用于估计提供第一或第二组一个或多个独立数据流的下行链路信道的信道特性。在操作525处,UE 105可以使用准协同定位假设,来估计对于第一组一个或多个独立数据流的接收或对于第二组一个或多个独立数据流的接收的信道特性。信道特性可以包括多普勒频移、多普勒扩展、平均延迟、和/或延迟扩展。在一些实施例中,参数可以指示不使用QCL假设,并且UE 105可以假设横跨一组定义的PRB使用相同的信道特性(如关于图4所讨论)。

根据各种实施例,指示(或参数)可以指示将使用的合适的QCL假设。例如,指示(或参数)可以指示一个或多个UE专用RS天线端口可以和与一个或多个其它参考信号相关联的天线端口准协同定位。其他参考信号可以包括一个或多个CRS天线端口(例如,天线端口0-3)、一个或多个CSI-RS天线端口(例如,天线端口15-22)和/或一个或多个发现RS。

在一些实施例中,可以向UE 105提供两个或更多PDSCH RE映射集合,使得UE 105可以确定由相应的传输点发送的每个MIMO层的PDSCH RE映射假设。例如,子帧内的PDSCHRE的位置可以取决于一个或多个CRS占用的RE,其可以基于传输点或小区115的小区ID。在一些情况下,如果从多个传输点执行在MIMO层上的PDSCH的传输,其中每个传输点具有不同的小区ID,则对于多个传输点中的每个传输点,PDSCH RE位置可能不都是对齐的。因此,在一些实施例中,可以向UE 105用信号发送两个或更多PDSCH RE映射集合,以确定与由传输点发送的(一个或多个)MIMO层的每一层相关联的PDSCH RE映射假设。在一些实施例中,两个或多个PDSCH RE映射集合可以用于确定与UE专用RS天线端口相关联的MIMO层的PDSCHRE假设。在该实施例中,可以使用两个或更多DCI消息中的两个或更多“PDSCH RE映射和准协同定位指示符”字段向UE 105提供两个或更多PDSCH RE映射集合。在该实施例中,每个“PDSCH RE映射和准协同定位指示符”字段可以提供经调度的MIMO层(UE专用RS天线端口)与PDSCH RE映射的关联。在其他实施例中,可以向UE 105发送两个或更多DCI格式2D消息,以对于经调度的层指示包括其UE专用RS天线端口和其PDSCH RE映射的传输参数。

图6示出了根据各种实施例的可以由UE 105执行以确定多小区多点SU-MFMO传输的QCL假设的过程600。在一些实施例中,UE 105可以包括具有存储在其上的指令的一个或多个非暂态计算机可读介质,当所述指令由UE 105执行时,使得UE 105执行过程600。出于说明的目的,过程600的操作将被描述为由关于图1-图3所述的UE 105执行。然而,应当注意,其他类似的设备也可以执行过程600。尽管在图6中示出了特定的示例和操作顺序,在各种实施例中,这些操作可以被重新排序、拆分为附加的操作、被组合和/或一起被省略。在一些实施例中,图6所示的操作可以与关于其他实施例所述的操作相组合,例如由图4-5和图7-8中的一个或多个所示的操作和/或关于本文提供的非限制性实施例所述的一个或多个操作。

参考图6,在操作605处,UE 105可以接收与PDSCH传输相关联的两组或更多组参数,其中每组参数对应于单个传输点。在操作610处,UE 105可以接收一个或多个传输层的指示和传输层与一组或多组参数的关联。在操作615处,UE 105可以根据参数组来接收PDSCH传输。

PDSCH参数组可以用于推导PDSCH RE,该PDSCH RE被传输点用来发送PDSCH传输。在一些实施例中,PDSCH参数组可以包含诸如CRS偏移、小区标识、CRS天线端口的数量之类的CRS参数。在一些实施例中,PDSCH参数组可以包含非零功率信道状态信息参考信号(NZPCSI-RS)的参数,例如NZP CSI-RS天线端口的数量、加扰标识、模式索引等。在一些实施例中,可以使用PDSCH参数组来建立CRS天线端口和/或NZP CSI-RS天线端口与UE专用RS天线端口的QCL假设。在该实施例中,QCL假设可以用于推导例如延迟扩展、多普勒扩展、时间偏移、频率偏移和/或平均信道增益的信道特性。

可以使用较高层信令(例如使用RRC信令)向UE 105用信号发送每组参数。此外,每个PDSCH参数组可以基于每个传输块被提供给UE 105。在一些实施例中,传输块可以从不同的传输点发送,并且在一些情况下,可以从相同的传输点发送。由于不同的传输点可以具有不同的PDSCH RE,因此参数可以被包括在用于每个传输块的一个或多个DCI消息的“PDSCHRE映射和准协同定位指示符”字段中。“PDSCH RE映射和准协同定位符”字段可以包括DCI格式2D消息中的2比特,如以上关于图4所讨论的。在其他实施例中,可以使用新的DCI格式(例如,DCI格式2E)消息来指示QCL假设。新的DCI格式还可以包括“PDSCH RE映射和准协同定位指示符”字段以指示QCL假设,或新的DCI格式可以包括用于指示(一个或多个)QCL假设的另一合适字段。

每传输块的指示可以允许UE专用RS天线端口与由不同传输点发送的不同CSI-RS和/或CRS的QCL关联。这种QCL关联可以用于根据合适的时间偏移估计功能进行时间偏移测量和补偿。层与第一和第二“PDSCH RE映射和准协同定位指示符”字段之间的关联的示例针对总层数2-8被示出如下。

表2:层与第一和第二天线端口之间的关联

表2示出了用于将在指定天线端口上传输的层的CRS天线端口和/或CSI-RS天线端口的准协同定位。例如,如果调度总共8层的PDSCH传输用于传输,则在天线端口7-10上发送的一组第一层可以与第一CRS天线端口和/或CSI-RS天线端口准协同定位,并且在天线端口11-14上发送的一组第二层可以与第二CRS天线端口和/或CSI-RS天线端口准协同定位。为了简化接收的PDSCH传输的处理,在一些实施例中,与“PDSCH RE映射和准协同定位指示符”字段相关联的一些参数可以在两个或更多传输块上是相同的。例如,在这样的实施例中,UE105可以假设针对两个传输块的相同的PDSCH起始符号,其可以根据第一(或第二)“PDSCHRE映射和准协同定位指示符”字段来设置。

在其他实施例中,“PDSCH RE映射和准协同ID定位指示符”字段可以提供关于不同层上PDSCH RE映射的信息,并且可以不提供与UE专用RS天线端口相关联的层的QCL信息。在这种情况下,用于发送不同传输块的层的UE专用RS天线端口可以不被假设为准协同定位。相反,UE 105可以假设用于发送一个传输块的层的UE专用RS天线端口是准协同定位的。这种情况下的时间-频率跟踪应由UE 105在不同群组的UE专用RS上独立地执行。例如,根据表2,如果调度4层的PDSCH传输,则UE 105可以假设天线端口7和8的QCL或天线端口9和10的QCL,而不假设天线端口7-8和9-10之间的QCL。该实施例基于UE专用RS天线端口彼此非准协同定位的假设。该假设可以对应于可以通过例如RRC信令的较高层信令被配置给UE 105的新的QCL行为。在该实施例中,UE 105可以假设仅当资源分配的大小大于N个资源块(其中N=2或N=3)时,不存在QCL假设。在其他实施例中,UE 105可以假设UE专用参考信号和例如CRS和/或CSI-RS的其他参考信号之间的QCL,例如对应于服务小区。

图7示出了根据各种实施例的可以由eNB 110执行以确定和提供用于多小区多点SU-MIMO传输的QCL假设的过程700。在一些实施例中,eNB 110可以包括一个或多个非暂态计算机可读介质,所述非暂态计算机可读介质具有储存在其上的指令,当所述指令被eNB110执行时,使得eNB 110执行过程700。出于说明的目的,处理700的操作将被描述为由如关于图1-图3所述的eNB 110执行。然而,应当注意,其他类似的设备和/或网络元件可以执行过程700。尽管图7中示出了特定的示例和操作顺序,在各种实施例中,这些操作可以被重新排序,被拆分为附加的操作,被组合和/或一起被省略。在一些实施例中,图7示出的操作可以与关于其他实施例描述的操作组合,例如由图4-6和图8所示的操作和/或关于本文提供的非限制性示例所描述的一个或多个操作。

参考图7,在操作705处,eNB 110可以标识与将由与eNB 110相关联的下行链路小区发送的第一独立数据流或者将由与另一eNB110相关联的另一下行链路小区发送的第二独立数据流的参数相关的控制信息。在操作710处,eNB 110可以向UE 105发送包括参数的指示的控制信息,使得UE 105能够确定下行链路传输的参数。在各种实施例中,参数可以指示QCL假设,所述QCL假设将用于确定用于获得第一独立数据流或第二独立数据流的信道特性。例如,在一些实施例中,CSI-RS天线端口可以不被假设为彼此准协同定位,并且eNB 110可以使用信道状态信息(CSI)以辅助第一组一个或多个独立数据流的传输。在该实施例中,控制信息可以使用两个CSI过程之一、传输点专用CSI反馈过程、或聚合的CSI反馈过程来配置UE 105。

在传输点专用CSI反馈过程中,用于多点多小区SU-MIMO操作的CSI反馈可以包括用两个或更多CSI报告过程来配置UE 105,其中每个CSI报告过程包含一个NZP CSI-RS资源用于与一个传输点相关联的信道测量。每个CSI过程可以表示在UE 105与传输点之间的一条链路120的CSI。在该实施例中,对于每条链路120,UE 105可以向相应的传输点提供CSI反馈(例如,信道质量指示符(CQI)、预编码矩阵指示符(PMI)、秩指示符(RI)等等)。在一些实施例中,可以为聚合的CSI-RS资源提供CQI报告,所述聚合的CSI-RS资源由针对UE 105配置的一组CSI-RS资源组合而成。CSI-RS资源聚合可以通过向UE 105用信号发送CSI-RS资源索引而被提供。此外,每个CSI反馈过程可以产生不同的RI值,并且在当前标准下,第一CSI反馈过程可以从第二CSI反馈过程继承RI值。在该实施例中,第二CSI反馈的RI值可以被假设用于第一CSI反馈过程,而在多个CSI反馈过程中将独立地确定PMI和CQI。在各种实施例中,关于从相应的CSI反馈过程继承RI的指示可以被提供给另一CSI反馈过程,以基于使用PMI的预编码被计算用于CSI反馈过程的假设来计算CQI。具有聚合的CSI-RS资源的CQI可以被得到作为平均CQI,其中,在包括聚合的CSI-RS资源的CSI-RS资源之间的不同阶段上进行平均。

在聚合CSI反馈过程中,使用一个CSI报告过程,其中CSI过程包含具有从两个或更多传输点的所有天线元件发送的天线端口的CSI-RS资源。在这种情况下,应放宽对CSI-RS资源的现有QCL假设,并且UE不应假设一个CSI-RS资源的天线端口之间的准协同定位。另一实施例中,较高层信令可以用于指示对于给定CSI-RS资源的QCL假设是否有效。eNB 110可以标识并向UE 105发送与将用于较高层信令(例如,RRC信令)中的CSI报告的CSI-RS天线端口的聚合相关的指示。

根据各种实施例,生成控制信息可以包括码字到层的映射,以帮助控制针对每个传输层的数据速率分配。例如,一个或多个传输块可以被转换成码字,其可以用于获得一个或多个调制符号。然后可以将这些调制符号映射到一个或多个天线端口。在一些实施例中,在使用两个或更多DCI消息来调度PDSCH传输的情况下,eNB 110可以将每个码字映射到单独的传输层,使得每个码字和每个层之间存在一一对应的关系。在其他实施例中,eNB 110可以将多个层映射到每个码字,这可以减少与指示调制和编码方案相关联的信令开销。

现参考图7,一旦将控制信息被标识并且发送给UE 105,则在操作715处,eNB 110可以在下行链路信道中发送第一组一个或多个独立数据流。

图8示出了根据各种实施例的可以由eNB 110执行以确定并且提供用于多小区多点SU-MIMO传输的QCL假设的过程800。在一些实施例中,eNB 110可以包括一个或多个非暂态计算机可读介质,所述非暂态计算机可读介质具有储存在其上的指令,当所述指令由eNB110执行时,使得eNB 110执行过程800。出于说明的目的,过程800的操作将被描述为由关于图1-图3所述的eNB 110执行。然而,应当注意,其他类似的设备和/或网络元件可以操作过程800。尽管图8示出了特定的示例和操作顺序,但在各种实施例中,这些操作可以被重新排序、拆分为附加的操作、被组合和/或一起被省略。在一些实施例中,图8中示出的操作可以与关于其他实施例描述的操作组合,例如由图4-7中的一个或多个所示出的操作和/或关于本文提供的非限制性实施例所描述的一个或多个操作。

参考图8,在操作805处,eNB 110可以生成一组独立数据流以从相关联的传输点在下行链路信道中被发送。在各种实施例中,与eNB 110相关联的传输点可以对应于下行链路小区115或一个或多个物理传输天线元件。在操作810处,eNB 110可以使用一个或多个传输天线元件来控制该组独立数据流到UE 105的传输。每个独立数据流可以对应于单个层,并且每个独立数据流可以使用与一个或多个UE专用RS(例如,天线端口7-14中的一个或多个)相关联的至少一个天线端口来发送。eNB 110可以从UE 105接收CSI反馈,其可以由eNB 110用于生成和发送独立数据流。在这样的实施例中,eNB 110可以配置UE 105具有两个CSI过程中的一个,例如先前关于图7的所讨论的传输点专用CSI反馈过程或聚合的CSI反馈过程。

在操作815处,eNB 110可以生成与所述传输点或另一传输点相关联的控制信息,该控制信息指示该组独立数据流的参数。在操作820处,eNB 110可以使得利用一个或多个发送天线元件来发送控制信息。这些参数可以指示用于该组独立数据流的接收的准协同定位假设。在各种实施例中,发送控制信息可以包括使用根据以上所述的各种示例实施例的两个或更多“PDSCH RE映射和准协同定位指示符”字段来用信号通知UE专用RS天线端口与一个或多个其他参考信号的准协同定位。此外,在一些实施例中,当两个或更多DCI消息将用于调度PDSCH传输时,eNB 110可以通过将一个码字映射到一个传输层来生成控制信息。在其他实施例中,eNB 110可以将一个码字映射到与第一组一个或多个独立数据流中的一个或多个独立数据流相关联的两个或更多传输层,或将一个码字映射到与第二组一个或多个独立数据流中的一个或多个独立数据流相关联的两个或更多层。在任一实施例中,控制信息可以指示每个码字与每个传输层之间是否存在一一对应关系,或者每个码字与两个或更多传输层之间是否存在一对多的对应关系。

以上实现方式的描述提供了示例的实施例的说明和描述,但并不意在穷举或将本发明的范围限制到所公开的精确形式。根据上述教导,修改和变化是可能的和/或可以从本发明的各种实现方式的实践中获得。例如,所述的示例实施例涉及辅助多小区多点SU-MIMO传输。然而,示例的实施例可以被扩展以适用于例如辅助多小区多点多用户(MU)-MIMO传输。

以下提供了一些非限制性的示例:

示例1可以包括至少一个计算机可读介质,所述计算机可读介质包括指令,当所述指令由一个或多个处理器执行时,使得用户设备(UE):处理从第一传输点在下行链路信道中接收的第一组一个或多个独立数据流;处理从第二传输点在下行链路信道中接收的第二组一个或多个独立数据流;处理从第一传输点或第二传输点接收的控制信息;确定准协同定位假设,以用于估计用于第一组一个或多个独立数据流的接收或用于第二组一个或多个独立数据流的接收的信道特性,其中,将被使用的准协同定位假设基于控制信息内的指示;以及根据准协同定位假设估计用于第一组一个或多个独立数据流的接收或者第二组一个或多个独立数据流的接收的信道特性。至少一个计算机可读介质可以是非暂态计算机可读介质。

示例2可以包括示例1和/或本文所公开的任何其他一个或多个示例的至少一个计算机可读介质,其中第一组一个或多个独立数据流中的至少一个独立数据流对应于第一层,并且该至少一个独立数据流将由与第一传输点的一个或多个UE专用参考信号(RS)相关联的多个天线端口中的至少一个天线端口发送。

示例3可以包括示例2和/或本文公开的任何其他一个或多个示例的至少一个计算机可读介质,其中,该指示将指示多个天线端口不被假设为就多普勒频移、多普勒扩展、平均延迟、或延迟扩展中的至少一个而言准协同定位。

示例4可以包括示例3和/或本文公开的任何其它一个或多个示例的至少一个计算机可读介质,其中,在预定义的一组物理资源块(PRB)上假设相同的多普勒频移、多普勒扩展、平均延迟、和延迟扩展。

示例5可以包括示例3和/或本文公开的任何其他一个或多个示例的至少一个计算机可读介质,其中,该指示用于指示与一个或多个UE专用RS相关联的多个天线端口中的天线端口和与一个或多个其他RS相关联的一个或多个天线端口准协同定位。

示例6可以包括示例5和/或本文公开的任何其他一个或多个示例的至少一个计算机可读介质,其中一个或多个其他RS包括小区专用RS(CRS)、信道状态信息参考信号(CSI-RS)或发现RS中的一个。

示例7可以包括示例2和/或本文公开的任何其它一个或多个示例的至少一个计算机可读介质,其中,该指示将指示与一个或多个UE专用RS相关联的多个天线端口中的天线端口与其他RS的准协同定位,并且其中,当指令由一个或多个处理器执行时,使得UE:使用两个或多个物理下行链路共享信道(PDSCH)资源元素(RE)映射和准协同定位指示符字段来确定一个或多个其他RS。

示例8可以包括示例2的至少一个计算机可读介质和/或本文公开的任何其他一个或多个示例,其中,指示将指示与一个或多个的UE专用RS相关联的多个天线端口中的天线端口与其他RS的准协同定位,并且其中,当指令由一个或多个处理器执行时,使得所述UE:使用两个或更多下行链路控制信息(DCI)格式2D消息来确定一个或多个其他RS,其中,两个或更多DCI格式2D消息中的每一个包括至少一个PDSCH RE映射和准协同定位指示符字段。

示例9可以包括示例2的至少一个计算机可读介质和/或本文公开的任何其他一个或多个示例,其中,该指示将指示用于第一组一个或多个独立数据流中的一个或多个独立数据流和第二组一个或多个独立数据流中的一个或多个独立数据流的RE映射,并且其中,当指令被一个或多个处理器执行时,使得UE:使用两个或更多PDSCH RE映射和准协同定位指示符字段来确定RE映射。

示例10可以包括要在用户设备(UE)中实现的装置,包括:包括至少第一接收天线和第二接收天线的天线阵列;具有指令的一个或多个计算机可读存储介质;以及与天线阵列和一个或多个计算机可读存储介质耦接的一个或多个处理器,其中,一个或多个处理器中的至少一个处理器将执行指令以:控制使用第一接收天线在第一小区的下行链路信道中接收第一组一个或多个独立数据流;控制使用第二接收天线在第二小区的下行链路信道中接收第二组一个或多个独立数据流;控制使用第一接收天线从第一下行链路小区或使用第二接收天线从第二下行链路小区接收控制信息;基于控制信息的指示,确定准协同定位假设,其中准协同定位假设将用于估计用于第一组一个或多个独立数据流的接收或用于第二组一个或多个独立数据流的接收的信道特性;并且使用准协同定位假设,估计用于第一组一个或多个独立数据流的接收或用于第二组一个或多个独立数据流的接收的信道特性。

示例11可以包括示例10和/或本文公开的任何其他一个或多个示例的装置,其中第一组一个或多个独立数据流中的至少一个独立数据流对应于一层,并且该至少一个独立数据流由与第一下行链路小区的一个或多个UE专用参考信号相关联的多个天线端口中的至少一个天线端口发送,其中,多个天线端口包括天线端口7-14。

示例12可以包括示例11和/或本文公开的任何其他一个或多个示例的装置,其中,指示将指示多个天线端口不被假设为针对多普勒频移、多普勒扩展、平均延迟、和/或延迟扩展准协同定位,以及在预定义的一组物理资源块(PRB)上假设有相同的多普勒频移、多普勒扩展、平均延迟和延迟扩展。

示例13可以包括示例12的装置,其中,一个或多个UE专用RS天线端口中的天线端口和与一个或多个其他RS相关联的天线端口准协同定位,其中,一个或多个其他RS包括包含天线端口0-3的小区专用RS、包含天线端口15-21的信道状态信息RS(CSI-RS)、或发现RS中的至少一个。

示例14可以包括示例11和/或本文公开的任何其他一个或多个示例的装置,其中,控制信息包括使用两个或多个物理下行链路共享信道(PDSCH)资源元素(RE)映射和准协同定位指示符字段对与一个或多个UE专用参考信号相关联的多个天线端口和与其他参考信号相关联的天线端口的准协同定位的指示。

示例15可以包括示例11和/或本文公开的任何其他一个或多个示例的装置,其中,指示将指示与一个或多个UE专用RS相关联的多个天线端口与其他RS的准协同定位,并且一个或多个处理器中的至少一个处理器将执行所述指令以:使用包括一个PDSCH RE映射和准协同定位指示符字段的两个或多个下行链路控制信息格式2D来确定其他RS。

示例16可以包括示例11和/或本文公开的任何其他一个或多个示例的装置,其中该指示将指示用于第一组一个或多个独立数据流中的一个或多个独立数据流和第二组一个或多个独立数据流中的一个或多个独立数据流的RE映射,并且一个或多个处理器中的至少一个处理器执行所述指令以:使用两个或更多PDSCH RE映射和准协同定位指示符字段来确定RE映射。

示例17可以包括示例10和/或本文公开的任何其它一个或多个示例的装置,其中,信道状态信息(CSI)由第一下行链路小区或第二下行链路小区用来辅助第一组一个或多个独立数据流或第二组一个或多个独立数据流的传输,并且与CSI参考信号(CSI-RS)相关联的天线端口不被假设为准协同定位,并且,其中至少一个处理器将执行指令以:控制在较高层信令中对与应该被用于CSI报告的被配置的CSI-RS的天线端口的聚合相关的指示的接收。

示例18可以包括至少一个计算机可读介质,其包括指令,使得演进节点B(eNB)响应于由eNB执行所述指令以:使得从与所述eNB相关联的第一传输点在下行链路信道中传输第一组一个或多个独立数据流,其中,第一传输点对应于下行链路小区,并且第二传输点是另一eNB或小型小区基站中的一个;生成控制信息,所述控制信息包括第一组一个或多个独立数据流或将由第二传输点在第二传输点的下行信道中发送的第二组一个或多个独立数据流中的至少一个的参数的指示;并且实现控制信息的传输。所述至少一个计算机可读介质可以是非暂态计算机可读介质。

示例19可以包括示例18和/或本文公开的任何其他一个或多个示例的至少一个计算机可读介质,其中,与CSI参考信号(CSI-RS)相关联的天线端口不被假设为准协同定位,并且其中,指令还使得eNB响应于指令被所述eNB的执行用来:使用信道状态信息(CSI)来辅助第一组一个或多个独立数据流的传输;并且在较高层信令中发送与用于CSI报告的被配置的CSI-RS的天线端口的聚合相关的指示。

示例20可以包括示例18和/或本文公开的任何其它一个或多个示例的至少一个计算机可读介质,其中,指令还使得eNB响应于所述指令由所述eNB的执行用来:当两个或更多下行链路控制信息(DCI)消息将被用来调度物理下行链路共享信道(PDSCH)时,将一个码字映射到一个传输层。

示例21可以包括示例18和/或本文公开的任何其它一个或多个示例的至少一个计算机可读介质,其中,指令还使得eNB响应于所述指令由所述eNB的执行,而进行以下操作:将一个码字映射到与第一组一个或多个独立数据流中的一个或多个独立数据流相关联的两个或更多传输层,或将一个码字映射到与第二组一个或多个独立数据流中的一个或多个独立数据流相关联的两个或更多层。

示例22可以包括将在演进节点B(eNB)中实现的装置,包括:具有指令的一个或多个计算机可读存储介质;以及与天线阵列和一个或多个计算机可读存储介质耦接的一个或多个处理器,其中,一个或多个处理器中的至少一个处理器将执行指令以:标识与将由下行链路小区发送的第一独立数据流或将由另一下行链路小区发送的第二独立数据流的参数相关的控制信息;并且实现第一独立数据流和控制信息的传输。

示例23可以包括示例22和/或本文公开的任何其他一个或多个示例的装置,其中,与CSI参考信号(CSI-RS)相关联的天线端口不被假设为准协同定位,并且其中,至少一个处理器将执行指令以:使用信道状态信息(CSI)来辅助第一独立数据流的传输;并且在较高层信令中发送与将用于CSI报告的被配置的CSI-RS的天线端口的聚合相关的指示。

示例24可以包括示例22和/或本文公开的任何其他一个或多个示例的装置,其中,所述至少一个处理器执行指令以:当两个或更多下行链路控制信息(DCI)消息将用于调度物理下行链路共享信道(PDSCH)时,将一个码字映射到一个传输层。

示例25可以包括示例22和/或本文公开的任何其他一个或多个示例的装置,其中,至少一个处理器将执行指令以:将一个码字映射到与包括第一独立数据流的一个或多个独立数据流相关联的两个或更多层,或将一个码字映射到与包括第二独立数据流的一个或多个独立数据流相关联的两个或更多层。

示例26可以包括将在用户设备(UE)中实现的装置,包括:射频(RF)电路,用于在第一下行链路信道中接收从第一传输点接收的第一组一个或多个独立数据流;在第二下行链路信道中接收来自第二传输点的第二组一个或多个独立数据流;以及从第一传输点或第二传输点接收控制信息,以及基带电路,用于处理第一组一个或多个独立数据流;处理第二组一个或多个独立数据流;处理控制信息以确定准协同定位假设,以用于估计用于第一组一个或多个独立数据流的接收或用于第二组一个或多个独立数据流的接收的信道特性,其中,将使用的准协同定位假设基于控制信息内的指示;并且根据准协同定位假设,估计用于第一组一个或多个独立数据流的接收或用于第二组一个或多个独立数据流的接收的信道特性。

示例27可以包括示例26和/或本文公开的任何其它一个或多个示例的装置,其中,第一组一个或多个独立数据流中的至少一个独立数据流对应于第一层,并且至少一个独立数据流将由与第一传输点的一个或多个UE专用参考信号(RS)相关联的多个天线端口中的至少一个天线端口传输。

示例28可以包括示例27和/或本文公开的任何其他一个或多个示例的装置,其中,指示将指示多个天线端口不被假设为就多普勒频移、多普勒扩展、平均延迟或延迟扩展而言准协同定位。

示例29可以包括示例28和/或本文公开的任何其他一个或多个示例的装置,其中,在预定义的一组物理资源块(PRB)上假设相同的多普勒频移、多普勒扩展、平均延迟和延迟扩展。

示例30可以包括示例28和/或本文公开的任何其他一个或多个示例的装置,其中,指示将指示与一个或多个UE指定RS相关联的多个天线端口中的天线端口和与一个或多个其他RS相关联的一个或多个天线端口准协同定位。

示例31可以包括示例30和/或本文公开的任何其他一个或多个示例的装置,其中,一个或多个其他RS包括小区专用RS(CRS)、信道状态信息参考信号(CSI-RS)或发现RS中的一个。

示例32可以包括示例27和/或本文公开的任何其他一个或多个示例的装置,其中,指示将指示与一个或多个UE指定RS相关联的多个天线端口中的天线端口和与其他RS相关联的天线端口的准协同定位,并且其中,基带电路将使用两个或更多物理下行链路共享信道(PDSCH)资源元素(RE)映射和准协同定位指示符字段来确定一个或多个其他RS。

示例33可以包括示例27和/或本文公开的任何其他一个或多个示例的装置,其中,指示将指示与一个或多个UE专用RS相关联的多个天线端口的天线端口和与其他RS相关联的天线端口的准协同定位,并且其中,基带电路将使用两个或更多下行链路控制信息(DCI)格式2D消息来确定一个或多个其他RS,其中两个或更多DCI格式2D消息中的每一个包括至少一个PDSCH RE映射和准协同定位指示符字段。

示例34可以包括示例27和/或本文公开的任何其他一个或多个示例的装置,其中,指示将指示用于第一组一个或多个独立数据流中的一个或多个独立数据流和第二组一个或多个独立数据流中的一个或多个独立数据流的RE映射,并且其中基带电路将使用两个或更多PDSCH RE映射和准协同定位指示符字段来确定RE映射。

示例35可以包括用于提供多小区多点单用户(SU)多输入多输出(MIMO)传输的计算机实现的方法,该方法包括:由用户设备(UE)接收和处理从第一传输点在下行链路信道中接收的第一组一个或多个独立数据流;由UE接收和处理从第二传输点在下行链路信道中接收的第二组一个或多个独立数据流;由UE接收和处理从第一传输点或第二传输点接收的控制信息;由UE确定将被用于估计用于第一组一个或多个独立数据流的接收或用于第二组一个或多个独立数据流的接收的信道特性的准协同定位假设,其中,将使用的准协同定位假设基于控制信息内的指示;以及根据准协同定位假设,由UE估计用于第一组一个或多个独立数据流的接收,或第二组一个或多个独立数据流的接收的信道特性。

示例36可以包括示例35和/或本文公开的任何其它一个或多个示例的方法,其中,第一组一个或多个独立数据流中的至少一个独立数据流对应于第一层,并且至少一个独立数据流将由与第一传输点的一个或多个UE专用参考信号(RS)相关联的多个天线端口中的至少一个天线端口发送。

示例37可以包括示例36和/或本文公开的任何其他一个或多个示例的方法,其中,所述指示指示多个天线端口不被假设为就多普勒频移、多普勒扩展、平均延迟或延迟扩展中的至少一个而言准协同定位。

示例38可以包括示例37和/或本文公开的任何其它一个或多个示例的方法,其中,在预定义的一组物理资源块(PRB)上假设相同的多普勒频移、多普勒扩展、平均延迟和延迟扩展。

示例39可以包括示例37和/或本文公开的任何其他一个或多个示例的方法,其中,所述指示指示与一个或多个UE专用RS相关联的多个天线端口的天线端口和与一个或多个其他RS相关联的一个或多个天线端口准协同定位。

示例40可以包括示例39的方法,其中,一个或多个其他RS包括小区专用RS(CRS)、信道状态信息参考信号(CSI-RS)或发现RS中的一个。

示例41可以包括示例36和/或本文公开的任何其它一个或多个示例的方法,其中,所述指示指示与一个或多个UE专用RS相关联的多个天线端口中的天线端口和与其他RS相关联的天线端口准协同定位,并且该方法还包括:由UE使用两个或更多物理下行链路共享信道(PDSCH)资源元素(RE)映射和准协同定位指示符字段确定一个或多个其他RS。

示例42可以包括示例36和/或本文公开的任何其他一个或多个示例的方法,其中,所述指示指示与一个或多个UE专用RS相关联的多个天线端口中的天线端口和与其他RS相关联的天线端口的准协同定位,并且该方法还包括:由UE使用两个或更多下行链路控制信息(DCI)格式2D消息,确定一个或多个其他RS,其中两个或更多DCI格式2D消息中的每一个包括至少一个PDSCH RE映射和准协同定位指示符字段。

示例43可以包括示例36和/或本文公开的任何其他一个或多个示例的方法,其中,所述指示指示用于第一组一个或多个独立数据流中的一个或多个独立数据流和第二组一个或多个独立数据流中的一个或多个独立数据流的RE映射,并且该方法还包括:由UE使用两个或更多PDSCH RE映射和准协同定位指示符字段,确定RE映射。

示例44可以包括至少一个计算机可读介质,其包括指令,所述指令响应于指令由UE的执行,使得用户设备(UE)执行示例35-43和/或本文公开的任何其他任何一个或多个示例的方法。所述至少一个计算机可读介质可以是非暂态计算机可读介质。

示例45可以包括将实现在用户设备(UE)中的装置,包括:包括至少第一接收天线和第二接收天线的天线阵列;与天线阵列耦合的射频(RF)电路,所述RF电路使用第一接收天线在第一小区的下行链路信道中接收第一组一个或多个独立数据流、使用第二接收天线在第二小区的下行链路信道中接收第二组一个或多个独立数据流、以及使用第一接收天线从第一下行链路小区或者使用第二接收天线从第二下行链路小区接收控制信息;以及与RF电路耦接的基带电路,所述基带电路基于控制信息的指示来确定准协同定位假设,其中,准协同定位假设被用于估计用于第一组一个或多个独立数据流的接收或第二组一个或多个独立数据流的接收的信道特性;并且使用准协同定位假设,估计用于第一组一个或多个独立数据流的接收或用于第二组一个或多个独立数据流的接收的信道特性。

示例46可以包括示例45和/或本文公开的任何其他一个或多个示例的装置,其中,第一组一个或多个独立数据流中的至少一个独立数据流对应于一层,并且至少一个独立数据流由与第一下行链路小区的一个或多个UE专用参考信号相关联的多个天线端口中的至少一个天线端口发送,其中,多个天线端口包括天线端口7-14。

示例47可以包括示例46和/或本文公开的任何其他一个或多个示例的装置,其中,所述指示将指示多个天线端口不被假设为就多普勒频移、多普勒扩展、平均延迟、和/或延迟扩展而言准协同定位,以及在预定义的一组物理资源块(PRB)上假设相同的多普勒频移、多普勒扩展、平均延迟、和延迟扩展。

示例48可以包括示例47和/或本文公开的任何其它一个或多个示例的装置,其中,一个或多个UE专用RS天线端口的天线端口和与一个或多个其他RS相关联的天线端口准协同定位,其中,一个或多个其他RS包括包含天线端口0-3的小区专用RS、包含天线端口15-21的信道状态信息RS(CSI-RS)或发现RS中的至少一个。

示例49可以包括示例46和/或本文公开的任何其他一个或多个示例的装置,其中,控制信息包括使用两个或多个物理下行链路共享信道(PDSCH)资源元素(RE)映射和准协同定位指示符字段、对与一个或多个UE专用参考信号相关联的多个天线端口和与其他参考信号相关联的天线端口的准协同定位的指示。

示例50可以包括示例46和/或本文公开的任何其他一个或多个示例的装置,其中,所述指示将指示与一个或多个UE专用RS相关联的多个天线端口和与其他RS相关联的天线端口的准协同定位,并且基带电路将使用包括一个PDSCH RE映射和准协同定位指示符字段的两个或更多下行链路控制信息格式2D,以确定其他RS。

示例51可以包括示例46和/或本文公开的任何其他一个或多个示例的装置,其中,所述指示将指示用于第一组一个或多个独立数据流中的一个或多个独立数据流和第二组一个或多个独立数据流中的一个或多个独立数据流的RE映射,并且基带电路使用两个或更多PDSCH RE映射和准协同定位指示符字段,来确定RE映射。

示例52可以包括示例45和/或本文公开的任何其他一个或多个示例的装置,其中,信道状态信息(CSI)由第一下行链路小区或第二下行链路小区使用,以辅助第一组一个或多个独立数据流或第二组一个或多个独立数据流的传输,并且与CSI参考信号(CSI-RS)相关联的天线端口不被假设为准协同定位,并且基带电路将控制在更高层信令中接收与应该用于CSI报告的被配置的CSI-RS的天线端口的聚合相关的指示。

示例53可以包括用于提供多小区多点单用户(SU)多输入多输出(MIMO)传输的计算机实现的方法,该方法包括:由用户设备(UE)使用第一接收天线接收在第一小区的下行链路信道中的第一组一个或多个独立数据流;由UE使用第二接收天线接收在第二小区的下行链路信道中的第二组一个或多个独立数据流;由UE使用第一接收天线从第一下行链路小区或使用第二接收天线从第二下行链路小区接收控制信息;由UE基于控制信息的指示来确定准协同定位假设,其中,准协同定位假设将用于估计用于第一组一个或多个独立数据流的接收或用于第二组一个或多个独立数据流的接收的信道特性;以及由UE使用准协同定位假设来估计用于第一组一个或多个独立数据流的接收或用于第二组一个或多个独立数据流的接收的信道特性。

示例54可以包括示例53和/或本文公开的任何其他一个或多个示例的方法,其中,第一组一个或多个独立数据流中的至少一个独立数据流对应于一层,并且至少一个独立数据流由与第一下行链路小区的一个或多个UE专用参考信号相关联的多个天线端口中的至少一个天线端口发送,其中,多个天线端口包括天线端口7-14。

示例55可以包括示例54和/或本文公开的任何其他一个或多个示例的方法,其中所述指示指示多个天线端口不被假设为就多普勒频移、多普勒扩展、平均延迟和/或延迟扩展而言是准协同定位的,并且在预定义的一组物理资源块(PRB)上假设有相同的多普勒频移、多普勒扩展、平均延迟和延迟扩展。

示例56可以包括示例55和/或本文公开的任何其它一个或多个示例的方法,其中一个或多个UE专用RS天线端口中的天线端口和与一个或多个其他RS相关联的天线端口准协同定位,其中,一个或多个其他RS包括包含天线端口0-3的小区专用RS、包含天线端口15-21的信道状态信息RS(CSI-RS)、或发现RS中的至少一个。

示例57可以包括示例54和/或本文公开的任何其他一个或多个示例的方法,其中,控制信息包括使用两个或多个物理下行链路共享信道(PDSCH)资源元素(RE)映射和准同位置指示符字段、对与一个或多个UE专用参考信号相关联的多个天线端口和与其他参考信号相关联的天线端口的准协同定位的指示。

示例58可以包括示例54的方法和/或本文公开的任何其他一个或多个示例,其中,所述指示指示与一个或多个UE专用RS相关联的多个天线端口与与其他RS相关联的天线端口的准协同定位,并且一个或多个处理器的至少一个处理器将执行指令以:使用包括一个PDSCH RE映射和准协同定位指示符字段的两个或多个下行链路控制信息格式2D以确定其它RS。

示例59可以包括示例54和/或本文公开的任何其他一个或多个示例的方法,其中,所述指示将指示用于第一组一个或多个独立数据流中的一个或多个独立数据流和第二组一个或多个独立数据流中的一个或多个独立数据流的RE映射,并且一个或多个处理器中的至少一个处理器将执行指令以:使用两个或多个PDSCH RE映射和准协同定位指示字段确定RE映射。

示例60可以包括示例53和/或本文公开的任何其他一个或多个示例的方法,其中信道状态信息(CSI)由第一下行链路小区或第二下行链路小区使用,以辅助一个或更多的独立数据流的第一组或第二组一个或多个独立数据流的传输。

示例61可以包括至少一个计算机可读介质,其包括指令,使得用户设备(UE)响应于指令由UE的执行,来执行示例53-60的任一项和/或本文公开的任何其他一个或多个示例的方法。所述至少一个计算机可读介质可以是非暂态计算机可读介质。

示例62可以包括由演进节点B(eNB)实现的装置,包括:具有指令的一个或多个计算机可读存储介质;以及与天线阵列和一个或多个计算机可读存储介质耦合的一个或多个处理器,其中,所述一个或多个处理器中的至少一个处理器执行所述指令,以:使得从与eNB相关联的第一传输点在下行链路信道中传输第一组一个或多个独立数据流,其中,第一传输点对应于下行链路小区,并且第二传输点是另一eNB或小型小区基站中的一个;生成控制信息,该控制信息包括第一组一个或多个独立数据流或由第二传输点在第二传输点的下行链路信道中发送的第二组一个或多个独立数据流中的至少一个的参数的指示;并且实现控制信息的传输。

示例63可以包括示例62和/或本文公开的任何其他一个或多个示例的装置,其中与CSI参考信号(CSI-RS)相关联的天线端口不被假设为准协同定位,并且其中,指令还使得eNB响应于指令由eNB的执行,以:使用信道状态信息(CSI)来辅助第一组一个或多个独立数据流的传输;并且在较高层信令中发送与将用于CSI报告的被配置的CSI-RS的天线端口的聚合相关的指示。

示例64可以包括示例62的设备和/或本文公开的任何其他一个或多个示例,其中,指令还使得eNB响应于指令由eNB的执行以:当两个或更多下行链路控制信息(DCI)消息将被用来调度物理下行链路共享信道(PDSCH)时,将一个码字映射到一个传输层。

示例65可以包括示例62和/或本文公开的任何其他一个或多个示例的装置,其中指令还使得eNB响应于指令由eNB的执行以:将一个码字映射到与第一组一个或多个独立数据流中的一个或多个独立数据流相关联的两个或更多传输层,或将一个码字映射到与第二组一个或多个独立数据流中的一个或多个独立数据流相关联的两个或更多层。

示例66可以包括由演进节点B(eNB)实现的装置,包括:用于从与eNB相关联的第一传输点在下行链路信道中发送第一组一个或多个独立数据流的射频(RF)电路,其中,第一传输点对应于下行链路小区,并且第二传输点是另一eNB或小型小区基站中的一个;以及与RF电路耦接的基带电路,基带电路生成控制信息,所述控制信息包括第一组一个或多个独立数据流或将由第二传输点在第二传输点的下行链路信道中发送的第二组一个或多个独立数据流中的至少一个的参数的指示,并且其中,RF电路将发送控制信息。

示例67可以包括示例66和/或本文公开的任何其他一个或多个示例的装置,其中与CSI参考信号(CSI-RS)相关联的天线端口不被假设为准协同定位,并且其中基带电路将使用信道状态信息(CSI)来辅助第一组一个或多个独立数据流的传输;并且在较高层信令中实现与将用于CSI报告的被配置的CSI-RS的天线端口的聚合相关的指示的传输。

示例68可以包括示例66和/或本文公开的任何其他一个或多个示例的装置,其中当两个或更多下行链路控制信息(DCI)消息将被用于调度物理下行链路共享信道(PDSCH)时,基带电路将一个码字映射到一个传输层。

示例69可以包括示例66和/或本文公开的任何其他一个或多个示例的装置,其中基带电路将一个码字映射到与第一组一个或多个独立数据流中的一个或多个独立数据流相关联的两个或更多传输层,或将一个码字映射到与第二组一个或多个独立数据流中的一个或多个独立数据流相关联的两个或更多层。

示例70可以包括将实现在演进节点B(eNB)中的装置,包括:用于标识控制信息的基带电路,该控制信息与将由下行链路小区发送的第一独立数据流或将由另一下行链路小区发送的第二独立数据流的参数相关;并且实现第一独立数据流和控制信息的传输;以及与基带电路耦接的射频(RF)电路,RF电路将发送第一独立数据流和控制信息。

示例71可以包括示例70和/或本文公开的任何其它一个或多个示例的装置,其中,与CSI参考信号(CSI-RS)相关联的天线端口不被假设为准协同定位,并且其中基带电路将使用信道状态信息(CSI)以辅助第一独立数据流的传输;并且RF电路将在较高层信令中发送与将用于CSI报告的被配置的CSI-RS的天线端口的聚合相关的指示。

示例72可以包括示例70和/或本文公开的任何其它一个或多个示例的装置,其中,当两个或更多下行链路控制信息(DCI)消息被用于调度物理下行链路共享信道(PDSCH)时,基带电路将一个码字映射到一个传输层。

示例73可以包括示例70和/或本文公开的任何其他一个或多个示例的装置,其中,基带电路将一个码字映射到与包括第一独立数据流的一个或多个独立数据流相关联的两个或更多层,或将一个码字映射到与包括第二独立数据流的一个或多个独立数据流相关联的两个或更多层。

示例74可以包括具有指令的至少一个计算机可读介质,指令使得演进节点B(eNB)响应于指令由eNB的执行以:标识与将由下行链路小区发送的第一独立数据流或将由另一下行链路小区发送的第二独立数据流的参数相关的控制信息;以及实现第一独立数据流和控制信息的传输。至少一个计算机可读介质可以是非暂态计算机可读介质。

示例75可以包括示例74和/或本文公开的任何其他一个或多个示例的至少一个计算机可读介质,其中,与CSI参考信号(CSI-RS)相关联的天线端口不被假设为准协同定位,并且其中,至少一个处理器执行指令以:使用信道状态信息(CSI)来辅助第一独立数据流的传输;并且在较高层信令中发送与将用于CSI报告的被配置的CSI-RS的天线端口的聚合相关的指示。

示例76可以包括示例74和/或本文公开的任何其他一个或多个示例的至少一个计算机可读介质,其中至少一个处理器执行指令以:当两个或更多下行链路控制信息(DCI)消息将用于调度物理下行链路共享信道(PDSCH)时,将一个码字映射到一个传输层。

示例77可以包括示例74和/或本文公开的任何其他一个或多个示例的至少一个计算机可读介质,其中,所述至少一个处理器执行指令以:将一个码字映射到与包括第一独立数据流的一个或多个独立数据流相关联的两个或更多层,或将一个码字映射到与包括第二独立数据流的一个或多个独立数据流相关联的两个或更多层。

示例78可以包括用于提供多小区多点单用户(SU)多输入多输出(MIMO)传输的计算机实现的方法,该方法包括:由演进节点B(eNB)从与eNB相关联的第一传输点在下行链路信道中发送第一组一个或多个独立数据流,其中,第一传输点对应于下行链路小区,并且第二传输点是另一eNB中或小型小区基站中的一个;由eNB生成控制信息,所述控制信息包括对第一组一个或多个独立数据流或在第二传输点的下行链路信道中由第二传输点发送的第二组一个或多个独立数据流中的至少一个的参数的指示;并且由eNB发送控制信息。

示例79可以包括示例78和/或本文公开的任何其它一个或多个示例的方法,其中,与CSI参考信号(CSI-RS)相关联的天线端口不被假设为准协同定位,并且还包括:由eNB使用信道状态信息(CSI),以辅助第一组一个或多个独立数据流的传输;并且由eNB在较高层信令中发送与将用于CSI报告的被配置的CSI-RS的天线端口的聚合相关的指示。

示例80可以包括示例78和/或本文公开的任何其他一个或多个示例的方法,还包括:当两个或多个下行链路控制信息(DCI)消息将被用于调度物理下行链路共享信道(PDSCH)时,由eNB将一个码字映射到一个传输层。

示例81可以包括示例78和/或本文公开的任何其他一个或多个示例的方法,还包括:由eNB将一个码字映射到与第一组一个或多个独立数据流中的一个或多个独立数据流相关联的两个或更多传输层,或将一个码字映射到与第二组一个或多个独立数据流中的一个或多个独立数据流相关联的两个或更多层。

示例82可以包括具有指令的至少一个计算机可读介质,使得演进节点B(eNB)响应于指令由eNB的执行,以执行示例78-81的任一项和/或本文公开的任何其它一个或多个示例的方法。至少一个计算机可读介质可以是非暂态计算机可读介质。

示例83可以包括用于提供多小区多点单用户(SU)多输入多输出(MIMO)传输的计算机实现的方法,该方法包括:由演进节点B(eNB)标识与将由下行链路小区发送的第一独立数据或将由另一下行链路小区发送的第二独立数据流的参数相关的控制信息;以及由eNB发送第一独立数据流和控制信息。

示例84可以包括示例82和/或本文公开的任何其它一个或多个示例的方法,其中,与CSI参考信号(CSI-RS)相关联的天线端口不被假设为准协同定位,并且该方法还包括:由eNB使用信道状态信息(CSI)以辅助第一独立数据流的传输;并且由eNB在较高层信令中发送与将用于CSI报告的被配置的CSI-RS的天线端口的聚合相关的指示。

示例85可以包括示例82和/或本文公开的任何其他一个或多个示例的方法,还包括:当两个或更多下行链路控制信息(DCI)消息将用于调度物理下行链路共享信道(PDSCH)时,由eNB将一个码字映射到一个传输层。

示例86可以包括示例82和/或本文公开的任何其他一个或多个示例的方法,还包括:由eNB将一个码字映射到与包括第一独立数据流的一个或多个独立数据流相关联的两个或更多层,或将一个码字流映射到与包括第二独立数据流的一个或多个独立数据流相关联的两个或更多层。

示例87可以包括至少一个计算机可读介质,其包括指令,使得演进节点B(eNB)响应于指令由eNB的执行,以执行示例83-86的任一项和/或本文公开的任何其它一个或多个示例的方法。至少一个计算机可读介质可以是非暂态计算机可读介质。

上述示例的前述描述提供了本文公开的示例性实施例的说明和描述,但是上述示例并不意在穷尽的或将本发明的范围限制于所公开的精确形式。根据上述教导,修改和变化是可能的,和/或可以从本发明的各种实现方式的实践中获得。

相关技术
  • 用于基于多点多小区单用户的多输入多输出传输的方法、装置和系统
  • 用于基于多点多小区单用户的多输入多输出传输的方法、装置和系统
技术分类

06120112854691