掌桥专利:专业的专利平台
掌桥专利
首页

一种基于磁场梯度张量的目标定位方法及装置

文献发布时间:2023-06-19 16:06:26



技术领域

本发明属于地磁学技术领域,具体涉及一种基于磁场梯度张量的目标定位方法及装置。

背景技术

在地磁学中,磁梯度张量除用于勘探地球地质结构构造,寻找油气、矿产资源以外,还被广泛应用于水下磁性目标体定位。现有的磁定位方法一般是在建立在忽略背景场影响的重力或磁异常及其梯度张量的基础上实现。然而,忽略背景场影响的磁定位方法的定位精度必然受到影响,有待进一步提升。

实际上,空间里面一点上的总重力场或总磁场T一般包括三个成分:地球磁场B

T=B

由于地下目标异常体通常淹没在相对较大的地球磁场B

因此,为了实现基于磁场梯度张量的目标定位,怎么从强大的区域背景场中提取异常场是十分重要的,也是本领域的技术难点。为此,实有必要设计一种消除地球背景磁场影响的基于磁场梯度张量的目标定位方法,以解决现有技术中因地球背景磁场产生的定位误差问题。

发明内容

本发明的目的是解决现有技术中因地球背景磁场产生的定位误差问题,进而提供一种基于磁场梯度张量的目标定位方法及装置,用以实现目标体定位。本发明抛开了传统面积性数据采集方式,其观测磁场梯度张量,并利用同一观测站在相邻时刻或相邻观测站在同一时刻记录两组或三组磁场梯度张量以及采用差分的手段推导出消除了地球背景磁场的目标定位公式,实现目标体定位。且所述方法适用于静止目标体定位,也适用于运动目标体定位;适用于基于固定基站的目标定位以及适用于基于运动平台的目标定位。

一方面,本发明提供的一种基于磁场梯度张量的目标定位方法,包括以下步骤:

步骤S1:获取观测站记录的观测数据;

步骤S2:基于步骤S1记录的所述观测数据,并利用定位公式计算出在T时刻观测点P与目标体之间的距离矢量,再基于所述距离矢量以及在T时刻的所述观测点P的观测位置确定在T时刻所述目标体的位置;

定位公式如下:

r

r

其中,r

d=r

可选地,在任意时刻任意观测点与目标体的距离矢量R表示为:

R=[x

式中,x

可选地,所述目标体的构造指数n的取值范围为[1,3]。

可选地,所述目标体为球体、或长方体、或二度体时,所述构造指数的取值对应为3,2,1。

可选地,所述目标体位于太空、或地表、或地表以上、或地表以下、或水面、或水面以上、或水面以下。

可选地,所述观测站为固定基站或者位于运动平台上;所述目标体为静止目标体或运动目标体。

第二方面,本发明提供一种基于所述目标定位方法的磁场梯度张量测量装置,所述磁场梯度张量测量装置包括8个磁传感器,所述8个磁传感器分别分布在正方体的8个顶角;

其中,所述正方体上非相邻的两个侧面的中心点及其正方体的中心点构成三个相邻观测位置时,磁传感器F1、F2、F3和F4组成一个正方形磁场梯度测量系统,用于测定磁场梯度张量G

第三方面,本发明提供一种基于所述目标定位方法的装置,其包括:

观测模块,用于记录观测数据;

定位模块,用于基于记录的所述观测数据,并利用定位公式计算出在T时刻观测点P与目标体之间的距离矢量,再基于所述距离矢量以及在T时刻的所述观测点P的观测位置确定在T时刻所述目标体的位置。

第四方面,本发明提供一种电子终端,其包括:一个或多个处理器和存储了一个或多个计算机程序的存储器;

所述计算机程序被处理器调用以实现:前述一种基于磁场梯度张量的目标定位方法的步骤。

第五方面,本发明提供一种可读存储介质,其存储了计算机程序,所述计算机程序被处理器调用以实现:前述一种基于磁场梯度张量的目标定位方法的步骤。

有益效果

本发明技术方案提供的上述一种基于磁场梯度张量的目标定位方法及其装置巧妙地消除了地球背景磁场的影响,克服了现有技术中难以从强大的区域背景场中提取异常场,从而导致定位精度有待提高的技术难点。其中,本发明抛开了传统面积性数据采集方式,其观测磁场梯度张量,并利用同一观测站在相邻时刻或相邻观测站在同一时刻记录两组或三组磁场梯度张量并采用差分的手段推导出消除了地球背景磁场的定位公式,再基于所述定位公式实现运动目标体的定位。解决了现有技术中因地球背景磁场产生的定位误差问题,实现了可靠、精准的定位追踪。

其中,本发明所述目标定位方法适用于静止目标体也适用于运动目标体,从而利用所述目标定位方法可以实时地定位监测运动目标体的位置,亦可以求出运动目标体的运动轨迹。本发明所述目标定位方法也适用于静止平台和运动平台,应用空间极为宽广。

尤其是,本发明推导出的定位公式中,仅需要测量三个连续的位场梯度张量也可实现定位,除了实现消除背景场影响功能之外,还不再需要测量位场矢量,进一步满足应用需求。

附图说明

图1为本发明实施例提供的观测装置示意图。其中F1、F2、F3和F4组成正方形磁场梯度测量系统G

图2为本发明实施例提供的一种基于磁场梯度张量的目标定位方法的流程示意图。

图3为基于磁场梯度张量的差分定位与追踪方法在x-y平面结果。图中实线1表示三点差分定位的误差结果,图中实线2表示两点差分定位的误差结果。

具体实施方式

本发明提供的一种基于磁场梯度张量的目标定位方法及装置,其目的是消除地球背景磁场的影响,利用观测或计算得到的磁场梯度张量实现目标定位。其中,所述目标定位方法不仅仅适用于静止目标体,还适用于运动目标体。对应的观测站可以是静止基站,也可以是基于运动平台的移动观测站。下面将结合实施例对本发明做进一步的说明。

本发明提供的目标定位方法是基于差分磁场梯度张量来实现的,其原理如下:

采用运动平台探测定位相对静止的物体时,设运动平台第i个测量位置相对于磁性目标体的位置参数为r

Gr=-n(B-B

其中,r=(x

G

设两个点之间的距离矢量为d=(d

G

将公式的右端项移动到左边,则有:

(G

进一步可得到如下形式:

假设地磁场或地球重力场分布相对均匀,即B

r

其中,d=r

考虑传感器的采样频率和运动平台的运动速度,对于常规探测距离满足平台采样间隔位移远远小于其相对目标的位移,即(r

G

将等式代入等式,则可以得到三点差分目标定位与追踪计算公式:

r

从等式(8)可以看出,该定位算法仅仅需要测量三个连续的位场梯度张量,而不需要测量位场矢量。且有效地消除了背景场的影响。但是需要先验给出目标体的构造指数。需要指出的是,上述推理出的公式(7)、(8)也可以应用到固定观测基站定位和追踪运动目标体。

基于上述原理性陈述,如图2所示,本发明提供的一种基于磁场梯度张量的目标定位方法,包括以下步骤:

步骤S1:获取观测站记录的观测数据。

本实施例以T时刻的观测点P为例进行简述,若获取的观测数据包括:所述观测点P的两个相邻观测位置在同一时刻T或同一观测点P在T时刻的两个相邻时刻记录的磁场矢量及磁场梯度张量,则选用对应公式(7)计算出T时刻观测点P与目标体之间的距离矢量。若获取的观测数据包括:观测点P及其两个相邻观测位置在同一时刻T或同一观测点P在T时刻及其两个相邻时刻记录的磁场梯度张量,则选用对应公式(8)计算出T时刻观测点P与目标体之间的距离矢量。

应当理解,不论是采用公式(7)或公式(8)计算距离矢量,均需要测量磁场梯度张量。如图1所示,本实施例中设定的磁场梯度张量测量装置包括8个磁传感器,所述8个磁传感器分别分布在正方体的8个顶角。其中,正方体的两个正对的端面分别设有4个磁传感器,因此正方体的两个正对的端面中心点及其正方体的中心点构成三个相邻观测位置时,磁传感器F1、F2、F3和F4组成一个正方形磁场梯度测量系统,用于测定磁场梯度张量G

本实施例中,由图1中所示F1、F2、F3和F4磁传感器的数据计算出磁场梯度张量G

由图1中所示F5、F6、F7和F8磁传感器的数据计算出磁场梯度张量G

式中,L为相邻两个磁传感器之间的距离,B

G

其中,B

应当理解,上述磁场梯度张量测量装置为本实施例的举例说明,本发明并不局限于采用该唯一的方式来测量磁场梯度张量,其他可行的实施例中,可以采取其他技术手段来测定磁场梯度张量。

步骤S2:基于步骤S1记录的所述观测数据,并利用定位公式计算出在T时刻观测点P与目标体之间的距离矢量,再基于所述距离矢量以及在T时刻的所述观测点P的观测位置确定在T时刻所述目标体的位置。

如前文所述,本发明根据获取的观测数据采用公式(7)或者公式(8)计算出距离矢量,进而基于已知的观测点位置计算出目标体的位置。其中,观测点与目标体的距离矢量表示如下:

R=[x

式中,x

另一方面,本发明还提供一种基于所述目标定位方法的装置,其包括:观测模块以及定位模块。

其中,观测模块用于记录观测数据;定位模块用于基于记录的所述观测数据,并利用定位公式计算出在T时刻观测点P与目标体之间的距离矢量,再基于所述距离矢量以及在T时刻的所述观测点P的观测位置确定在T时刻所述目标体的位置。应当理解,观测点P以及T时刻均是指代任一观测点位置以及任一观测时刻。

需要说明的是,上述观测模块以及定位模块均可以以硬件方式来实现,也可以以软件方式来实现。譬如,观测模块可以理解为获取观测数据的传感设备或者基于传感设备采集的数据计算相关观测数据的软件功能模块。定位模块可以理解为具备数据计算以及处理功能的处理器等硬件设备,也可以理解为具备数据计算以及处理功能的软件功能模块。即上述单元模块的具体实现过程参照方法内容,本发明在此不进行具体的赘述,且上述功能模块单元的划分仅仅是一种逻辑功能的划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。同时,上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。

另一方面,本发明还提供一种电子终端,其包括:一个或多个处理器和存储了一个或多个计算机程序的存储器;

所述计算机程序被处理器调用以实现:前述一种基于磁场梯度张量的目标定位方法的步骤。譬如具体执行:

步骤S1:获取观测站记录的观测数据;

步骤S2:基于步骤S1记录的所述观测数据,并利用定位公式计算出在T时刻观测点P与目标体之间的距离矢量,再基于所述距离矢量以及在T时刻的所述观测点P的观测位置确定在T时刻所述目标体的位置。

该终端还包括:通信接口,用于与外界设备进行通信,进行数据交互传输。譬如与外部观测站的传感设备通讯,获取观测数据。

其中,存储器可能包含高速RAM存储器,也可能还包括非易失性除颤器,例如至少一个磁盘存储器。

如果存储器、处理器和通信接口独立实现,则存储器、处理器和通信接口可以通过总线相互连接并完成相互间的通信。所述总线可以是工业标准体系结构总线,外部设备互联总线或扩展工业标准体系结构总线等。所述总线可以分为地址总线、数据总线、控制总线等。

可选的,在具体实现上,如果存储器、处理器和通信接口集成在一块芯片上,则存储器、处理器即通信接口可以通过内部接口完成相互之间的通信。

各个步骤的具体实现过程请参照前述方法的阐述。

应当理解,在本发明实施例中,所称处理器可以是中央处理单元(CentralProcessing Unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(DigitalSignal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。存储器可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。例如,存储器还可以存储设备类型的信息。

另一方面,本发明还提供一种可读存储介质,其存储了计算机程序,所述计算机程序被处理器调用以实现:前述一种基于磁场梯度张量的目标定位方法的步骤。譬如具体执行:

步骤S1:获取观测站记录的观测数据;

步骤S2:基于步骤S1记录的所述观测数据,并利用定位公式计算出在T时刻观测点P与目标体之间的距离矢量,再基于所述距离矢量以及在T时刻的所述观测点P的观测位置确定在T时刻所述目标体的位置。

各个步骤的具体实现过程请参照前述方法的阐述。

所述可读存储介质为计算机可读存储介质,其可以是前述任一实施例所述的控制器的内部存储单元,例如控制器的硬盘或内存。所述可读存储介质也可以是所述控制器的外部存储设备,例如所述控制器上配备的插接式硬盘,智能存储卡(SmartMediaCard,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。进一步地,所述可读存储介质还可以既包括所述控制器的内部存储单元也包括外部存储设备。所述可读存储介质用于存储所述计算机程序以及所述控制器所需的其他程序和数据。所述可读存储介质还可以用于暂时地存储已经输出或者将要输出的数据。

基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的可读存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,RandomAccess Memory)、磁碟或者光盘等各种可以存储程序代码的介质。

为了验证本发明所述目标定位方法,进行如下仿真实验来验证方法的可行性:

仿真实验利用运动平台定位相对静止目标,运动平台搭载磁梯度张量系统。设磁性目标位于空间直角坐标系的原点。设置磁性目标的磁矩m为(5×10

从图3可以看出,在测量精度为0.01nT的条件下,本发明的目标定位算法的定位误差没有超过2.5m,说明本本发明的目标定位算法在该精度条件下可以准确定位目标体的位置,并且不受背景场的影响。

此外,在消除背景场影响下,基于等式进行的三点定位误差整体上要大于基于等式进行的两点定位误差。引起这一误差的一个原因是由于磁梯度张量G

需要强调的是,本发明所述的实例是说明性的,而不是限定性的,因此本发明不限于具体实施方式中所述的实例,凡是由本领域技术人员根据本发明的技术方案得出的其他实施方式,不脱离本发明宗旨和范围的,不论是修改还是替换,同样属于本发明的保护范围。

相关技术
  • 一种基于磁场梯度张量的目标定位方法及装置
  • 基于磁梯度张量不变量的一种磁性目标定位方法
技术分类

06120114701483