掌桥专利:专业的专利平台
掌桥专利
首页

一种智能机器人控制系统及控制方法

文献发布时间:2023-06-19 16:11:11



技术领域

本发明涉及机器人控制技术领域,具体而言,涉及一种智能机器人控制系统及控制方法。

背景技术

随着机器人行业的蓬勃发展,机器人的应用场景越来越广泛,机器人需要在各种各样的环境中进行自主导航。但是目前机器人行业里应对存在障碍物的环境并不成熟,智能机器人进行自动导航任务时,往往不能准确检测障碍物与机器人是否会接触并发生碰撞。在复杂的运动环境下机器人能够在导航途中合理的检测碰撞,就成为衡量一个机器人是否安全可靠,是否具备高智能的一项关键指标。

目前,智能机器人进行自动导航任务时,机器人通过直接与障碍物发生碰撞来确定障碍物的存在,从而改变运动路径。如此一来,频繁的碰撞不利于保持机器人的使用寿命,同时也会对家居环境中放置的家具造成不同程度的损伤。

发明内容

基于此,为了解决现有通过直接与障碍物发生碰撞来确定障碍物的存在,从而改变运动路径,不利于保持机器人的使用寿命且会对家居环境中放置的家具造成不同程度的损伤问题,本发明提供了一种智能机器人控制系统及控制方法,其具体技术方案如下:

一种智能机器人控制系统,其包括扫描模块、第一获取模块、第二获取模块以及第一判断模块。

所述扫描模块用于扫描现场环境以获取环境数据,根据所述环境数据获取三维点云数据并根据所述三维点云数据构建环境地图。所述第一获取模块用于获取机器人根据预设行进路径在所述环境地图移动过程中的实时三维坐标。

所述第二获取模块用于获取所述环境地图中的障碍物三维坐标以及边界三维坐标。

所述第一判断模块用于判断所述实时三维坐标与所述障碍物三维坐标或所述实时三维坐标与所述边界三维坐标是否有重叠区域,若有,则调整所述预设行进路径,直至所述实时三维坐标与所述障碍物三维坐标以及所述实时三维坐标与所述边界三维坐标不存在重叠区域。

所述智能机器人控制系统通过构建环境地图以获取障碍物三维坐标以及边界三维坐标以及获取机器人根据预设行进路径在所述环境地图移动过程中的实时三维坐标,判断所述实时三维坐标与所述障碍物三维坐标或所述实时三维坐标与所述边界三维坐标是否有重叠区域,进而判断机器人按照预设行进路径行进是否会与障碍物或者地图边界发生碰撞并相应调整所述预设行进路径,不需要直接与障碍物发生碰撞来确定障碍物的存在。

即是说,所述智能机器人控制系统解决了现有通过直接与障碍物发生碰撞来确定障碍物的存在,从而改变运动路径,不利于保持机器人的使用寿命且会对家居环境中放置的家具造成不同程度的损伤问题。

进一步地,所述智能机器人控制系统还包括第三获取模块以及第二判断模块。

所述第三获取模块用于获取所述智能机器人的轮廓点集并根据所述智能机器人的驱动方式以及所述轮廓点集获取所述智能机器人的转向三维坐标区域。

所述第二判断模块用于判断所述转向三维坐标区域与所述障碍物三维坐标或所述转向三维坐标区域与所述边界三维坐标是否有重叠区域,若有,则控制所述智能机器人动作并重新获取所述智能机器人的转向三维坐标区域,直至所述转向三维坐标区域与所述障碍物三维坐标以及所述转向三维坐标区域与所述边界三维坐标不存在重叠区域。

进一步地,所述扫描模块为激光雷达或3D深度相机。

进一步地,所述智能机器人的驱动方式为前驱或后驱。

一种智能机器人控制方法,其包括如下步骤:

S1,扫描现场环境以获取环境数据;

S2,根据所述环境数据获取三维点云数据并根据所述三维点云数据构建环境地图;

S3,获取机器人根据预设行进路径在所述环境地图移动过程中的实时三维坐标;

S4,获取所述环境地图中的障碍物三维坐标以及边界三维坐标;

S5,判断所述实时三维坐标与所述障碍物三维坐标或所述实时三维坐标与所述边界三维坐标是否有重叠区域,若有,则调整所述预设行进路径,直至所述实时三维坐标与所述障碍物三维坐标以及所述实时三维坐标与所述边界三维坐标不存在重叠区域。

进一步地,所述智能机器人控制方法还包括如下步骤:

S6,获取所述智能机器人的轮廓点集并根据所述智能机器人的驱动方式以及所述轮廓点集获取所述智能机器人的转向三维坐标区域;

S7,判断所述转向三维坐标区域与所述障碍物三维坐标或所述转向三维坐标区域与所述边界三维坐标是否有重叠区域,若有,则控制所述智能机器人动作并重新获取所述智能机器人的转向三维坐标区域,直至所述转向三维坐标区域与所述障碍物三维坐标以及所述转向三维坐标区域与所述边界三维坐标不存在重叠区域。

进一步地,所述控制所述智能机器人动作并重新获取所述智能机器人的转向三维坐标区域的具体方法为:控制所述智能机器人后退预设距离并重新获取所述智能机器人的转向三维坐标区域。

进一步地,在步骤S1中,通过激光雷达或3D深度相机扫描现场环境以获取环境数据。

一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,当所述计算机程序被处理器执行时,实现所述的智能机器人控制方法。

附图说明

从以下结合附图的描述可以进一步理解本发明。图中的部件不一定按比例绘制,而是将重点放在示出实施例的原理上。在不同的视图中,相同的附图标记指定对应的部分。

图1是本发明一实施例中一种智能机器人控制方法的整体流程示意图;

图2是本发明另一实施例中一种智能机器人控制方法的整体流程示意图。

具体实施方式

为了使得本发明的目的、技术方案及优点更加清楚明白,以下结合其实施例,对本发明进行进一步详细说明。应当理解的是,此处所描述的具体实施方式仅用以解释本发明,并不限定本发明的保护范围。

需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。

除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。

本发明中所述“第一”、“第二”不代表具体的数量及顺序,仅仅是用于名称的区分。

实施例一:

一种智能机器人控制系统,其包括扫描模块、第一获取模块、第二获取模块以及第一判断模块。

所述扫描模块用于扫描现场环境以获取环境数据,根据所述环境数据获取三维点云数据并根据所述三维点云数据构建环境地图。具体而言,所述扫描模块为激光雷达或3D深度相机。

所述第一获取模块用于获取机器人根据预设行进路径在所述环境地图移动过程中的实时三维坐标。

所述扫描模块扫描处在所述现场环境中的所述机器人并获取与所述机器人相对应的三维坐标数据,根据所述三维坐标数据进行坐标转换以获取所述机器人在环境地图中的初始三维坐标。

根据所述预设行进路径以及初始三维坐标,计算所述机器人在环境地图移动过程中多个子三维坐标。多个子三维坐标构成所述实时三维坐标。

所述第二获取模块用于获取所述环境地图中的障碍物三维坐标以及边界三维坐标。所述边界包括但不限于现场环境中的墙壁。

所述第一判断模块用于判断所述实时三维坐标与所述障碍物三维坐标或所述实时三维坐标与所述边界三维坐标是否有重叠区域,若有,则调整所述预设行进路径,直至所述实时三维坐标与所述障碍物三维坐标以及所述实时三维坐标与所述边界三维坐标不存在重叠区域。

所述智能机器人控制系统通过构建环境地图以获取障碍物三维坐标以及边界三维坐标以及获取机器人根据预设行进路径在所述环境地图移动过程中的实时三维坐标,判断所述实时三维坐标与所述障碍物三维坐标或所述实时三维坐标与所述边界三维坐标是否有重叠区域,进而判断机器人按照预设行进路径行进是否会与障碍物或者地图边界发生碰撞并相应调整所述预设行进路径,不需要直接与障碍物发生碰撞来确定障碍物的存在。

即是说,所述智能机器人控制系统解决了现有通过直接与障碍物发生碰撞来确定障碍物的存在,从而改变运动路径,不利于保持机器人的使用寿命且会对家居环境中放置的家具造成不同程度的损伤问题,可以提高机器人使用寿命并保护环境中的家具器件。

实施例二:

一种智能机器人控制系统,其包括扫描模块、第一获取模块、第二获取模块以及第一判断模块。

所述扫描模块用于扫描现场环境以获取环境数据,根据所述环境数据获取三维点云数据并根据所述三维点云数据构建环境地图。具体而言,所述扫描模块为激光雷达或3D深度相机。

所述第一获取模块用于获取机器人根据预设行进路径在所述环境地图移动过程中的实时三维坐标。

所述扫描模块扫描处在所述现场环境中的所述机器人并获取与所述机器人相对应的三维坐标数据,根据所述三维坐标数据进行坐标转换以获取所述机器人在环境地图中的初始三维坐标。

根据所述预设行进路径以及初始三维坐标,计算所述机器人在环境地图移动过程中多个子三维坐标。多个子三维坐标构成所述实时三维坐标。

所述第二获取模块用于获取所述环境地图中的障碍物三维坐标以及边界三维坐标。所述边界包括但不限于现场环境中的墙壁。

所述第一判断模块用于判断所述实时三维坐标与所述障碍物三维坐标或所述实时三维坐标与所述边界三维坐标是否有重叠区域,若有,则调整所述预设行进路径,直至所述实时三维坐标与所述障碍物三维坐标以及所述实时三维坐标与所述边界三维坐标不存在重叠区域。

所述智能机器人控制系统通过构建环境地图以获取障碍物三维坐标以及边界三维坐标以及获取机器人根据预设行进路径在所述环境地图移动过程中的实时三维坐标,判断所述实时三维坐标与所述障碍物三维坐标或所述实时三维坐标与所述边界三维坐标是否有重叠区域,进而判断机器人按照预设行进路径行进是否会与障碍物或者地图边界发生碰撞并相应调整所述预设行进路径,不需要直接与障碍物发生碰撞来确定障碍物的存在。

即是说,所述智能机器人控制系统解决了现有通过直接与障碍物发生碰撞来确定障碍物的存在,从而改变运动路径,不利于保持机器人的使用寿命且会对家居环境中放置的家具造成不同程度的损伤问题。

在本实施例中,所述智能机器人控制系统还包括第三获取模块以及第二判断模块。

所述第三获取模块用于获取所述智能机器人的轮廓点集并根据所述智能机器人的驱动方式以及所述轮廓点集获取所述智能机器人的转向三维坐标区域。

所述第二判断模块用于判断所述转向三维坐标区域与所述障碍物三维坐标或所述转向三维坐标区域与所述边界三维坐标是否有重叠区域,若有,则控制所述智能机器人动作并重新获取所述智能机器人的转向三维坐标区域,直至所述转向三维坐标区域与所述障碍物三维坐标以及所述转向三维坐标区域与所述边界三维坐标不存在重叠区域。

具体而言,所述智能机器人的驱动方式为前驱或后驱。

在所述机器人行进过程中,根据所述智能机器人的驱动方式获取机器人转向时的转向轴心点坐标。紧接着,以所述转向轴心点坐标以及轮廓点集获取机器人转向过程中所覆盖的空间区域,进而根据所述空间区域获取转向三维坐标区域。

若所述转向三维坐标区域与所述障碍物三维坐标或所述转向三维坐标区域与所述边界三维坐标之间存在重叠区域,则意味着机器人转向过程中会与障碍物或者环境边界发生碰撞。此时,控制所述机器人动作并重新获取所述智能机器人的转向三维坐标区域,直至所述转向三维坐标区域与所述障碍物三维坐标以及所述转向三维坐标区域与所述边界三维坐标不存在重叠区域,可以进一步避免机器人在动作行进过程中与障碍物或者边界发生碰撞,以更好地提高机器人的使用寿命并保护家居环境中的家具器件。

实施例三:

如图1所示,一种智能机器人控制方法,其包括如下步骤:

S1,扫描现场环境以获取环境数据。具体而言,通过激光雷达或3D深度相机扫描现场环境以获取环境数据。

S2,根据所述环境数据获取三维点云数据并根据所述三维点云数据构建环境地图。

S3,获取机器人根据预设行进路径在所述环境地图移动过程中的实时三维坐标。

S4,获取所述环境地图中的障碍物三维坐标以及边界三维坐标。

S5,判断所述实时三维坐标与所述障碍物三维坐标或所述实时三维坐标与所述边界三维坐标是否有重叠区域,若有,则调整所述预设行进路径,直至所述实时三维坐标与所述障碍物三维坐标以及所述实时三维坐标与所述边界三维坐标不存在重叠区域。

具体而而言,所述实时三维地图由多个子三维地图构成。在所述机器人行进过程中,可以以一定时间频率获取当前时刻所述机器人在所述环境地图的子三维坐标以及未来预设时间段内所述机器人在所述环境地图的多个子三维坐标,然后将多个子三维地图构成所述实时三维地图。

比如将当前时刻设定为0秒,然后按照按照预设行进路径获取未来3秒或者5秒时间等预设时间段内的所述机器人在环境地图的N个子三维坐标。其中,N为大于0的正整数,其可以根据实际进行设定,在此不再赘述。

所述判断所述实时三维坐标与所述障碍物三维坐标或所述实时三维坐标与所述边界三维坐标是否有重叠区域的具体方法为:

获取所述实时三维坐标中的多个子三维坐标中的XY平面区域、XZ平面区域以及YZ平面区域;

分别判断所述实时三维坐标中的多个子三维坐标中的XY平面区域、XZ平面区域以及YZ平面区域与所述障碍物三维坐标的XY平面区域、XZ平面区域以及YZ平面区域之间或者所述实时三维坐标中的多个子三维坐标中的XY平面区域、XZ平面区域以及YZ平面区域与所述边界三维坐标中的XY平面区域、XZ平面区域以及YZ平面区域是否有重叠部分,若有,则调整所述预设行进路径,直至所述实时三维坐标与所述障碍物三维坐标以及所述实时三维坐标与所述边界三维坐标不存在重叠区域。

更具体地,所述障碍物三维坐标以及边界三维坐标均有多个同时包括X轴、Y轴以及Z轴的坐标点构成,多个X轴的坐标点、多个Y轴的坐标点以及多个Z轴的坐标点均相隔预设距离值。如此,可以减少三维坐标数据量,提高所述方法的处理速度。

所述智能机器人控制方法通过构建环境地图以获取障碍物三维坐标以及边界三维坐标以及获取机器人根据预设行进路径在所述环境地图移动过程中的实时三维坐标,判断所述实时三维坐标与所述障碍物三维坐标或所述实时三维坐标与所述边界三维坐标是否有重叠区域,进而判断机器人按照预设行进路径行进是否会与障碍物或者地图边界发生碰撞并相应调整所述预设行进路径,不需要直接与障碍物发生碰撞来确定障碍物的存在。

即是说,所述智能机器人控制方法解决了现有通过直接与障碍物发生碰撞来确定障碍物的存在,从而改变运动路径,不利于保持机器人的使用寿命且会对家居环境中放置的家具造成不同程度的损伤问题

实施例四:

如图1所示,一种智能机器人控制方法,其包括如下步骤:

S1,扫描现场环境以获取环境数据。具体而言,通过激光雷达或3D深度相机扫描现场环境以获取环境数据。

S2,根据所述环境数据获取三维点云数据并根据所述三维点云数据构建环境地图。

S3,获取机器人根据预设行进路径在所述环境地图移动过程中的实时三维坐标。

S4,获取所述环境地图中的障碍物三维坐标以及边界三维坐标。

S5,判断所述实时三维坐标与所述障碍物三维坐标或所述实时三维坐标与所述边界三维坐标是否有重叠区域,若有,则调整所述预设行进路径,直至所述实时三维坐标与所述障碍物三维坐标以及所述实时三维坐标与所述边界三维坐标不存在重叠区域。

具体而而言,所述实时三维地图由多个子三维地图构成。在所述机器人行进过程中,可以以一定时间频率获取当前时刻所述机器人在所述环境地图的子三维坐标以及未来预设时间段内所述机器人在所述环境地图的多个子三维坐标,然后将多个子三维地图构成所述实时三维地图。

比如将当前时刻设定为0秒,然后按照按照预设行进路径获取未来3秒或者5秒时间等预设时间段内的所述机器人在环境地图的N个子三维坐标。其中,N为大于0的正整数,其可以根据实际进行设定,在此不再赘述。

所述判断所述实时三维坐标与所述障碍物三维坐标或所述实时三维坐标与所述边界三维坐标是否有重叠区域的具体方法为:

获取所述实时三维坐标中的多个子三维坐标中的XY平面区域、XZ平面区域以及YZ平面区域;

分别判断所述实时三维坐标中的多个子三维坐标中的XY平面区域、XZ平面区域以及YZ平面区域与所述障碍物三维坐标的XY平面区域、XZ平面区域以及YZ平面区域之间或者所述实时三维坐标中的多个子三维坐标中的XY平面区域、XZ平面区域以及YZ平面区域与所述边界三维坐标中的XY平面区域、XZ平面区域以及YZ平面区域是否有重叠部分,若有,则调整所述预设行进路径,直至所述实时三维坐标与所述障碍物三维坐标以及所述实时三维坐标与所述边界三维坐标不存在重叠区域。

更具体地,所述障碍物三维坐标以及边界三维坐标均有多个同时包括X轴、Y轴以及Z轴的坐标点构成,多个X轴的坐标点、多个Y轴的坐标点以及多个Z轴的坐标点均相隔预设距离值。如此,可以减少三维坐标数据量,提高所述方法的处理速度。

所述智能机器人控制方法通过构建环境地图以获取障碍物三维坐标以及边界三维坐标以及获取机器人根据预设行进路径在所述环境地图移动过程中的实时三维坐标,判断所述实时三维坐标与所述障碍物三维坐标或所述实时三维坐标与所述边界三维坐标是否有重叠区域,进而判断机器人按照预设行进路径行进是否会与障碍物或者地图边界发生碰撞并相应调整所述预设行进路径,不需要直接与障碍物发生碰撞来确定障碍物的存在。

即是说,所述智能机器人控制方法解决了现有通过直接与障碍物发生碰撞来确定障碍物的存在,从而改变运动路径,不利于保持机器人的使用寿命且会对家居环境中放置的家具造成不同程度的损伤问题

在本实施例中,如图2所示,所述智能机器人控制方法还包括如下步骤:

S6,获取所述智能机器人的轮廓点集并根据所述智能机器人的驱动方式以及所述智能机器人的轮廓点集获取所述智能机器人的转向三维坐标区域。

S7,判断所述转向三维坐标区域与所述障碍物三维坐标或所述转向三维坐标区域与所述边界三维坐标是否有重叠区域,若有,则控制所述智能机器人动作并重新获取所述智能机器人的转向三维坐标区域,直至所述转向三维坐标区域与所述障碍物三维坐标以及所述转向三维坐标区域与所述边界三维坐标不存在重叠区域。

通过上述方法,可以进一步避免机器人在动作行进过程中与障碍物或者边界发生碰撞,以更好地提高机器人的使用寿命并保护家居环境中的家具器件。

进一步地,所述控制所述智能机器人动作并重新获取所述智能机器人的转向三维坐标区域的具体方法为:控制所述智能机器人后退预设距离并重新获取所述智能机器人的转向三维坐标区域。

所述XY平面区域、XZ平面区域以及YZ平面区域分别由位于对应平面内的坐标点信息构成。具体而言,多个子三维坐标中的XY平面区域、XZ平面区域以及YZ平面区域的边缘相互连接成的围闭空间能够包裹对应的对象(即所述机器人、障碍物或者边界)。

所述机器人的轮廓点集全部落在所述子三维坐标中的XY平面区域、XZ平面区域或YZ平面区域上。同理,所述障碍物的轮廓点集全部落在所述障碍物三维坐标的XY平面区域、XZ平面区域或YZ平面区域上,所述边界的轮廓点集落在所述边界三维坐标中的XY平面区域、XZ平面区域或YZ平面区域。

一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,当所述计算机程序被处理器执行时,实现所述的智能机器人控制方法。

以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。

以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

技术分类

06120114737022