掌桥专利:专业的专利平台
掌桥专利
首页

一种正时系统驱动的增压系统及可调控增压方法

文献发布时间:2023-06-19 16:11:11



技术领域

本申请涉及发动机的技术领域,特别涉及一种正时系统驱动的增压系统及可调控增压方法。

背景技术

相对于废气涡轮增压器,超级增压器采用发动机的机械动力驱动,因而具有动力响应性好、体积小等特点,特别适用于摩托车发动机提升动力性能。然而,超级增压器的动力输入来源、驱动方式、支承布置都制约着增压发动机的总体性能和使用效果。

受到特定车辆和载具的限制,车辆和发动机所提供的安装空间受限,常规的超级增压器安装以及动力提供较为不便。动力来源取自发动机曲轴并直接连接增压器的方案往往导致驱动链尺寸大、链条传动或者皮带传动的过渡环节较多,无法实现理想布置。

另外,超级增压器的增压特性与其机械动力驱动转速密切相关、并受到制约,所以难以实现发动机全工况范围的进气匹配优化。工程上为了照顾低转速工况段的增压进气需求而选择较高的动力驱动传动比,这将会导致在高转速工况下增压器转速过高、增压过剩,并造成增压器驱动能量浪费。

基于以上两方面的问题,有必要研发出一种驱动结构紧凑增压性能可调控的超级增压器系统。

发明内容

为了解决超级增压系统驱动动力来源不理想、传动结构复杂不紧凑的技术问题,为了解决超级增压器与发动机全工况范围的进气匹配优化,本申请提供了一种正时系统驱动的、驱动传动比可调控的增压系统。

本申请提供的正时系统驱动的可调控增压系统,采用如下的技术方案:一种正时系统驱动的增压系统,包括正时系统动力输出机构和增压器,所述增压器固定安装于所述正时系统的上方,所述增压系统还包括:传动机构,所述传动机构包括主动轮组件和从动轮组件,所述主动轮组件与所述正时系统动力输出机构的输出端连接,所述从动轮组件与所述增压器的输入端连接;其中,所述传动机构将正时系统输出端输出的动力传递给所述增压器的输入端,所述传动机构的传动比大于1。

通过采用上述技术方案,将增压器固定安装于正时系统的上方,显著减小了动力传动路径长度及其复杂性,使得动力传动部件和超级增压部件的总体结构更加紧凑,传动效率更高、更节省能耗。

进一步的方案,该系统还包括中冷器和发动机,所述增压器的输出端与中冷器的进口连接,所述中冷器的出口与发动机的进气部件连接。

通过采用上述技术方案,整个系统结构更紧凑,相互之间的结构连接更合理。

进一步的方案,所述传动机构的传动比根据正时系统动力输出机构输出的转速不同而变化,所述传动机构的传动比变化范围为1.3~2.6。

通过采用上述技术方案,利用可变传动比、变速驱动方式,使得增压器与发动机工况的匹配效果更理想,使得增压发动机的动力输出特性更好地满足车辆的动力性能要求。具体实施低转速2500rpm时传动机构的传动比约为2.6,而当主动端转速7000rpm时传动机构的传动比约为1.3。

进一步的方案,所述主动轮组件和所述从动轮组件通过传送带或者齿轮啮合或者链条或者磁性耦合传动。

通过采用上述技术方案,可以使主动轮组件和从动轮组件之间的传动连接结构更简单,传动效率更高,系统故障率更低。

进一步的方案,所述主动轮组件包括定位主动轮、可变主动轮和转速传感器,当正时系统的输出端转速升高时,所述转速传感器驱动所述可变主动轮向远离定位主动轮的方向移动。

通过采用上述技术方案,可以实现正时系统输出端转速升高时,通过转速传感器自动调节定位主动轮和可变主动轮之间的距离,从而实现主动轮组件的有效传动直径变小。

进一步的方案, 所述主动轮组件还包括变位件和主动压紧机构,所述变位件与可变主动轮固定连接,所述转速传感器包括滚珠和斜面轨道,所述滚珠设置于斜面轨道和变位件之间;当正时系统的输出端转速升高时,所述滚珠沿着斜面轨道向远离定位主动轮方向滑动同时推动变位件和可变主动轮向远离定位主动轮方向移动,当正时系统的输出端转速降低时,所述滚珠沿着所述斜面轨道向靠近定位主动轮方向滑动,可变主动轮在主动压紧机构的作用下向靠近定位主动轮方向移动。

通过采用上述技术方案,通过正时系统的输出端转速变化实现滚珠离心力大小的变化,正时系统的输出端转速越高,滚珠离心力越大,滚珠沿着斜面轨道移动的距离越远,因此滚珠推动变位件及可变主动轮远离定位主动轮的距离越大,主动轮组件的等效传动直径变小,传动机构的传动比变小。

进一步的方案,所述从动轮组件包括定位从动轮、可变从动轮和从动复位压紧件,所述可变从动轮可靠近或者远离定位从动轮移动,所述从动复位压紧件用于驱使可变从动轮靠近定位从动轮。

通过采用上述技术方案,从动轮组件的等效传动直径可以跟随主动轮组件变化,从动轮组件可以协同主动轮组件在实现传动比变化的同时,位于主动轮组件和从动轮组件之间的传动带始终保持张紧并可以有效传递转矩。

进一步的方案,当正时系统的输出端转速升高且可变主动轮向远离定位主动轮方向移动时,所述从动复位压紧件推动所述可变从动轮向定位从动轮方向靠近,此时传动机构的传动比变小;当正时系统的输出端转速降低且可变主动轮在主动压紧机构的作用下向靠近定位主动轮方向移动时,所述可变从动轮向远离定位从动轮方向移动,此时传动机构的传动比变大。

通过采用上述技术方案,当主动轮组件的等效传动直径变小时,从动轮组件的等效传动直径变大,此时传动机构的传动比变小;当主动轮组件的等效传动直径变大时,从动轮组件的等效传动直径变小,此时传动机构的传动比变大。在实现传动比变化的同时,传动带始终保持张紧并可以有效传递转矩。

为了使得超级增压器及其构成的增压系统能够更好地满足发动机进气特性的要求,解决发动机低转速工况状态下增压不足、而发动机高转速工况状态下增压过剩的技术问题,本申请还提供了一种正时系统驱动的可调控增压方法,适用于以上所述的增压系统,所述增压方法包括: 获取正时系统动力输出机构的转速值;当正时系统动力输出机构的转速升高时,所述滚珠沿着斜面轨道向远离定位主动轮方向滑动同时推动变位件和可变主动轮向远离定位主动轮方向移动,所述从动复位压紧件推动所述可变从动轮向定位从动轮方向靠近,此时传动机构的传动比变小;当正时系统动力输出机构的转速降低时,所述滚珠沿着所述斜面轨道向靠近定位主动轮方向滑动,可变主动轮在压紧机构的作用下向靠近定位主动轮方向移动,所述可变从动轮向远离定位从动轮方向移动,此时传动机构的传动比变大。

通过采用上述技术方案,可以实现传动机构随正时系统的输出端转速变化自动调节传动比,在实现传动比变化的同时,传动带始终保持张紧并可以有效传递驱动动力。

进一步的方案, 所述传动机构的传动比变化规律适应发动机进气特性的要求,在较低转速工况状态采用较大的升速传动比,而在较高转速工况状态则采用相对较小的升速传动比,传动比变化范围为1.3~2.6。

通过采用上述技术方案,低转速2500rpm时传动机构的传动比约为2.6,而当主动端转速7000rpm时传动机构的传动比约为1.3。增压器与发动机工况的匹配效果更理想,使得增压发动机的动力输出特性更好地满足车辆的驱动要求。

为了解决机动车增压系统结构布置的技术问题,本申请还提供了一种机动车,包括以上所述的增压系统。

通过采用上述技术方案,机动车的结构更紧凑,尺寸可以设计得更小,设计空间和实用便捷性更大。

综上所述,本申请具有以下至少一种有益技术效果:

1、本申请正时系统驱动的增压系统,显著减小了动力传动路径长度及其复杂性,使得动力驱动部件和超级增压部件的总体结构更加紧凑,传动效率更高、更节省能耗。

2、本申请可调控增压系统,利用可变传动比、变速驱动方式,使得增压器与发动机全工况范围的进气特性匹配优化效果更理想,使得增压发动机的动力输出特性更好地满足车辆的驱动动力要求。

3、本申请正时系统驱动的增压方法,可以实现传动机构随正时系统的输出端转速变化自动调节传动比,在实现传动比变化的同时,传动带始终保持张紧并可以有效传递转速。

附图说明

图1是本申请正时系统驱动的增压系统实施例一的一角度的结构示意图;

图2是本申请正时系统驱动的增压系统实施例一的另一角度的结构示意图;

图3是本申请正时系统驱动的增压系统实施例一的剖面结构示意图;

图4是本申请正时系统驱动的增压系统实施例一从动轮组件与增压器配合的结构示意图;

图5是本申请正时系统驱动的增压系统实施例一正时系统、增压器和传动机构配合的结构示意图;

图6是本申请正时系统驱动的增压系统实施例二传动机构的剖面结构示意图;

图7是本申请正时系统驱动的增压系统实施例二传动机构的立体结构示意图;

图8是本申请正时系统驱动的增压系统实施例三的结构示意图;

图9是图8的A处放大结构示意图;

图10是图9的B-B剖面结构示意图。

附图标记:

1、传动机构;11、主动轮组件;111、定位主动轮;112、可变主动轮;113、转速传感器;114、斜面轨道;115、主动压紧机构;116、变位件;12、从动轮组件;121、定位从动轮;122、可变从动轮;123、从动复位压紧件;13、传动带;2、气缸;21、气缸罩壳;22、气缸头;3、增压器;31、机座;32、输入轴;33、涡轮;34、筒管体;4、中冷器;5、正时系统;51、动力输出机构;61、供油管;62、控制阀;63、夹持件;64、转动齿轮;65、开合件;66、安装板;67、第一安装块;68、第二安装块;69、转轴;70、安装轴;71、啮合口;72、外环齿圈;73、安装套;74、离心杆;75、复位弹簧;76、避让口;77、遮蔽盖;78、避让槽。

具体实施方式

为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合附图对本发明做进一步详细说明。通常在此处附图中描述和示出的本发明实施例的组件可以各种不同的配置来布置和设计。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。

在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连, 可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。

在本申请的描述中,需要理解的是,术语“上”、“下”、“左”、“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。

下面结合附图,对本发明的一些实施方式作详细说明。在不冲突的情况下,下述的实施例中的特征可以相互组合。

实施例一:

请参阅图1和图2所示,公开了一种正时系统5驱动的增压系统示意图。增压系统包括气缸2和增压器3,气缸2设有气缸罩壳21,增压器3设有机座31,增压器3通过机座31固定安装在气缸罩壳21上。在气缸2的动力输出端和增压器3的动力输入端之间连接有传动机构1,传动机构1将气缸2的动力输出端的转矩传递给增压器3的动力输入端。传动机构1包括主动轮组件11和从动轮组件12,在主动轮组件11和从动轮组件12之间连接有传动带13,主动轮组件11与气缸2的动力输出端连接,从动轮组件12与增压器3的动力输入端连接,传动机构1的传动比大于1。主动轮组件11和从动轮组件12之间还可以采用齿轮啮合或者链条或者磁性耦合传动。

增压器3的输出端与中冷器4的气体进口连接,中冷器4的出口与发动机的进气部件气缸头22的节气门和进气管连接。

请参阅图3和图4所示,主动轮组件11与正时系统5的动力输出机构51固定连接,从动轮组件12与增压器3的输入轴32固定连接。

请参阅图5所示,传动机构1为同步带轮通过同步带传动,图中主动轮组件11和从动轮组件12均为同步带轮,传动带13为同步带。主动轮组件11与动力输出机构51固定连接将正时系统5输出的动力通过传送带传递给从动轮组件12,从动轮组件12通过固定连接的增压器3的输入轴32将动力传递给增压器3。输入轴32和动力输出机构51的输出轴的轴线平行。

实施例二:

请参阅图6和图7所示,与实施例一不同的是,主动轮组件11和从动轮组件12为V形摩擦轮,主动轮组件11的定位从动轮121与动力输出机构51固定连接,可变主动轮112与动力输出机构51的输出轴为花键连接,输出轴设计为花键,主动轮组件11设计为与输出轴配合的花键槽,主动轮组件11可以传递动力输出机构51的动力且可变主动轮112可以沿着动力输出机构51的轴向移动。从动轮组件12的定位从动轮121与输入轴32固定连接,可变从动轮122与输入轴32也为花键连接,输入轴32设计为花键,可变从动轮122设计为与输入轴32配合的花键槽,从动轮组件12可以将传动带13传递的动力传递给输入轴32且可变从动轮122可以沿着输入轴32的轴向移动。主动轮组件11包括定位主动轮111、可变主动轮112和转速传感器113,当正时系统5的输出端转速升高时,所述转速传感器113驱动所述可变主动轮112向远离定位主动轮111的方向移动。

主动轮组件11还包括变位件116和主动压紧机构115,变位件116与可变主动轮112固定连接,转速传感器113包括滚珠和斜面轨道114,滚珠设置于斜面轨道114和变位件116之间。当正时系统5的动力输出机构51输出端转速升高时,滚珠沿着斜面轨道114向远离定位主动轮111方向滑动同时推动变位件116和可变主动轮112向远离定位主动轮111方向移动。当正时系统5的动力输出机构51输出端转速降低时,滚珠沿着所述斜面轨道114向靠近定位主动轮111方向滑动,可变主动轮112在主动压紧机构115的作用下向靠近定位主动轮111方向移动。从而主动轮的传动的等效直径和从动轮传动的等效直径变化导致了传动机构1的传动比变大或者变小。主动压紧机构115采用压缩弹簧实现,其作用端轴向压紧可变主动轮112,其另一端与动力输出机构51轴端固定连接,其作用是保持定位主动轮111与可变主动轮112轴向压紧V型传动带13。

从动轮组件12包括定位从动轮121、可变从动轮122和从动复位压紧件123,所述可变从动轮122可靠近或者远离定位从动轮121移动,所述从动复位压紧件123用于驱使可变从动轮122靠近定位从动轮121。

当正时系统5的输出端转速升高且可变主动轮112向远离定位主动轮111方向移动时,所述从动复位压紧件123推动所述可变从动轮122向定位从动轮121方向靠近,此时传动机构1的传动比变小;当正时系统5的输出端转速降低且可变主动轮112在主动压紧机构115的作用下向靠近定位主动轮111方向移动时,所述可变从动轮122向远离定位从动轮121方向移动,此时传动机构1的传动比变大。

传动机构1的传动比根据正时系统5动力输出机构51输出的转速不同而变化,传动机构1的传动比变化规律适应发动机进气特性的要求,在较低转速工况状态采用较大的升速传动比,而在较高转速工况状态则采用相对较小的升速传动比。

本实施例中,对应正时系统5动力输出机构51低转速2500rpm时传动机构1的传动比约为2.6,而当应正时系统5动力输出机构51高转速7000rpm时传动机构1的传动比约为1.3,传动比变化范围为1.3~2.6。

实施例三:

请参阅图8至图10所示,与以上实施例不同的是增压系统还包括辅助供油部件,辅助供油部件的辅助供油室用于存储汽油,汽油能够通过注油管进入至进风口,从而在增大进气量的同时增大空气中汽油的比值,以增大对空气中氧气的利用,保障发动机动力。

在涡轮33周侧壁一周固定连接有外环齿圈72,辅助供油室位于增压盖的一侧,并且通过螺栓与发动机机盖固定连接。辅助供油室内灌注有汽油。辅助供油室上开设有补油孔(图中未显示)以及可拆卸连接于辅助供油室且用于封堵补油孔的塞盖(图中未显示)。

控制阀62包括夹持供油管61的夹持件63、连接于涡轮33和夹持件63之间的转动齿轮64以及连接于转动齿轮64上的开合件65。

夹持件63包括间隔设置于筒管体34一侧的安装板66、固定连接于安装板66靠近筒管体34一侧的第一安装块67、穿设于安装块上的转轴69、安装在转轴69上的第二安装块68、安装在第二安装块68背离安装板66一侧的夹持板46,以及套设于转轴69并且用于驱使夹持板46围绕转轴69转动的扭簧(图中未显示)。

第一安装块67间隔分布有两块,转轴69的两端分别穿设于两第一安装块67之间。

第二安装块68有两块且均套设于转轴69外侧壁上。夹持板46固定连接于两第二安装块68上。

扭簧的一端与安装板66固定,相对的另一端抵接于夹持板46靠近安装板66的一侧。夹持板46抵接有扭簧的一端为驱动端,另一端与安装板66形成夹持空间。注油管的两端高度设置,注油管较高的一端与辅助供油室连接,较低的另一端穿设于发动机进气门。

转动齿轮64通过安装轴70转动连接于环管体23外侧壁,筒管体34上还开设有供转动齿轮64伸入的啮合口71,啮合口71沿筒管体34壁厚方向贯通筒管体34设置。

转动齿轮64穿过啮合口71与涡轮33的外环齿圈72相互啮。

开合件65包括固定连接于转动齿轮64下表面的安装套73、穿设于安装套73内的离心杆74以及连接于安装套73和离心杆74之间的复位弹簧75。

安装套73围绕转动齿轮64的轴线间隔设置有若干个,安装套73沿转动齿轮64的径向开设有伸缩槽,伸缩槽背离转动齿轮64轴线的一端贯通安装套73。

离心杆74滑动连接于伸缩槽内,离心杆74与伸缩槽相适配。为了减少离心杆74在伸出伸缩槽后与筒管体34发生碰撞、干涉,在筒管体34的侧壁上开设有贯通的避让口76,避让口76位于啮合口71靠近环管体23的一侧。

涡轮33通过外环齿圈72驱使转动齿轮64转动,转动齿轮64在转动时,离心杆74将受到离心作用,从而沿伸缩槽长度方向背离转动齿轮64的轴线移动,此时,复位弹簧75受拉并且产生相应的反作用力。

在发动机凸轮轴56转动时,涡轮33和转动齿轮64转动,从而使得离心杆74受到的离心力,离心杆74将伸出伸缩槽。离心杆74伸出伸缩槽的部分将与夹持板46驱动段抵接,并且驱使夹持板46驱动段朝向安装板66转动,此时夹持板46另一端与安装板66之间的夹持空间将变大,从而减弱对注油管的夹持作用,以便辅助供油室内的汽油通过注油管进入至进气门内,在提高进气的同时,增大油-气混凝土物中汽油的含量,从而充分利用通过增压部件压入空气中的氧气,减少无用功率的产生。

而发动机凸轮轴56转速进一步提高时,离心杆74驱使夹持板46转动的评率变高,离心杆74伸出伸缩槽的长度将变长,从而是的夹持板46转动的幅度变大,对注油管的夹持作用变弱,加大汽油通过注油管进入至进气口的量。

当发动机凸轮轴56转速逐渐下降,转动齿轮64转速降低,离心感受到的离心力变小,离心杆74在复位弹簧75作用下将逐渐回缩至伸缩槽,直至离心杆74伸出伸缩槽的一端的转动路径在夹持板46的一侧,此时由于注油管被夹持件63所夹持,汽油无法通过注油管进入到进气门内,以减少发动机功率较低时,充入发动机的油-气混合体的汽油浓度过高,而出现的燃烧不充分、浪费的现象。

为了减少罩壳6内压缩的空气自避让口76外漏,在筒管体34的内壁上固定连接有遮蔽盖77,遮蔽盖77对应遮蔽避让口76设置,遮蔽盖77的中部设置有供离心杆74转动经过的避让槽78。

避让盖将分割罩壳6内部和离心杆74,保障空气压缩的质量。

实施例四:

基于正时系统驱动的增压系统,本实施例提供了一种正时系统5驱动的可调控增压方法,该增压方法具体包括但不限于以下步骤:

获取正时系统5动力输出机构51的转速值;

当正时系统5动力输出机构51的转速升高时,滚珠沿着斜面轨道114向远离定位主动轮111方向滑动同时推动变位件116和可变主动轮112向远离定位主动轮111方向移动,从动复位压紧件123推动可变从动轮122向定位从动轮121方向靠近,此时传动机构1的传动比变小;

当正时系统5动力输出机构51的转速降低时,滚珠沿着所述斜面轨道114向靠近定位主动轮111方向滑动,可变主动轮112在压紧机构的作用下向靠近定位主动轮111方向移动,可变从动轮122向远离定位从动轮121方向移动,此时传动机构1的传动比变大。

传动机构1的传动比变化规律适应发动机进气特性的要求,在较低转速工况状态采用较大的升速传动比,而在较高转速工况状态则采用相对较小的升速传动比,传动比变化范围为1.3~2.6。

实施例五:

本实施例公开了一种机动车,该机动车具有实施例一至实施例三所述的正时系统驱动的增压系统并采用实施例四的可调控增压方法增压。

需要说明的是,在以上实施例中,增压器3、气缸2、中冷器4及正时系统5均为现有技术,本领域技术人员都能理解,所以工作结构和工作原理没有具体阐述。

以上显示和描述了本发明的基本原理、主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有多种变化、修改、替换和变型,这些变化、修改、替换和变型都落入要求保护的本发明范围内。

技术分类

06120114729641