掌桥专利:专业的专利平台
掌桥专利
首页

一种高强度羟基磷灰石骨组织工程支架的常温一步挤出3D打印成形制备方法

文献发布时间:2024-04-18 20:00:50


一种高强度羟基磷灰石骨组织工程支架的常温一步挤出3D打印成形制备方法

技术领域

本发明属于生物医用材料技术领域,涉及一种骨组织工程支架,尤其涉及一种高强度羟基磷灰石骨组织工程支架的常温一步挤出3D打印成形制备方法。

背景技术

骨是生物体中坚硬的组织器官,且是有生命的并且具有一定的再生和自我修复能力。骨组织为多相非均匀相混合物,其中占最多的无机组分是接近于化学中的羟基磷灰石(Hydroxyapatite,HA),但通常是富含碳酸根或钙,这类矿物相被统称为磷灰石,人体中松质骨的抗压强度为4-12MPa。

近年来,生物陶瓷的3D打印技术受到越来越多的关注。生物陶瓷骨组织工程支架3D打印技术的成形方式种类较多,常见的有激光或电子束直接烧结3D打印、有机粘接挤出3D打印后续烧结成形、紫外光固化3D打印后续烧结成形等。其中,使用高能束(激光、电子束)选择性烧结(SLS)技术可以得到复杂结构的支架,但这种技术需要工业级的激光器等大型设备,成本较高。且打印所需的材料量较大,同时需要额外混合低熔点材料粘接,支架打印完成后需要再次烧结排除低熔点材料。而用高能束选择性激光融化(SLM)技术打印的支架由于陶瓷颗粒本身的熔点较高,采用大功率激光熔化往往由于热应力会有开裂导致支架的粗糙度较大,这类支架往往需要在初步打印完成后进行等静压的后处理来提升致密度。依靠有机粘合剂(CN202110445313.8)与生物陶瓷粉体混合挤出后烧结去除溶剂和聚合物后得到的支架往往伴随着成形尺寸的收缩,需要进行更多的后处理,并且由于后烧结的影响,导致支架无法负载活性因子而显示出较低的生物活性。而通过陶瓷粉体与光敏材料混合形成“浆料”,通过辅助光固化后烧结的3D打印方式(Ma Z,Xie J,Shan X Z,et al.Highsolid content 45S5 Bioglass-based scaffolds using stereolithographic ceramicmanufacturing:process,structural and mechanical properties[J].Journal ofMechanical Science and Technology,2021,35(2):823-832.)能够实现产品的固化成形。然而,这种技术的工序较多,需要对光固化3D打印和烧结的工艺参数进行优化匹配。并且,一般来说光敏树脂本身可能是一种微毒物质,尽管支架的烧结温度往往需要900℃以上,而感光树脂400℃左右就会蒸发,但仍有烧结去除不够彻底的风险。

孔羟基磷灰石是一种较好的支架制备材料。现有多孔羟基磷灰石的支架制备中,传统技术包括发泡法、烧结微球法和溶胶-凝胶法,这些方法需要进行高温煅烧,制备过程繁琐,不利于负载生物活性药物。而现代开发的3D打印技术中,选择性激光烧结采用羟基磷灰石复合低熔点物质进行选择性烧结打印,然而得到的支架往往成形较差、需要后续等静压等处理来提升致密度,并且整个制备过程成本较高、工序较多,同时不利于负载生物活性物质。其他3D打印方式(光固化、喷墨、直写挤出)常常以羟基磷灰石粉体与高黏度的高分子材料混合后进行挤出打印,随后对支架进行交联等后处理,但这类3D打印方式受限于羟基磷灰石粉体本身可注射性较差的影响,需要引入较高的油墨占比从而导致羟基磷灰石固相占浆料的总体不高,得到的支架整体强度水平偏低。

综合考虑,期望获得一种没有生物毒性、不需要交联、可以与高活性物质复合并能在室温下挤出3D打印的陶瓷浆料。

发明内容

本发明针对目前羟基磷灰石类支架在3D打印的各类技术中存在设备、用料成本较高、后处理工序繁琐以及存在潜在有害生物毒性风险等技术问题,提出了一种高强度羟基磷灰石骨组织工程支架的常温一步挤出3D打印成形制备方法,通过制备出一种力学性能优异、可注射性强、固化时间适中的可3D打印生物陶瓷浆料,从而可以通过3D打印得到一种常温挤出成形、无需交联、免烧结、无后处理的高强度羟基磷灰石骨组织工程支架。

为实现上述目的,本发明提供一种高强度羟基磷灰石骨组织工程支架的常温一步挤出3D打印成形制备方法,具有这样的特征:制备羟基磷灰石浆料,将羟基磷灰石浆料常温挤出3D打印自固结成形,得到羟基磷灰石骨组织工程支架;所述羟基磷灰石浆料由改性羟基磷灰石粉体与调和液配制而成;所述改性羟基磷灰石粉体是由苹果酸螯合改性羟基磷灰石得到的粉体。

进一步,本发明提供一种高强度羟基磷灰石骨组织工程支架的常温一步挤出3D打印成形制备方法,还可以具有这样的特征:其中,所述改性羟基磷灰石粉体的微观形貌为微米颗粒状,平均粒径为3~80μm。

进一步,本发明提供一种高强度羟基磷灰石骨组织工程支架的常温一步挤出3D打印成形制备方法,还可以具有这样的特征:其中,所述改性羟基磷灰石粉体的制备方法为:将羟基磷灰石粉末与苹果酸溶液进行球磨,然后干燥研磨后过200目筛网,即得改性羟基磷灰石粉体。

进一步,本发明提供一种高强度羟基磷灰石骨组织工程支架的常温一步挤出3D打印成形制备方法,还可以具有这样的特征:其中,在所述改性羟基磷灰石粉体的制备方法中,球磨时间为3h;苹果酸与羟基磷灰石粉末的质量比为0.005~0.05∶1;苹果酸溶液是pH值为7~7.5、浓度为0.1~1wt.%的溶液;干燥方式为真空冷冻干燥(这里真空冷冻干燥是一种优选的干燥方式,当然也可以采用加热干燥的方式进行干燥)。

进一步,本发明提供一种高强度羟基磷灰石骨组织工程支架的常温一步挤出3D打印成形制备方法,还可以具有这样的特征:其中,所述调和液为蒸馏水或多糖溶液。

进一步,本发明提供一种高强度羟基磷灰石骨组织工程支架的常温一步挤出3D打印成形制备方法,还可以具有这样的特征:其中,所述多糖溶液是浓度为0.5~4wt.%的海藻酸钠溶液。

进一步,本发明提供一种高强度羟基磷灰石骨组织工程支架的常温一步挤出3D打印成形制备方法,还可以具有这样的特征:其中,所述羟基磷灰石浆料的配置方法为:所述改性羟基磷灰石粉体与调和液调和均匀,即得所述羟基磷灰石浆料。

进一步,本发明提供一种高强度羟基磷灰石骨组织工程支架的常温一步挤出3D打印成形制备方法,还可以具有这样的特征:其中,所述改性羟基磷灰石粉体与调和液的质量比为1∶0.20~0.55。

进一步,本发明提供一种高强度羟基磷灰石骨组织工程支架的常温一步挤出3D打印成形制备方法,还可以具有这样的特征:其中,所述3D打印的注射挤出头的丝径为0.4~1.6mm,打印层高为0.1~0.8mm,打印速度为0.1~150mm/s,打印气压为50~600kPa。

进一步,本发明提供一种高强度羟基磷灰石骨组织工程支架的常温一步挤出3D打印成形制备方法,还可以具有这样的特征:其中,3D打印后样品于室温下固化0.5h。

本发明的有益效果在于:本发明提供一种高强度羟基磷灰石骨组织工程支架的常温一步挤出3D打印成形制备方法,从羟基磷灰石的改性出发,提升羟基磷灰石与蒸馏水或极低浓度的多糖溶液复合后浆体的可注射性和凝固时间,使得浆体能够被用于直写式3D打印,并以此获得成形良好的高强度骨工程支架。

苹果酸作为一种绿色安全的螯合剂,与羟基磷灰石粉末采用溶液球磨改性的方式,通过苹果酸的羧酸基团与钙离子的螯合作用而吸附于羟基磷灰石表面,从而使得羟基磷灰石粉体表面带有负电荷,当与蒸馏水或多糖溶液复合时,苹果酸发挥了类似建筑水泥中所添加的减水剂的作用,使得浆体的凝固时间极大延长,又因为苹果酸与羟基磷灰石的螯合作用使得其可注射性显著提升,抗压强度增强,使其可以应用于低温挤出3D打印,解决了传统HA无法自固化以及挤出3D打印后需要烧结等处理工序。具体的,由于苹果酸分子对钙离子的螯合而吸附于HA表面,改性后的HA表面均匀地带有了负电荷,使得HA颗粒间互相排斥,浆体内部的颗粒形成了均匀紧密的排列,颗粒的团聚现象大大降低,从而使浆体更利于被挤出,最终提升了可注射性。同时,这样的浆体在固化后的内部形貌会更致密,从而对力学性能也有显著提升。一方面,表面带有负电荷的螯合HA粉体也会由于负电荷间的排斥作用而产生减水效应,即在粉体量保持不变的情况下只需要更少的液体就能满足浸润,这让同一体积下的浆体,螯合HA糊剂能具有更高的固相占比,从而具备更高的力学性能;另一方面,在相同固液比下,MA承担了类似减水剂的作用,即MA螯合HA浆体相对于未改性HA浆体的所需液体量更少,这样使得相同固液比的浆体中改性浆体的液相更多,从而使得固化时间被延长。

有益效果具体包括:

一、本发明将苹果酸应用于羟基磷灰石骨支架打印浆料中,显著提高了支架的力学性能,极大改善了浆体的可注射性(90%以上)、均匀性,并延长了凝固时间(50~90分钟),使得3D打印的操作时间大大增加;且本发明制备方法为常温一步挤出打印自固化成形,无需激光、电子束等高能束辅助烧结,无需紫外光辅助固化,无需后续排胶、高温烧结等其他后处理,为高性能羟基磷灰石骨组织工程支架3D打印开拓了新途径。

二、本发明苹果酸对羟基磷灰石的改性过程不会改变羟基磷灰石的物相,且苹果酸生物安全性高,生物相容性好,所打印的骨支架具有合适的孔隙率和孔径结构,有利于骨组织的生长,从而使得该支架具有良好的生物相容性及骨传导性;且均匀孔洞结构有利于营养物质的输运、血管的生长,并能促进细胞的附着、增值、分化。

三、本发明制备的高强度螯合型羟基磷灰石骨支架是在25℃左右的室温下打印完成,这种低温的3D打印技术,既有利于支架的养护和成分亲和无污染,同时相比于打印后烧结或高温打印的产品,具有更高的活性优势。

四、本发明采用的常温一步成形工艺有利于载药和高活性因子甚至活性细胞的亲和添加,使得支架能够具有更高的生物活性。

五、本发明制备的高强度螯合型羟基磷灰石骨支架具有较高的抗压强度(可达15.6Mpa)能够满足松质骨的要求。

附图说明

图1是采用本发明方法制备的高强度羟基磷灰石骨组织工程支架的照片;

图2是采用本发明方法制备的改性羟基磷灰石粉体的扫描电子显微镜图;

图3是采用本发明方法制备的羟基磷灰石浆料固化产物的X射线衍射图;

图4是采用本发明方法制备的羟基磷灰石浆料的可注射性演示图;

图5是采用本发明方法制备的高强度羟基磷灰石骨组织工程支架的扫描电子显微镜图;

图6是采用本发明方法制备的高强度羟基磷灰石骨组织工程支架进行抗压实验后断裂内部形貌的扫描电子显微镜图。

具体实施方式

以下结合具体实施例对本发明作进一步说明。

实施例1

本实施例提供一种高强度羟基磷灰石骨组织工程支架的常温一步挤出3D打印成形制备方法,包括以下步骤:

步骤一、制备改性羟基磷灰石粉体:称取羟基磷灰石粉末;配置用0.5mol/L的NaOH溶液调节其pH值至7.3左右的、浓度为0.9wt.%的苹果酸溶液;将羟基磷灰石粉末和苹果酸溶液置于球磨罐中,在室温下用球磨机对粉体进行球磨同时改性3h,其中苹果酸与羟基磷灰石粉末的质量比为0.045∶1;球磨后分离球及液体,得到改性混合浆;对改性混合浆进行真空冷冻干燥(-55℃),然后用研钵充分研磨后过200目筛网,得到改性羟基磷灰石粉体。

步骤二、调和配置羟基磷灰石浆料(即骨支架浆料):按固液质量比1∶0.3取步骤一制得的改性羟基磷灰石粉体和蒸馏水,快速调和均匀,即得到均匀的羟基磷灰石浆料。

步骤三、常温一步挤出式3D打印:将步骤二制得的羟基磷灰石浆料填入一次性塑料注射管里再推出,重复1~2次,充分排尽浆体内可能存在的气泡,然后挤入3D打印机的注射管内;选择0.6mm的挤出针头,设置打印速度为10mm/s,层高0.2mm,打印气压为600KPa,根据相应的模型进行打印,打印完成后取出样品,室温下固化0.5h后即可得到高强度羟基磷灰石骨组织工程支架,如图1所示。

实施例2

本实施例提供一种高强度羟基磷灰石骨组织工程支架的常温一步挤出3D打印成形制备方法,包括以下步骤:

步骤一、制备改性羟基磷灰石粉体:称取羟基磷灰石粉末;配置用0.5mol/L的NaOH溶液调节其pH值至7.3左右的、浓度为0.7wt.%的苹果酸溶液;将羟基磷灰石粉末和苹果酸溶液置于球磨罐中,在室温下用球磨机对粉体进行球磨同时改性3h,其中苹果酸与羟基磷灰石粉末的质量比为0.035∶1;球磨后分离球及液体,得到改性混合浆;对改性混合浆进行真空冷冻干燥(-55℃),然后用研钵充分研磨后过200目筛网,得到改性羟基磷灰石粉体。

步骤二、调和配置羟基磷灰石浆料(即骨支架浆料):称取海藻酸钠颗粒,溶于蒸馏水中,充分搅拌后静置2h即得1wt.%的海藻酸钠溶液;按固液质量比1∶0.2取步骤一制得的改性羟基磷灰石粉体和海藻酸钠溶液,快速调和均匀,即得到均匀的羟基磷灰石浆料。

步骤三、常温一步挤出式3D打印:将步骤二制得的羟基磷灰石浆料填入一次性塑料注射管里再推出,重复1~2次,充分排尽浆体内可能存在的气泡,然后挤入3D打印机的注射管内;选择0.6mm的挤出针头,设置打印速度为10mm/s,层高0.2mm,打印气压为600KPa,根据相应的模型进行打印,打印完成后取出样品,室温下固化0.5h后即可得到高强度羟基磷灰石骨组织工程支架。

对步骤一制得的改性羟基磷灰石粉体进行扫描电子显微镜(SEM)表征,结果如图2所示。根据SEM图片并进行粉体粒径的分析和处理,计算得到所制备粉体的平均粒径为28μm。

实施例3

本实施例提供一种高强度羟基磷灰石骨组织工程支架的常温一步挤出3D打印成形制备方法,包括以下步骤:

步骤一、制备改性羟基磷灰石粉体:称取羟基磷灰石粉末;配置用0.5mol/L的NaOH溶液调节其pH值至7.3左右的、浓度为0.5wt.%的苹果酸溶液;将羟基磷灰石粉末和苹果酸溶液置于球磨罐中,在室温下用球磨机对粉体进行球磨同时改性3h,其中苹果酸与羟基磷灰石粉末的质量比为0.025∶1;球磨后分离球及液体,得到改性混合浆;对改性混合浆进行真空冷冻干燥(-55℃),然后用研钵充分研磨后过200目筛网,得到改性羟基磷灰石粉体。

步骤二、调和配置羟基磷灰石浆料(即骨支架浆料):称取海藻酸钠颗粒,溶于蒸馏水中,充分搅拌后静置4h即得2wt.%的海藻酸钠溶液;按固液质量比1∶0.2取步骤一制得的改性羟基磷灰石粉体和海藻酸钠溶液,快速调和均匀,即得到均匀的羟基磷灰石浆料。

步骤三、常温一步挤出式3D打印:将步骤二制得的羟基磷灰石浆料填入一次性塑料注射管里再推出,重复1~2次,充分排尽浆体内可能存在的气泡,然后挤入3D打印机的注射管内;选择0.6mm的挤出针头,设置打印速度为10mm/s,层高0.2mm,打印气压为600KPa,根据相应的模型进行打印,打印完成后取出样品,室温下固化0.5h后即可得到高强度羟基磷灰石骨组织工程支架。

对步骤二制得的羟基磷灰石浆料进行X射线衍射(XRD)表征,具体的,待羟基磷灰石浆料固化后对其进行X射线衍射分析,结果如图3所示。

实施例4

本实施例提供一种高强度羟基磷灰石骨组织工程支架的常温一步挤出3D打印成形制备方法,包括以下步骤:

步骤一、制备改性羟基磷灰石粉体:称取羟基磷灰石粉末;配置用0.5mol/L的NaOH溶液调节其pH值至7.3左右的、浓度为0.7wt.%的苹果酸溶液;将羟基磷灰石粉末和苹果酸溶液置于球磨罐中,在室温下用球磨机对粉体进行球磨同时改性3h,其中苹果酸与羟基磷灰石粉末的质量比为0.035∶1;球磨后分离球及液体,得到改性混合浆;对改性混合浆进行真空冷冻干燥(-55℃),然后用研钵充分研磨后过200目筛网,得到改性羟基磷灰石粉体。

步骤二、调和配置羟基磷灰石浆料(即骨支架浆料):称取海藻酸钠颗粒,溶于蒸馏水中,充分搅拌后静置6h即得2wt.%的海藻酸钠溶液;按固液质量比1∶0.25取步骤一制得的改性羟基磷灰石粉体和海藻酸钠溶液,快速调和均匀,即得到均匀的羟基磷灰石浆料。

步骤三、常温一步挤出式3D打印:将步骤二制得的羟基磷灰石浆料填入一次性塑料注射管里再推出,重复1~2次,充分排尽浆体内可能存在的气泡,然后挤入3D打印机的注射管内;选择0.6mm的挤出针头,设置打印速度为10mm/s,层高0.2mm,打印气压为600KPa,根据相应的模型进行打印,打印完成后取出样品,室温下固化0.5h后即可得到高强度羟基磷灰石骨组织工程支架。

对步骤二制得的羟基磷灰石浆料和未用苹果酸改性的纯羟基磷灰石的浆料(对比例)进行可注射性测试:

使用带有2mm内径针头的医用注射器确定浆料的注射性。将改性羟基磷灰石粉体/羟基磷灰石粉末(对比例)与2wt.%的海藻酸钠溶液混合1min,固液质量比为1∶0.25,然后将浆料注入注射器。然后用速度为15mm/min的通用材料试验机(CMT 5105)压迫注射器,直到力达到400N(图4)。之后,可注射性被计算为挤出的浆料质量与最初装载的浆料质量的比率,结果如表1所示。

表1可注射性性能测试结果

从表1可以看出,相较于对比例,苹果酸改性过后的羟基磷灰石浆料的可注射性显著提升。

实施例5

本实施例提供一种高强度羟基磷灰石骨组织工程支架的常温一步挤出3D打印成形制备方法,包括以下步骤:

步骤一、制备改性羟基磷灰石粉体:称取羟基磷灰石粉末;配置用0.5mol/L的NaOH溶液调节其pH值至7.3左右的、浓度为0.9wt.%的苹果酸溶液;将羟基磷灰石粉末和苹果酸溶液置于球磨罐中,在室温下用球磨机对粉体进行球磨同时改性3h,其中苹果酸与羟基磷灰石粉末的质量比为0.045∶1;球磨后分离球及液体,得到改性混合浆;对改性混合浆进行真空冷冻干燥(-55℃),然后用研钵充分研磨后过200目筛网,得到改性羟基磷灰石粉体。

步骤二、调和配置羟基磷灰石浆料(即骨支架浆料):称取海藻酸钠颗粒,溶于蒸馏水中,充分搅拌后静置8h即得2wt.%的海藻酸钠溶液;按固液质量比1∶0.25取步骤一制得的改性羟基磷灰石粉体和海藻酸钠溶液,快速调和均匀,即得到均匀的羟基磷灰石浆料。

步骤三、常温一步挤出式3D打印:将步骤二制得的羟基磷灰石浆料填入一次性塑料注射管里再推出,重复1~2次,充分排尽浆体内可能存在的气泡,然后挤入3D打印机的注射管内;选择0.6mm的挤出针头,设置打印速度为10mm/s,层高0.2mm,打印气压为600KPa,根据相应的模型进行打印,打印完成后取出样品,室温下固化0.5h后即可得到高强度羟基磷灰石骨组织工程支架。

对步骤二制得的羟基磷灰石浆料和未用苹果酸改性的纯羟基磷灰石的浆料(对比例)进行凝固时间测试:

参考ISO06876:2001标准中的测试方法,采用针入度计对浆体进行固化时间的测定。当测试指针未能压入样品表面时,记录固化时间,结果如表2所示。

表2固化时间测试结果

从表2可以看出,相较于对比例,苹果酸改性过后的羟基磷灰石浆料的凝固时间显著延长,有利于浆体进行挤出式3D打印。

实施例6

本实施例提供一种高强度羟基磷灰石骨组织工程支架的常温一步挤出3D打印成形制备方法,包括以下步骤:

步骤一、制备改性羟基磷灰石粉体:称取羟基磷灰石粉末;配置用0.5mol/L的NaOH溶液调节其pH值至7.3左右的、浓度为0.7wt.%的苹果酸溶液;将羟基磷灰石粉末和苹果酸溶液置于球磨罐中,在室温下用球磨机对粉体进行球磨同时改性3h,其中苹果酸与羟基磷灰石粉末的质量比为0.035∶1;球磨后分离球及液体,得到改性混合浆;对改性混合浆进行真空冷冻干燥(-55℃),然后用研钵充分研磨后过200目筛网,得到改性羟基磷灰石粉体。

步骤二、调和配置羟基磷灰石浆料(即骨支架浆料):称取海藻酸钠颗粒,溶于蒸馏水中,充分搅拌后静置6h即得2wt.%的海藻酸钠溶液;按固液质量比1∶0.25取步骤一制得的改性羟基磷灰石粉体和海藻酸钠溶液,快速调和均匀,即得到均匀的羟基磷灰石浆料。

步骤三、常温一步挤出式3D打印:将步骤二制得的羟基磷灰石浆料填入一次性塑料注射管里再推出,重复1~2次,充分排尽浆体内可能存在的气泡,然后挤入3D打印机的注射管内;选择0.6mm的挤出针头,设置打印速度为10mm/s,层高0.2mm,打印气压为600KPa,根据相应的模型进行打印,打印完成后取出样品,室温下固化0.5h后即可得到高强度羟基磷灰石骨组织工程支架。

将打印完成的支架放入37℃的烘箱中固化24h,然后进行SEM测试,结果如图5所示。随后对支架进行抗压强度测试:取支架的试样在37℃下固化24h,随后用万能试验机进行抗压强度测试,载荷5KN,加压速度为0.5mm/min,测得的抗压强度为15.6MPa。对抗压强度测试后的断裂试样内部进行SEM测试,如图6所示。

以上所述,仅是本发明的较佳实施例,并非对本发明作任何形式上的限制,任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内,依据本发明的技术实质,对以上实施例所作的任何简单的修改、等同替换与改进等,均仍属于本发明技术方案的保护范围之内。

相关技术
  • 心率检测方法、系统及存储介质
  • 基于云存储的电网数据上传方法、装置、系统及存储介质
  • 大米出米率计算方法、系统、服务器及存储介质
  • 同时获取光响应图像和反射率图像的方法、装置、系统及存储介质
  • 基于心率变异率的心肌缺血早筛方法、系统及存储介质
  • 基于心率变异性的分析方法、系统、产品及存储介质
技术分类

06120116545601