掌桥专利:专业的专利平台
掌桥专利
首页

一种新型分体式液驱隔膜压缩机用高频换向减压缸

文献发布时间:2023-06-19 19:18:24


一种新型分体式液驱隔膜压缩机用高频换向减压缸

技术领域

本发明涉及减压缸技术领域,尤其涉及一种新型分体式液驱隔膜压缩机用高频换向减压缸。

背景技术

液驱隔膜式压缩机所用减压缸是一种将高压小流量的液压油转换成低压大流量液压油的液压执行机构。受制于大排量液压泵的研发难度、研发成本以及批量后的制造成本。

在开发不同排量的液驱隔膜压缩机过程中往往要重新设计减压缸,这样必然会耗费一些设计时间和成本,另外还需要重新进行试验验证。现有的液驱隔膜式压缩机往往使用成熟的小排量液压泵作为压力源。因此,小排量液压泵要匹配压缩机气侧的大排量要求就需要使用减压缸作为中间机构将高压小流量的液压油转换成大流量的液压油推动隔膜压缩机中的膜片做功。

液驱隔膜式压缩机所用减压缸是一种将高压小流量的液压油转换成低压大流量液压油的液压执行机构,在使用时,减压缸的一端连接液压泵,另外一端连接膜头。连接液压泵的一侧使用柱塞,连接膜头的一侧使用活塞,活塞的截面积比柱塞的截面积大,活塞的截面积和柱塞的截面积之比称之为减压比。

设计不同排量的压缩机需要不同的减压比,如果压缩使用同样排量的液压泵,连接液压泵那侧的柱塞结构完全类似,而活塞需要设计成不同的截面积。

目前,减压缸高压柱塞和低压侧活塞共用一个缸体,安装时高压侧柱塞和低压侧活塞组装好之后,一起装入缸体中,在使用时,不便于对液压缸一侧的低压侧缸体进行拆卸更换,从而改变活塞的截面积和柱塞的截面积之间的减压比,需要重新制造新的缸体,成本较高。

且目前的减压缸若使用静压支承结构,高压侧液压油会存在泄漏到静压支承位置处的可能,从而影响静压支承的效果。减压缸高压侧一般使用两种方式进行密封,一种是使用格莱圈进行密封,另外一种是使用间隙密封。两种方法各有优缺点。使用格莱圈密封,泄漏小,但密封件容易磨损,另外购买密封件会增加额外的成本,同时使用密封件密封高压侧液压油会存在油温偏高的风险。使用间隙密封,泄漏大,但可以降低油温,同时可以减少购买密封件的成本,也没有动密封件磨损、寿命有限等问题。两种密封方法的减压缸需要使用不同的减压缸缸体,无法做到兼容。

由上所述,为此我们设计出了一种新型分体式液驱隔膜压缩机用高频换向减压缸来解决以上问题。

发明内容

本发明的目的是为了解决现有技术中存在的缺点,而提出的一种新型分体式液驱隔膜压缩机用高频换向减压缸。

为了实现上述目的,本发明采用了如下技术方案:

一种新型分体式液驱隔膜压缩机用高频换向减压缸,所述减压缸包括动件和静止件,所述静止件包括低压侧缸体、低压侧衬套、螺钉、高压侧缸体、高压侧衬套、注油口和端盖,

所述低压侧缸体与高压侧缸体一端之间可拆卸连接,所述高压侧缸体的另一端与端盖之间可拆卸连接,所述低压侧衬套通过过盈配合的方式安装在低压侧缸体中,所述高压侧衬套通过过盈配合的方式装在高压侧缸体中;

所述动件包括高压侧柱塞组件、低压侧活塞和球头,所述低压侧活塞安装在低压侧衬套内,所述高压侧柱塞组件安装在高压侧衬套内,所述高压侧柱塞组件的一端与球头固定连接,所述球头的另一侧与低压侧活塞可拆卸连接;

所述高压侧柱塞组件包括高压侧柱塞和安装高压侧柱塞与高压侧缸体之间的密封结构。

优选的,所述低压侧缸体的一端通过螺钉与高压侧缸体固定连接,所述低压侧缸体的另一端通过螺钉连接有膜头,所述高压侧缸体靠近低压侧缸体的一侧设置有第一止口,所述端盖靠近高压侧缸体的一侧设置有第二止口,所述低压侧缸体与高压侧缸体之间的连接处、所述高压侧缸体之间与端盖之间的连接处均安装有O型密封圈。

优选的,所述高压侧缸体的内部包括小孔径空心结构和大孔径空心结构,所述小孔径空心结构和大孔径空心结构贯通连接,所述小孔径空心结构靠近低压侧缸体的一端,所述高压侧衬套安装在大孔径空心结构内部。

优选的,所述低压侧活塞在低压侧衬套中运动,所述高压侧柱塞在高压侧衬套中运动,所述密封结构包括在小孔径空心结构的内部安装导杆衬套或在大孔径空心结构内部的高压侧柱塞外侧安装格莱圈中的一种或多种。

优选的,所述密封结构为小孔径空心结构的内部安装导杆衬套时,所述导杆衬套安装在高压侧柱塞的外侧,所述高压侧柱塞与导杆衬套之间设置有间隙,所述导杆衬套的下方高压侧缸体内部设置有与大孔径空心结构贯通的圆形的泄油通道。

优选的,所述密封结构为大孔径空心结构内部的高压侧柱塞外侧安装格莱圈时,所述小孔径空心结构与高压侧柱塞的外侧之间为贯通结构。

优选的,所述低压侧缸体内设置有低压侧泄油腔,高压侧缸体内设置有高压侧泄油腔。

优选的,所述动件还包括滑靴、滑靴压盖、滑靴垫块、格莱圈、导向带,所述滑靴垫块通过过盈配合的方式安装在低压侧活塞中,所述滑靴安装在滑靴垫块中,所述滑靴和滑靴垫块之间设置有用于滑靴在滑靴垫块中滑动的间隙,所述球头通过一根螺钉与高压侧柱塞的一端连接,所述球头安装在滑靴中,所述滑靴压盖通过螺钉和低压侧活塞相连。

优选的,所述低压侧缸体还包括安装在低压侧活塞内部带导杆的单向阀,所述带导杆的单向阀包括阀盖、阀罩、弹簧、阀座、阀芯、顶杆、导向衬套、垫块,所述垫块安装在高压侧缸体上。

优选的,所述阀盖、阀罩和阀座固定连接构成单向阀的外壳结构,所述弹簧安装在阀座的内部,所述弹簧的一端与阀座的内部一侧相抵设置,所述弹簧的另一端与阀芯连接,所述阀芯的另一端连接有顶杆,顶杆的外部和阀座的内部一侧安装有导向衬套。

与现有技术相比,本发明的有益效果是:

1、该方案中的减压缸要改变减压比只需要重新设计低压侧活塞和低压侧缸体、低压侧衬套,而高压侧缸体、高压侧衬套、端盖和柱塞可以和原方案一样。这样可以节约一半以上的设计时间和验证试验时间,降低制造成本,也能实现零件的高通用性。

2、该方案中,低压侧衬套和高压侧衬套在长时间使用过程中如果磨损到一定程度可以更换衬套。这种设计可以避免更换缸体,从而节约了制造成本和维修成本。

3、该方案中,减压缸实现了高压侧柱塞使用间隙密封+导杆静压支承和高压侧柱塞用格莱圈密封两种方案的兼容。此种做法的好处在于可以根据不同的需求灵活转变具体实施方案,而不用重新设计缸体;减压缸缸体是减压缸所有部件中制造成本最高和制造时间最长的部件;因此,本方案可以有效的降低了研发成本和制造成本。同时,使用静压支承能够避免高压侧液压油的影响,静压支承效果更好。

4、通过低压侧缸体还包括安装在低压侧活塞内部带导杆的单向阀,当高压侧柱塞运动到高压侧止点时,顶杆和安装在高压侧缸体上的垫块接触,单向阀打开,此时膜头和减压缸之间的液压油可以通过此单向阀进行泄漏,从而起到置换系统中高温液压油降低系统油温的作用。

附图说明

图1为本发明提出的一种新型分体式液驱隔膜压缩机用高频换向减压缸的结构示意图;

图2为本发明提出的一种新型分体式液驱隔膜压缩机用高频换向减压缸的剖视图;

图3为本发明提出的一种新型分体式液驱隔膜压缩机用高频换向减压缸的实施例二的剖视图;

图4为本发明提出的一种新型分体式液驱隔膜压缩机用高频换向减压缸的实施例三的结构示意图。

图中:1高压侧柱塞组件、101高压侧柱塞、2低压侧活塞、3球头、4低压侧缸体、5低压侧衬套、6高压侧缸体、7高压侧衬套、8滑靴、9滑靴压盖、10滑靴垫块、11端盖、12单向阀、13导杆衬套、14格莱圈、15导向带、16第一止口、17泄油通道、18低压侧泄油腔、19高压侧泄油腔、20垫块、21阀盖、22阀罩、23弹簧、24阀座、25阀芯、26顶杆、27导向衬套、28注油口。

具体实施方式

为了了对本发明的技术手段、创作特征、达成目的与功效易于明白了解,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。

液驱隔膜式压缩机所用减压缸是一种将高压小流量的液压油转换成低压大流量液压油的液压执行机构,在使用时,减压缸的一端连接液压泵,另外一端连接膜头。连接液压泵的一侧使用柱塞,连接膜头的一侧使用活塞,活塞的截面积比柱塞的截面积大,活塞的截面积和柱塞的截面积之比称之为减压比。

设计不同排量的压缩机需要不同的减压比,如果压缩使用同样排量的液压泵,连接液压泵那侧的柱塞结构完全类似,而活塞需要设计成不同的截面积,本方案主要是通过对液压缸一侧的低压侧缸体4进行拆卸更换,从而改变活塞的截面积和柱塞的截面积之间的减压比,达到节约一半以上的设计时间和验证试验时间的目的,也能实现零件的高通用性等作用。

实施例一

参照图1-2,一种新型分体式液驱隔膜压缩机用高频换向减压缸,减压缸包括动件和静止件,静止件包括低压侧缸体4、低压侧衬套5、螺钉、高压侧缸体6、高压侧衬套7、注油口28和端盖11,低压侧缸体4与高压侧缸体6一端之间可拆卸连接,高压侧缸体6的另一端与端盖11之间可拆卸连接,低压侧衬套5通过过盈配合的方式安装在低压侧缸体4中,高压侧衬套7通过过盈配合的方式装在高压侧缸体6中;

其中,高压侧缸体6的内部包括小孔径空心结构和大孔径空心结构两个部分,小孔径空心结构的直径相对于大孔径空心结构的直径较小,且小孔径空心结构和大孔径空心结构贯通连接,小孔径空心结构靠近低压侧缸体4的一端,高压侧衬套7安装在大孔径空心结构内部,大孔径空心结构内部的高压侧柱塞101外侧安装格莱圈14,小孔径空心结构与高压侧柱塞101的外侧之间为贯通结构;减压缸工作时,低压侧活塞2在低压侧衬套5中运动,高压侧柱塞101在高压侧衬套7中运动。低压侧衬套5和高压侧衬套7在长时间使用过程中会有所磨损,如果磨损到一定程度可以直接更换低压侧衬套5或者高压侧衬套7即可。这种设计可以避免更换整个缸体,从而节约了制造成本和维修成本。

更加具体的是,低压侧缸体4的一端通过螺钉与高压侧缸体6固定连接,低压侧缸体4的另一端通过螺钉连接在膜头上,高压侧缸体6靠近低压侧缸体4的一侧设置有第一止口16,通过第一止口16和低压侧缸体4配合可以提高安装精度;端盖11靠近高压侧缸体6的一侧设置有第二止口,端盖11通过第二止口和高压侧缸体6配合。低压侧缸体4与高压侧缸体6之间的连接处、高压侧缸体6之间与端盖11之间的连接处均安装有O型密封圈进行密封,O型密封圈为橡胶材质制成,其中,O型密封圈可设置在高压侧缸体6两侧连接处的第一第一止口16处和第二止口处。

在使用时,不同排量的压缩机如果使用同样的液压泵,只需要设计不同减压比的减压缸即可。而新设计的减压缸要改变减压比只需要重新设计低压侧活塞2和低压侧缸体4、低压侧衬套5,而高压侧缸体6、高压侧衬套7、端盖11和高压侧柱塞101可以和原方案一样。这样可以节约一半以上的设计时间和验证试验时间,也能实现零件的高通用性。

动件包括高压侧柱塞组件1、低压侧活塞2和球头3,低压侧活塞2安装在低压侧衬套5内,高压侧柱塞组件1安装在高压侧衬套7内,高压侧柱塞组件1的一端与球头3固定连接,球头3的另一侧与低压侧活塞2可拆卸连接;

更加具体的是,动件还包括滑靴8、滑靴压盖9、滑靴垫块10、格莱圈14、导向带15,滑靴垫块10通过过盈配合的方式安装在低压侧活塞2中,滑靴8安装在滑靴垫块10中,滑靴8和滑靴垫块10之间设置有用于滑靴8在滑靴垫块10中滑动的间隙,滑靴8可以在滑靴垫块10中滑动,这样的设计可以补偿低压侧活塞2和高压侧柱塞101在工作过程产生的位置的偏差,避免低压侧活塞2和高压侧柱塞101卡在缸体中无法移动;

球头3通过一根螺钉与高压侧柱塞101的一端连接,球头3安装在滑靴8中,滑靴压盖9通过螺钉和低压侧活塞2相连,能够防止滑靴8、球头3和低压侧活塞2的分离。球头3和滑靴8的结构设计,使高压侧柱塞101在旋转角度上有一定的自由度,加上前述的位置补偿,相比高压侧柱塞101与低压侧活塞2刚性连接的结构,这样的设计可使低压侧活塞2与高压侧柱塞101的运动不会相互影响,也能使高压侧柱塞101更灵活地调整运动姿态,降低偏斜或失效的风险。

更加具体的是,高压侧柱塞1和球头3仅通过一个螺钉相连,这个是利用了高压侧柱塞101在运动过程中仅受压力的特点,螺钉能防止球头3和高压侧柱塞101分离,同时在运动过程中基本不受力。这种设计大大降低了安装难度,同时高压侧柱塞101和球头3通过简单的间隙配合和螺钉连接就实现了既能承受较大载荷也保证了结构的简单可靠。

需要说明的是,在减压缸的安装过程中,低压侧活塞2可以先安装在低压侧缸体4中,然后高压侧柱塞101安装在高压侧缸体6中,而后高压侧柱塞101和球头3相连,最后将球头3和低压侧活塞2相连。这样的安装方式可以避免安装时1高压侧柱塞在7高压侧衬套中行程过长损伤衬套。

实施例二

如图3所示,在实施例1的基础上,高压侧缸体6内部的小孔径空心结构的内部安装导杆衬套13,将高压侧柱塞101换成采用通过导杆衬套13间隙密封的高压侧柱塞组件1。

其中,密封结构为小孔径空心结构的内部安装导杆衬套13时,导杆衬套13安装在高压侧柱塞101的外侧,高压侧柱塞101与导杆衬套13之间设置有间隙,导杆衬套13的下方高压侧缸体6内部设置有与大孔径空心结构贯通的圆形的泄油通道17。

更加具体的是,低压侧缸体4内设置有低压侧泄油腔18,高压侧缸体6内设置有高压侧泄油腔19。

其中,通过实施例1中,可知高压侧缸体6通过内部孔径的不同分成两部分,孔径小的部分用于静压支承,孔径大的部分用于高压侧柱塞101运动。高压侧缸体6上开有注油口28,通过注油口28将带有压力的液压油引入到高压侧柱塞101和导杆衬套13之间的间隙中,这样可以对高压侧柱塞101起到静压支承作用。低压侧缸体4中有低压侧泄油腔18,高压侧缸体6中有高压侧泄油腔19,低压侧泄油腔18和高压侧泄油腔19通过圆形泄油通道17相连。用于静压支承的液压油可以泄漏到低压侧泄油腔18和高压侧泄油腔19中,这种设计将高压侧柱塞101侧的高压液压油和静压支承的液压油完全分离开,静压支承完全不受高压侧柱塞101侧的高压液压油的影响。

进一步的,通过实施例1和实施例2可以看出减压缸实现了高压侧柱塞101使用间隙密封+导杆静压支承和高压侧柱塞101用格莱圈14密封两种方案的兼容。当高压侧缸体6中不安装导杆衬套13时,可以采用高压侧柱塞101用格莱圈14密封的方案;当高压侧缸体6中安装导杆衬套13时,可以使用高压侧柱塞101使用间隙密封+导杆静压支承的方案。此种做法的好处在于可以根据不同的需求灵活转变具体实施方案,而不用重新设计缸体。减压缸缸体是减压缸所有部件中制造成本最高和制造时间最长的部件。因此,本方案可以有效的降低了研发成本和制造成本。

实施例三

由于格莱圈14密封效果较好,减压缸低压侧和膜头之间的液压油泄漏较少,而此部分液压油由于压缩气体做功温度会升高。对于压缩机系统油温较高的情况,可以通过实施例三解决。

参照图4,实施例三是在实施例一的基础上,低压侧缸体4还包括安装在低压侧活塞2内部带导杆的单向阀12,带导杆的单向阀12包括阀盖21、阀罩22、弹簧23、阀座24、阀芯25、顶杆26、导向衬套27、垫块20,垫块20安装在高压侧缸体6上。

更加具体的是,阀盖21、阀罩22和阀座24固定连接构成单向阀的外壳结构,弹簧23安装在阀座24的内部,弹簧23的一端与阀座24的内部一侧相抵设置,弹簧23的另一端与阀芯25连接,阀芯25的另一端连接有顶杆26,顶杆26的外部和阀座24的内部一侧安装有导向衬套27。当1高压侧柱塞运动到高压侧止点时,顶杆36和安装在高压侧缸体6上的垫块20接触,单向阀12打开,此时膜头和减压缸之间的液压油可以通过此单向阀12进行泄漏,从而起到置换系统中高温液压油降低系统油温的作用。

更加具体的是,在低压侧活塞2上安装带导杆的单向阀12还可以起到增加减压缸阻尼、减小撞击的作用。具体机理如下:在液驱隔膜压缩机吸气时,在吸气压力的作用下,减压缸中的动件会从低压侧向高压侧运动,当动件运动到接近高压侧止点时,单向阀12打开,低压侧带压力的液压油由于单向阀12打开后通过注油口28和油箱连通,此时,液压油的压力会泄掉,这时整个动件的受力将快速减小,此外由于液压油瞬间从单向阀12中喷出会有一个反向的推力,推力施加到垫块20上,从而起到一个阻尼、减小动件撞击缸体的作用。

在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的设备或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。

此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。

以上显示和描述了本发明的基本原理、主要特征和优点。本领域的技术人员应该了解,本发明不受上述实施例的限制,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入本发明要求保护的范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

相关技术
  • 一种能够控制补油时机的加氢站用高压隔膜压缩机补油系统及高压隔膜压缩机和补油方法
  • 一种新型的隔膜压缩机用高频动作减压缸
  • 一种液驱式压缩机活塞缓冲换向结构
技术分类

06120115866554