掌桥专利:专业的专利平台
掌桥专利
首页

一种介入式血管内多模态成像及消融一体化导管

文献发布时间:2023-06-19 19:38:38


一种介入式血管内多模态成像及消融一体化导管

技术领域

本发明属于血管内疾病诊断技术领域,具体涉及一种介入式血管内多模态成像及消融一体化导管。

背景技术

目前,针对血管内疾病的主要方式诊断方式存在以下问题:

(1)缺少多模态精准诊断的成像技术

目前,针对血管内疾病的主要方式诊断方式为造影,但造影需要注射造影剂且采用放射性成像方式,对人体健康有一定影响,且体外的成像方式准确度及分辨率远远低于血管内成像方式。除此之外最常用的就是血管介入成像技术,例如IVUS、OCT、近红外光谱(NIRS)及近红外荧光(NIRF)等。然而,现有的技术大多为单一模态成像从而不能全面反映病变性质。以动脉粥样硬化为例,IVUS的穿透深度大,可获得整个血管和斑块的深度层次信息,但不能识别薄纤维帽;OCT成像分辨率高,可识别薄纤维帽,但其穿透深度不足;近红外光谱成像可量化脂质成分,但无法分辨深度,不能获得完整的结构信息;NIRF可标记炎症,但同样无法分辨深度信息,成像结果也仅为功能信息。因此,采用多模态成像技术则可克服单一模态成像的不足,同时获取血管的结构和功能等完整信息,更精准地指导介入治疗。

(2)缺少针对血管疾病的精准适形的治疗手段

现阶段,针对血管内疾病尤其是对血管内狭窄、动脉粥样硬化最有效的治疗措施是支架植入治疗,但治疗后需长期服用抗栓药物,且存在再狭窄等问题。采用新兴的热物理消融技术有望解决上述问题,但仍存在不足:1)现有单一模态成像不能同时准确获得斑块形态、组分、结构等信息,从而无法根据斑块结构、立体形态进行适形消融,更不能保护内皮细胞;2)由于消融过程中缺乏温度控制及反馈,不能实时精确调节消融功率,无法保证消融治疗的安全性和有效性。

基于上述两个问题,目前暂无成像、治疗一体化导管;

现阶段的介入设备所用导管皆为单工作模式,即只能实现成像或只能实现治疗,暂无满足临床介入要求的成像、治疗一体化的多功能导管。并且现阶段的血管内成像及治疗设备大多采用集成式设计,导致核心部件即导管无法更换或更换难度大、繁琐。

发明内容

本发明为了解决上述问题,进而提供一种介入式血管内多模态成像及消融一体化导管,集成了光声/超声/OCT/温度四模态及光热消融的光、声、电通路,解决了传统介入治疗导管无法实现多模态成像及消融的缺点。

本发明所采取的技术方案是:

一种介入式血管内多模态成像及消融一体化导管,包括导管管身、套装在导管管身前端外侧的力矩弹簧及导管管身的外皮;所述导管本管身前端设有用来加固及保护内部组件的金属外壳,并在金属外壳内部集成光声、超声、OCT及温度四模态成像组件和激光消融组件。

本发明与现有技术相比具有以下有益效果:

1.本发明集成了光声/超声/OCT/温度四模态光、声、电通路,解决了传统介入治疗导管无法实现多模态成像及消融的缺点,使用该导管进行介入操作,将有能力提供病灶组织的精确结构成分信息与温度分布信息,实现治疗边界的精确定位,完成微米级高精度光热消融治疗,有效解决血管内高分辨实时成像和多模态精准定位问题。

2.本发明的导管集成了连续激光通路,可以使用连续型激光进行消融来作为治疗手段,使用外部电脑或数据处理设备可以针对导管的成像结果和温度成像的反馈,控制导管进行精准聚焦和深度控制来实现高精度的消融治疗,实现了血管内的精准适形消融。

3.本发明将光学透镜组、电控单元等数个微型器件多合一,集成为导管;导管设计了多个款式,并设计了快速连接插头可以根据不同应用场景进行选择和快速更换,解决了暂无成像、治疗一体化导管及更换繁琐的问题。

4.本发明的导管具有良好的柔韧性,导管的内部集成多个通路及多根定制光纤,在导管的出光端有微型反射镜、一个液体透镜及其镜架,实现了成像激光及治疗激光的侧向出光和治疗激光的聚焦深度调节。

5.本发明通过精密光、机、电耦合设计,实现了介入导管的精密组装。导管采用微型化柔性技术,集成大功率定制光纤,外部装配有力矩弹簧增加其抗弯折性能,并可以实现小偏移角度旋转、高能量传输等功能,前端设计加入反射棱镜及液体透镜实现成像光、消融光的精准出光,并且设计了快速连接插头及多款导管型号可以根据狭窄程度、弯曲半径等不同应用场合进行快速更换。实现了成像、治疗一体化集成,解决了血管内成像及治疗导管相关问题。

6.本发明通过精密设计和组装配合高精度光、机、电耦合,使导管尺寸小,能兼容目前临床血管鞘及各种血管介入通路;导管采用多光束传导设计,支持四模态成像,可以充分获取血管内组织结构信息及温度信息;介入导管加入了连续型激光通路,并可以实现同时传导,实现了成像与消融同时进行的功能,配合前端装置将支持成像引导消融及成像反馈消融功能最终实现精准适形消融的功能;导管通过精密设计;光、机、电耦合效果好,传导效率高,抗拉、抗弯折能力强,前端装配镜架及光学透镜组精度高,并设计了多款型号,适配不同应用场景,设计的快速连接插头固定牢固,稳定性好,光通路插入损耗小,可以实现快速插拔。

附图说明

图1是本发明外部结构示意图;

图2是本发明导管管身横截面示意图;

图3是本发明金属外壳内部示意图;

图4是本发明快速连接插头主视图;

图5是本发明快速连接插头左视图;

图6是本发明第一光纤通光性能曲线;

图7是本发明第二光纤通光性能曲线;

图8是本发明消融光变焦深示意图;

其中:1、力矩弹簧;2、外皮;3、导管管身;4、阻燃和绝缘物;5、第一光纤;6、超声电信号传导线;7、第二光纤;8、液体透镜电压控制线;9、耦合模块及滑环;10、液体透镜;11、反射棱镜;12、出射光;13、金属外壳;14、超声换能器;15、多光束通路;16、自聚焦透镜;17、插头固定销;18、液体透镜控制接口;19、超声电信号接口;20、消融激光接口;21、旋转外壳部;22、插头部;23、光声及OCT成像接口。

具体实施方式

为了更好地了解本发明的目的、结构及功能,下面结合附图,对本发明的做进一步详细的描述。

本发明应用在动脉粥样硬化诊疗一体化样机上,作为介入导管使用,弥补了传统介入导管成像模态单一及没有一体化的成像、消融导管并且导管集成度低装配精度差的问题。导管在实际使用中,通过后端的快速连接插头连接在后端设备的滑环输出端上,原始数据通过导管内的通路传导到后端设备上的电脑进行处理,再根据处理结果对导管的旋转、进深、焦深、消融功率进行相应的控制。在实验中,整个系统测试效果良好,完美实现了多模态成像、侧向出光及精准消融和消融光调焦深的功能。

如图1所示,本发明的一种介入式血管内多模态成像及消融一体化导管,包括导管管身3、套装在导管管身3前端外侧的力矩弹簧1及导管管身3的外皮2;所述导管管身3前端设有用来加固及保护内部组件的金属外壳13,并在金属外壳13内部集成光声、超声、OCT及温度四模态成像组件和激光消融组件。

力矩弹簧1用来增强本导管抗拉扯、抗弯折能力;

外皮2用来保证内部通路与外部相对隔绝,从而防水、防尘、绝缘等,

其中:光声、超声、OCT及温度四模态成像组件用于实现多模态成像功能,导管集成了多信号通路,针对选用的特定波段激光集成了定制的光纤通路,能够对斑块脂质和胶原等成分进行光声成像及OCT成像,若结合后端设备将能够对各关键成分进行精准的区分和量化。另外,内置超声换能器14的超声电信号传导线6,通过超声模态可以获得斑块的整体宏观结构信息。最后使用光声信号的温度解算结果即温度模态可以对成像区域进行温度检测,可以保证操作区域安全稳定。

多模态成像功能主要通过在导管中集成多根光束通路和电信号通路来实现,图3中,15为多光束通路,模拟后端设备的多输入,9为耦合模块及滑环,负责连接后端设备与本导管,通过快速连接插头连接导管管身3,

具体为:如图2所示,光声、超声、OCT及温度四模态成像组件包括第一光纤5、反射棱镜11及超声换能器14;第一光纤5,采用定制单模光纤,是光声模态及OCT模态的光束传导通路且能够为后端计算机提供数据实现温度模态,定制的单模光纤具有宽波段传导的特性,可以保证纳秒级脉冲激光在一定距离内传导时,整体的波长及能量不会发生过大的变化,传导率曲线如图6所示。

第一光纤5前端依次设置自聚焦透镜16、反射棱镜11和超声换能器14,第一光纤5传输的光声模态激光和OCT模态扫描光经自聚焦透镜16聚焦后照射到反射棱镜11进行反射,沿一定角度出射(侧向出光角度:60°-75°),经成像组织吸收后,产生光声信号及OCT模态相干光,光声模态信号由超声换能器14进行探测,激光出射角度与超声换能器14安装位置经过了精密计算,即超声换能器14的信号接收面中心法线通过了出射光12的汇聚点,由此可以最大化的提升成像效果,超声换能器14的超声电信号传导线6在导管管身3内集成并与快速连接插头的超声电信号接口19连接;OCT模态相干光沿发出光通路反向传播至耦合器,最终通过后端OCT设备进行成像处理;

温度模态:温度模态集成于光声模态中,无单独通路,根据光声模态的成像结果的信号幅值进行温度测量。

激光消融组件用于实现精准激光消融功能,通过多模态成像结果反算出血管内病灶位置、角度、消融深度,在一个周期后进行精准消融,并同时通过多模态成像结果反馈消融状态,并借助实时温度成像结果通过后端设备反馈到连续型激光器上,实现消融功率控制。

在本导管内部集成不同型号的大功率定制光纤,并结合力矩弹簧1实现精准角度旋转,定制光纤的集成位置如图2中的7所示,根据不同的应用场景,可以选择不同功率阈值的消融激光传导光纤和导管(光纤芯径不同导致导管尺寸不同),

激光消融组件包括第二光纤7、液体透镜电压控制线8及液体透镜10;所述第二光纤7为消融激光传导的通路,第二光纤7可根据本导管型号更换不同规格的光纤,第二光纤7优选采用200μm/220μm单模光纤(纤芯直径/包层直径),传导率曲线如图7所示,通过在第二光纤7出光与反射棱镜11间安装一个液体透镜10,实现了消融激光的聚焦控制,通过调节液体透镜电压控制线8的电压,控制液体透镜10液滴的弧度,从而控制焦距,然后照射到反射棱镜11上,示意图如图8所示,由此,经过反射棱镜11后,光束的汇聚程度将发生改变,从而控制聚焦深度,同时,光声、超声、OCT及温度四模态成像组件的成像激光通过自聚焦透镜16进行聚焦后,也照射至反射棱镜11上,实现成像光、消融光共轴出光,示意图如图3所示。

本发明为一体化成像、消融导管,本身成像及消融出光方向相同,时间相同,因此,无需进行额外配准,这使得本发明在精准消融上具有天然的优势。导管采用精密装配技术,使消融光与成像光出光同轴,因此,实现了所见即所得,只要能看得见(成像光照射到)的同时,开启消融激光,那么消融的精确位置就在此时的成像区域。一体化导管还为成像和消融提供了零点位置和零角度方位作为基准,此基准需要结合后端装置共同实现。通过精密装配实现在一定速度下的无旋转误差,减少了由于导管自身存在扭转应力导致的消融误差。导管内部集成了液体透镜控制导线通路,可以精确控制消融激光定位于斑块位置处,确保探头出射消融光束照射到斑块病变处。

所述第一光纤5、液体透镜电压控制线8、第二光纤7和超声换能器14的超声电信号传导线6均集成在导管管身3内,且导管管身3内部填充阻燃和绝缘物4。

导管管身3后端安装有快速连接插头,通过快速连接插头可以快速,方便的与后端配套设备进行连接,同时保证通路的高传导率。如图4、图5所示。

快速连接插头的旋转部分为旋转外壳部21,且旋转外壳部21的内圆周面上设置螺纹,与后端接口相匹配,快速连接插头的插头部22上非刚性连接安装有光声及OCT成像接口23、消融激光接口20、超声电信号接口19、液体透镜控制接口18,并在插头部22上设置插头固定销17,通过插头固定销17实现与后端设备的牢固连接,保证在工作时无相对旋转,各接口的线缆收纳于插头部22内。连接时,将各接口从插头部22内拉出,分别与后端设备相连接,然后将插头部22插入后端设备连接口中,拧紧旋转外壳部21和后端设备的滑环输出端,即可完成连接。

光声及OCT成像接口23与第一光纤5连接,消融激光接口20与第二光纤7连接,液体透镜控制接口18与与液体透镜电压控制线8连接,超声电信号接口19与超声电信号传导线6连接。

主要性能指标:侧向出光角度:60°-75°不同规格导管直径:0.9mm-2.5mm;光纤通光波长范围:350nm-2200nm;焦深控制范围(距离出光口):0.1mm-4mm。

可以理解,本发明是通过一些实施例进行描述的,本领域技术人员知悉的,在不脱离本发明的精神和范围的情况下,可以对这些特征和实施例进行各种改变或等效替换。另外,在本发明的教导下,可以对这些特征和实施例进行修改以适应具体的情况及材料而不会脱离本发明的精神和范围。因此,本发明不受此处所公开的具体实施例的限制,所有落入本申请的权利要求范围内的实施例都属于本发明所保护的范围内。

相关技术
  • 介入式血管内三模态成像、消融及辅助测温一体化导管
  • 一种血管内四模态成像及消融一体化导管
技术分类

06120115987383