掌桥专利:专业的专利平台
掌桥专利
首页

具有改善温度均匀性的空间晶片处理

文献发布时间:2023-06-19 11:17:41


具有改善温度均匀性的空间晶片处理

技术领域

本公开内容一般涉及用于处理晶片的设备和方法。特别地,本公开内容涉及一种具有匹配的热环境的处理腔室,以用于被处理的晶片。

背景技术

当前的原子层沉积(ALD)处理具有许多潜在的问题和困难。许多ALD化学物质(例如前驱物和反应物)是“不兼容的”,这意味着化学物质不能混合在一起。如果不兼容的化学物质混合在一起,则可能会发生化学气相沉积(CVD)处理,而不是ALD处理。CVD处理通常比ALD处理具有更少的厚度控制和/或可导致产生气相颗粒,这可导致所得装置中的缺陷。对于一次使单一反应性气体流入处理腔室的传统时域ALD处理,会出现较长的净化/抽气时间,使得化学物质不会在气相中混合。相较于时域ALD腔室可抽气/净化的速度,空间性ALD腔室可以更快地将一个或多个晶片从一个环境移动到第二环境,从而获得更高的产量。

半导体工业需要可以在较低温度(例如低于350℃)下沉积的高质量薄膜。为了在低于仅透过热法沉积薄膜的温度下沉积高质量的薄膜,需要替代能源。可使用等离子体方案,以离子和自由基的形式向ALD薄膜提供额外的能量。困难点在于在垂直侧壁ALD薄膜上获得足够的能量。离子通常在垂直于晶片表面的方向上通过晶片表面上方的鞘被加速。因此,离子向水平的ALD薄膜表面提供能量,但是向垂直表面提供的能量不足,因为离子平行于垂直表面移动。

当前的空间性ALD处理腔室以恒定的速度在加热的圆形平台上旋转多个晶片,这将晶片从一个处理环境移动到相邻环境。不同的处理环境会造成不兼容气体的分离。然而,当前的空间性ALD处理腔室不能使等离子体环境针对等离子体暴露被优化,从而导致不均匀、等离子体损伤和/或处理灵活性问题。

在当前的空间性ALD沉积工具(或其他空间性处理腔室)中,晶片被移动到不同的热环境中。晶片的每个部分在每个热环境中花费的时间差异,会导致晶片上的温度不均匀。温度均匀性对薄膜均匀性(例如厚度,以及诸如折射率、湿蚀刻速率、面内位移等特性)的影响最大。因此,在本领域中需要改进的沉积设备和方法。

发明内容

本公开内容的一个或多个实施方式涉及一种处理腔室。在一个实施方式中,处理腔室包括:第一处理站,包括具有第一面、第一发射率和第一温度的第一气体注射器;第二处理站,包括具有第二面、第二发射率和第二温度的第二气体注射器;和基板支撑组件,包括多个实质上共面的支撑表面,基板支撑组件经配置成使支撑表面在第一处理站和第二处理站之间移动,其中第一面与多个支撑表面间隔第一距离,且第二面与多个支撑表面间隔第二距离,且第一发射率低于第二发射率和/或第一温度大于第二温度。

本公开内容的额外实施方式涉及处理方法。在一个或多个实施方式中,处理方法包含:在第一处理站与第二处理站之间移动基板支撑表面,第一处理站包括具有第一面、第一发射率和第一温度的第一气体注射器,第一面与支撑表面间隔第一距离,第二处理站包括具有第二面、第二发射率和第二温度的第二气体注射器,第二面与支撑表面间隔第二距离,其中第一发射率低于第二发射率和/或第一温度大于第二温度。

一个或多个实施方式涉及一种处理腔室,包括:热处理站,包括具有第一面、第一发射率和第一温度的热喷头;等离子体处理站,包括具有第二面、第二发射率和第二温度的等离子体喷头;基板支撑组件,包括多个实质上共面的支撑表面,支撑表面上具有至少一个晶片,基板支撑组件经配置成使至少一个晶片在热处理站和等离子体处理站之间移动;和控制器,控制器连接至多个实质上共面的支撑表面,其中第一面与至少一个晶片间隔开约0.5mm至约3mm的一范围,并且第二面与至少一个晶片间隔开约7mm至约15mm的一范围,且第一发射率低于第二发射率和/或第一温度大于第二温度。

附图说明

可参考多个实施方式以更特定地说明以上简要总结的本公开内容,以更详细了解本公开内容的上述特征,附图图标说明了其中一些实施方式。然而应注意到,附图仅图示说明本公开内容的典型实施方式,且因此不应被视为限制本公开内容的范围,因为本公开内容可允许其他等效的实施方式。

图1示出了根据本公开内容的一个或多个实施方式的处理腔室的横截面等距视图;

图2示出了根据本公开内容的一个或多个实施方式的处理腔室的截面图;

图3是根据本公开内容的一个或多个实施方式的处理站的分解截面图;

图4是根据本公开内容的一个或多个实施方式的处理平台的示意图;

图5A和5B示出了根据本公开内容的一个或多个实施方式的处理的示意图;

图6A是根据本公开内容的一个或多个实施方式的处理腔室的示意图;和

图6B是根据本公开内容的一个或多个实施方式的处理腔室的示意图。

具体实施方式

在描述本公开内容的几个示例性实施方式之前,应当理解,本公开内容不限于在以下说明中阐述的构造或处理步骤的细节。本公开内容能够具有其他实施方式,并且能够以各种方式被实践或执行。

本文所述“基板”是指在制造处理中在其上执行薄膜处理的基板上形成的任何基板或材料表面。例如,可以在其上执行处理的基板表面包括诸如硅、氧化硅、应变硅、绝缘体上硅(SOI)、碳掺杂的氧化硅、非晶硅、经掺杂的硅、锗、砷化镓、玻璃、蓝宝石、以及其他任何材料,诸如金属、金属氮化物、金属合金和其他导电材料,视应用而定。基板包括但不限于半导体晶片。可以将基板暴露于预处理工艺以抛光、蚀刻、还原、氧化、羟基化、退火和/或烘烤基板表面。除了直接在基板本身的表面上进行薄膜处理外,在本公开内容中,所公开的任何薄膜处理步骤还可以在形成于基板上的底层上进行,如下面更详细地说明,且用词“基板表面”旨在包括背景内容所指示的底层。因此,例如,在膜/层或部分膜/层已经沉积在基板表面上的情况下,新沉积的膜/层的暴露表面成为基板表面。

如本说明书和随附权利要求书中所使用的,用词“前驱物”、“反应物”、“反应气体”等可互换使用,是指可以与基板表面或与形成于基板表面上的薄膜反应的任何气态物质。

本公开内容的一个或多个实施方式,通过温度控制、与晶片的距离以及面对晶片的表面的发射率的组合,来对晶片使用匹配的热环境(或最小化热环境之间的差异)。一些实施方式有利地在每个站周围提供均匀的环境以最小化方位角变化。

本公开内容的一个或多个实施方式,针对具有至少两个在空间上分开的处理环境的处理腔室,也称为处理站。一些实施方式具有两个以上并且一些实施方式具有四个以上的处理站。可以将处理环境共面安装到在水平面内移动的晶片上。处理环境以圆形布置。其上安装有一到四个(或更多个)独立晶片加热器的可旋转结构,使晶片沿圆形路径移动,圆形路径的直径类似于处理环境。每个加热器可以被控制温度并且可以具有一个或多个同心区域。为了装载晶片,可以降低可旋转结构,以便真空机器人可以拾取完成的晶片并将未加工的晶片放置在位于每个晶片加热器上方(在较低的Z位置)的升降杆上。在操作中,每个晶片可以处于独立的环境中,直到处理完成为止,然后可旋转结构可以旋转(对于四个站为旋转90°,对于三个站为旋转120°)以将加热器上的晶片移至下一个环境以进行处理。

在空间性ALD沉积工具(或其他空间性处理腔室)中,晶片被移动到不同的热环境中。晶片的每个部分在每个热环境中花费的时间差异,导致晶片上的不均匀。温度均匀性对薄膜均匀性(厚度,以及诸如折射率、湿蚀刻速率、面内位移等特性)的影响最大。

本公开内容的一个或多个实施方式有利地提供一种处理腔室,其中处理工具(例如空间性工具)中的不同站被设计为通过温度控制、与晶片的距离以及面对晶片的表面的发射率的组合,来对晶片产生匹配的(或者热差异最小化的)热环境。在一个或多个实施方式中,还有利地使用温度控制、与晶片的距离和面对晶片的表面的发射率的组合,来在晶片移动期间保持严格的热控制。在一个或多个实施方式中,处理腔室被有利地设计成在每个处理站周围提供均匀的环境,以最小化方位角变化。

在一个或多个实施方式中,处理腔室包括:第一处理站,第一处理站包括具有第一面、第一发射率和第一温度的第一气体注射器;第二处理站,第二处理站包括具有第二面、第二发射率和第二温度的第二气体注射器;基板支撑组件,包括多个实质上共面的支撑表面,基板支撑组件经配置成使支撑表面在第一处理站和第二处理站之间移动。第一面与多个支撑表面间隔第一距离,第二面与多个支撑表面间隔第二距离,并且第一发射率小于第二发射率和/或第一温度大于第二温度。

图1和图2示出了根据本公开内容的一个或多个实施方式的处理腔室100。图1示出了根据本公开内容的一个或多个实施方式的处理腔室100的横截面等距视图。图2示出了根据本公开内容的一个或多个实施方式的处理腔室100的截面图。因此,本公开内容的一些实施方式针对结合有支撑组件200和顶板300的处理腔室100。

处理腔室100具有带有壁104和底部106的壳体102。壳体102与顶板300一起界定内部空间109,也称为处理空间。

处理腔室100包括多个处理站110。处理站110位于壳体102的内部空间109中,并且围绕支撑组件200的旋转轴211以圆形布置定位。每个处理站110包括具有正面114的气体注射器112。在一些实施方式中,每个气体注射器112的正面114实质上共面。处理站110被定义为其中可以进行处理的区域。例如,如下所述,处理站110可以由加热器230的支撑表面231和气体注射器112的正面114限定。

处理站110可以被配置为执行任何合适的处理,并提供任何合适的处理条件。所使用的气体注射器112的类型,例如将取决于所执行的处理的类型以及喷头或气体注射器的类型。例如,被配置为用作原子层沉积设备的处理站110可以具有喷头或涡旋型气体注射器。然而,配置为用作等离子体站的处理站110可以具有一个或多个电极和/或接地板的配置,以产生等离子体,同时允许等离子体气体流向晶片。在图2中示出的实施方式,在图的左侧具有处理站110a,在图的右侧具有处理站110b,处理站110a与处理站110b的类型不同。合适的处理站110包括但不限于热处理站、微波等离子体、三电极CCP、ICP、平行板CCP、UV曝光、激光处理、泵送室、退火站和计量站。

图3是根据本公开内容的一个或多个实施方式的处理站110的分解图。所示的处理站110包括三个主要部件:顶板300(也称为盖子)、泵/净化插件330和气体注射器112。图3所示的气体注射器112是喷头式气体注射器。在一些实施方式中,插件330连接至真空(排气)或与真空(排气)流体连通。在一些实施方式中,插件330连接至净化气体源或与净化气体源流体连通。

顶板300中的开口310可以具有统一的尺寸或具有不同的尺寸。不同尺寸/形状的气体注射器112可以与泵/净化插件330一起使用,泵/净化插件330的形状适合于从开口310过渡到气体注射器112。例如,如图所示,泵/净化插件330包括顶部331和底部333与侧壁335。当插入到顶板300中的开口310中时,邻近底部333的突出部分334可以位于形成在开口310中的隔板315上。在一些实施方式中,在开口中没有隔板315,并且泵/净化插件330的凸缘部分337搁置在顶板300的顶部上。在所示的实施方式中,突出部分334搁置在隔板315上,并且O形环314位于它们之间,以帮助形成气密密封。

在一些实施方式中,顶板300中有一个或多个净化环309。净化环309可与净化气室(未示出)或净化气体源(未示出)流体连通,以提供净化气体的正向流,以防止处理气体从处理腔室泄漏。

一些实施方式的泵/净化插件330包括气室336,在泵/净化插件330的底部333中具有至少一个开口338。气室336具有入口(未示出),通常在泵/净化插件330的顶部331或侧壁335附近。

在一些实施方式中,气室336可充有可穿过泵/净化插件330的底部333中的开口338的净化或惰性气体。通过开口338的气体流可以帮助形成气幕式屏障,以防止处理气体从处理腔室内部泄漏。

在一些实施方式中,气室336连接至真空源或与真空源流体连通。在这样的实施方式中,气体流过泵/净化插件330的底部333中的开口338进入气室336。气体可以从气室排空以排出。这样的布置可以用于在使用期间从处理站110排出气体。

泵/净化插件330包括开口339,气体注射器112可插入开口339中。示出的气体注射器112具有凸缘342,凸缘342可以与邻近泵/净化插件330的顶部331的突出部分332接触。气体注射器112的直径或宽度可以是可以适合在泵/净化插件330的开口339内的任何合适的尺寸。这允许在顶板300中的相同开口310内使用各种类型的气体注射器112。

图4图示根据本公开内容的一个或多个实施方式的处理平台400。图4所示的实施方式仅表示一种可能的配置,并且不应被视为限制本公开内容的范围。例如,在一些实施方式中,处理平台400具有与所示实施方式不同数量的一个或多个处理腔室100、缓冲站420和/或机器人430配置。

示例性处理平台400包括中央转移站410,中央转移站410具有多个侧面411、412、413、414。所示的转移站410具有第一侧411、第二侧412、第三侧413和第四侧414。尽管示出了四个侧面,但是本领域技术人员将理解,取决于例如处理平台400的整体配置,转移站410可以有任何合适数量的侧面。在一些实施方式中,转移站410具有三个侧面、四个侧面、五个侧面、六个侧面、七个侧面或八个侧面。

转移站410具有安置在其中的机器人430。机器人430可以是能够在处理期间移动晶片的任何合适的机器人。在一些实施方式中,机器人430具有第一臂431和第二臂432。第一臂431和第二臂432可彼此独立地移动。第一臂431和第二臂432可以在x-y平面中和/或沿着z轴移动。在一些实施方式中,机器人430包括第三臂(未示出)或第四臂(未示出)。每个手臂可以独立于其他手臂移动。

所示的实施方式包括六个处理腔室100,两个处理腔室100分别连接到中央转移站410的第二侧412、第三侧413和第四侧414。每个处理腔室100可以被配置为执行不同的处理。

处理平台400还可包括一个或多个缓冲站420,缓冲站420连接到中央转移站410的第一侧411。缓冲站420可以执行相同或不同的功能。例如,缓冲站可以容纳晶片盒,晶片被处理并返回到原始盒,或者缓冲站之一可以容纳未处理的晶片,晶片在处理之后被移动到另一缓冲站。在一些实施方式中,一个或多个缓冲站被配置为在处理之前和/或之后对晶片进行预处理、预加热或清洗。

处理平台400还可在中央转移站410与任何处理腔室100之间包括一个或多个狭缝阀418。狭缝阀418可打开和关闭以将处理腔室100内的内部空间与中央转移站410内的环境隔离。例如,如果处理腔室将在处理过程中产生等离子体,则可能需要关闭此处理腔室的狭缝阀,以防止杂散的等离子体损坏转移站中的机器人。

处理平台400可以连接到工厂接口450,以允许将晶片或晶片盒装载到处理平台400中。工厂接口450内的机器人455可用于将晶片或盒移入和移出缓冲站。晶片或盒可以由中央转移站410中的机器人430在处理平台400内移动。在一些实施方式中,工厂接口450是另一群集工具(即另一多腔室处理平台)的转移站。

可以提供控制器495并且将其耦接到处理平台400的各个部件,以控制部件操作。控制器495可以是控制整个处理平台400的单个控制器,也可以是控制处理平台400的各个部分的多个控制器。例如,处理平台400可以包括用于各个处理腔室100、中央传送站410、工厂接口450和机器人430中的每个的单独控制器。

在一些实施方式中,处理腔室100进一步包括控制器495,控制器495连接至多个实质上共面的支撑表面231,控制器495被配置为控制第一温度或第二温度中的一个或多个。在一个或多个实施方式中,控制器495控制基板支撑组件200(图2)的移动速度。

在一些实施方式中,控制器125包括中央处理单元(CPU)496、存储器497和支持电路498。控制器495可以直接(或经由与特定处理腔室和/或支持系统部件相关联的计算机(或控制器))控制处理平台400。

控制器495可为可用于工业设定中以控制各种腔室与子处理器的任何形式的通用计算机处理器的一种。控制器495的存储器497或计算机可读介质可以是容易获得的存储器中的一个或多个,例如随机存取存储器(RAM)、只读存储器(ROM)、磁盘、硬盘、光学储存介质(例如光盘或数字视频光盘)、闪存驱动器、或任何其他形式的数字储存器(本地或远程的)。存储器497可以保留可由处理器(CPU 496)操作以控制处理平台400的参数和部件的指令集。

支持电路498耦接至CPU 496以由常规方式支持处理器。这些电路包含高速缓存、电源、时钟电路、输入/输出系统、与子系统等等。一个或多个处理可以作为软件例程存储在存储器498中,软件例程在被处理器执行或调用时使处理器以本文所述的方式控制处理平台400或各个处理腔室的操作。软件例程也可被由第二CPU(未图示)存储和/或执行,第二CPU位于由CPU 496控制的硬件的远程处。

本公开内容的一些或全部处理和方法也可以在硬件中执行。这样,处理可以以软件实现并且可以使用计算机系统执行,可以以硬件(例如专用集成电路或其他类型的硬件实现例)或者以软件和硬件的组合来执行。当由处理器执行时,软件例程将通用计算机转换成控制腔室操作以执行处理的专用计算机(控制器)。

在一些实施方式中,控制器495具有一种或多种配置以执行单独的处理或子处理以执行方法。控制器495可以连接到并且配置成操作中间部件以执行方法的功能。例如,控制器495可以连接到并配置成控制气体阀、致动器、马达、狭缝阀、真空控制器或其他部件中的一个或多个。

在一个或多个实施方式中,处理腔室100进一步包括位于支撑表面上的至少一个晶片。在一些实施方式中,第一发射率和第一温度和/或第二发射率和第二温度在第一站和第二站中提供晶片的稳态温度。

图5A和5B示出了本公开内容的另一实施方式。图5A示出了加热器230和支撑板245的局部视图,加热器230和支撑板245已经旋转到处理站110下方的位置,使得晶片101与气体注射器112相邻。支撑板245上或加热器230的外部上的O形环329处于松弛状态。

图5B示出了朝着处理站110移动之后的支撑板245和加热器230,使得加热器230的支撑表面231与处理站110中的气体注射器112的前表面114接触或几乎接触。在此位置,O形圈329被压缩,在支撑板245的外边缘或加热器230的外部周围形成密封。这允许晶片101尽可能靠近气体注射器112移动,以最小化反应区域219的体积,从而可以快速净化反应区域219。

可能从反应区域219流出的气体通过开口338排到气室336中,并排到排气管或前级管(未示出)。可由净化气室370和净化气体通口371,产生开口338外部的净化气帘。另外,加热器230和支撑板245之间的间隙137,可以帮助进一步遮蔽反应区域219,并防止反应性气体流入处理腔室100的内部空间109。

回到图4,一些实施方式的控制器495具有选自以下的一种或多种配置:在多个处理腔室之间移动机器人上的基板的配置;从系统加载和/或卸除基板的配置;用于打开/关闭狭缝阀的配置;为一个或多个加热器供电的配置;测量加热器温度的配置;测量加热器上晶片温度的配置;从加热器装载或卸除晶片的配置;提供温度测量和加热器功率控制之间反馈的配置;用于使支撑组件绕旋转轴旋转的配置;使支撑组件沿旋转轴(即沿z轴)移动的配置;用于设置或改变支撑组件的旋转速度的配置;将气体流提供给气体注射器的配置;用于向一个或多个电极供电以在气体注射器中产生等离子体的配置;控制等离子体源的电源的配置;控制等离子体源电源的频率和/或功率的配置;和/或为热退火处理站提供控制的配置。

参考图6A至图6B所示,在一些处理腔室中,放置在基板支撑组件200上的晶片101从第一处理站110a来回移动(被吸附至底座加热器)至第二处理站110b。在一个或多个实施方式中,第一处理站110a可以是由铝构成的热喷头,并且定位成与晶片101形成大约0.5mm至大约3mm的距离的第一间隙G

由于差异(例如第一处理站110a与第二处理站110b之间的间隙差异、喷头发射率等),晶片101相对于第一站110a在第二站110b中升温(即晶片101损失至以上处理站的热量更少)。另外,在简单的来回处理运动中,晶片101的一侧首先进入第二处理站110b,并且晶片101的同一侧最后离开第二处理站110b,晶片101产生温度梯度。

因此,参照图6A,在一个或多个实施方式中,处理腔室100包括第一处理站110a和第二处理站110b。在一个或多个实施方式中,第一处理站110a包括具有第一面114a、第一发射率和第一温度的第一气体注射器112a,第二处理站110b包括具有第二面114b、第二发射率和第二温度的第二气体注射器112b。在一个或多个实施方式中,处理腔室包括基板支撑组件200,基板支撑组件200包括多个实质上共面的支撑表面231,基板支撑组件200被配置为在第一处理站110a和第二处理站110b之间移动支撑表面231。以这种方式使用时,“实质上共面”是指由各个支撑表面231形成的平面在由另一支撑表面231形成的平面的±5°、±4°、±3°、±2°或±1°之内。在一些实施方式中,用词“实质上共面”是指由各个支撑表面形成的平面在±50μm、±40μm、±30μm、±20μm或±10μm内。

在一个或多个实施方式中,如图6A中所示,第一处理站110a的第一气体注射器112a的第一面114a与多个支撑表面231间隔开第一距离D

在一些实施方式中,如图6B中所示,第一处理站110a的第一气体注射器112a的第一面114a与多个支撑表面231间隔开第一距离D

在一个或多个实施方式中,第一发射率低于第二发射率和/或第一温度大于第二温度。本文所使用的用词“发射率”或“ε”,定义为在相同温度和相同光谱和方向条件下,给定物体的辐射率与黑体的辐射率之比。发射率是表面形态、杂质浓度、波长、温度和覆盖层的存在的函数。不受理论的束缚,据信如果两个喷头具有相同的发射率和温度,则由于较大间隙站中的传导温度损失的减少,将在具有较大间隙的站中观察到温度升高。可以相信,为了匹配在相同温度和不同间隙(如图6A所示,参见G

在一个或多个实施方式中,当在站之间移动晶片时,在约0.5秒内产生小于或等于约0.5℃的温度偏斜。本文所使用的用词“温度偏斜”是指第一处理站110a和第二处理站110b之间的温度差。所有温度偏斜值均基于0.5秒的时间范围。在一个或多个实施方式中,温度偏斜小于或等于大约0.5℃、大约0.45℃、大约0.4℃、大约0.35℃、大约0.3℃、大约0.25℃、大约0.2℃、约0.15℃、约0.1℃或约0.05℃。不受理论的束缚,一般认为将晶片的热损失与两个不同的站匹配,将使晶片上的温度和温度不均匀性保持最小。另一方面,如果第二处理站110b的稳态温度高于第一处理站110a的稳态温度,则晶片更容易加热,因为散热器(即气体注射器)离晶片表面更远。

因此,在一个或多个实施方式中,第一处理站110a在较高温度(例如200℃)下使用相对较低发射率的喷头,而第二处理站110b在较低温度(例如150℃)下使用相对较高发射率的喷头,以最小化晶片转移期间的瞬态效应。在一个或多个实施方式中,晶片的稳态温度在第一处理站110a和第二处理站110b中都相似。

在一些实施方式中,多个实质上共面的支撑表面231包括加热器230。在一个或多个实施方式中,加热器230或支撑表面231包括静电吸盘。

在一个或多个实施方式中,第一发射率和第二发射率是不同的,并且第一温度和第二温度是不同的。在其他实施方式中,第一发射率和第二发射率是不同的,并且第一温度和第二温度是相同的。

在一个或多个实施方式中,第一处理站110a包括热站,而第二处理站110b包括等离子体站。在其他实施方式中,第一处理站110a包括热站,第二处理站110b包括热站。

参照图1-图6B,本公开内容的一个或多个实施方式涉及处理腔室100。在一个或多个实施方式中,处理腔室100包括:热处理站(第一处理站110a),包括具有第一面114a、第一发射率和第一温度的热喷头(气体注射器112a);等离子体处理站(第二处理站110b),包括具有第二面114b、第二发射率和第二温度的等离子体喷头(气体注射器112b);基板支撑组件200,包括多个实质上共面的支撑表面231,其上具有至少一个晶片,基板支撑组件经配置成使至少一个晶片在热处理站(第一处理站110a)和等离子体处理站(第二处理站110b)之间移动;和控制器495,控制器495连接至多个实质上共面的支撑表面231。

一个或多个实施方式涉及一种处理方法,所述方法包含在第一处理站110a与第二处理站110b之间移动基板支撑表面,第一处理站110a包括具有第一面114a、第一发射率和第一温度的第一气体注射器112a,第一面与支撑表面间隔第一距离D

在一个或多个实施方式中,处理方法进一步包括控制第一温度或第二温度中的一个或多个。参照图4,在一些实施方式中,处理腔室100进一步包括控制器495,控制器495连接至多个实质上共面的支撑表面231,支撑表面231被配置为控制第一温度或第二温度中的一个或多个。

在一个或多个实施方式中,处理方法进一步包括控制基板支撑表面的移动速度。在一些实施方式中,控制器495控制基板支撑组件200的移动速度。

在一个或多个实施方式中,处理方法进一步包括将至少一个晶片装载到基板支撑表面上。

在一个或多个实施方式中,处理方法进一步包括控制至少一个晶片的温度偏斜。在一些实施方式中,控制器295控制至少一个晶片的温度偏斜。

本公开内容的一个或多个实施方式涉及一种处理腔室。在一个实施方式中,处理腔室100包括:第一处理站110a,包括具有第一面114a、第一发射率、第一温度和第一热损失因子的第一气体注射器112a;第二处理站110b,包括具有第二面114b、第二发射率、第二温度和第二热损失因子的第二气体注射器112b;和基板支撑组件200,包括多个实质上共面的支撑表面231,基板支撑组件200经配置成使支撑表面231在第一处理站110a和第二处理站110b之间移动。在一个或多个实施方式中,第一面114a与多个支撑表面231间隔第一距离D

本公开内容的一个或多个实施方式涉及一种处理方法。在一个实施方式中,处理方法包含:在第一处理站110a与第二处理站110b之间移动基板支撑表面231,第一处理站110a包括具有第一面114a、第一发射率和第一温度的第一气体注射器112a,第一面114a与支撑表面231间隔第一距离D

本说明书中对于“一个实施方式”、“一些实施方式”、“一个或多个实施方式”或“一实施方式”的引用,表示所说明的相关联于此实施方式的特定特征、结构或特性,被包含在本公开内容的至少一个实施方式中。因此,贯穿本说明书在各个地方出现的短语“在一个或多个实施方式中”、“在一些实施方式中”、“在一个实施方式中”或“在一实施方式中”等,不一定是指本公开内容的相同实施方式。此外,特定特征、结构、配置或特性可以在一个或多个实施方式中以任何合适的方式组合。

虽然本文公开内容涉及特定实施方式,但应了解到这些实施方式仅用于说明本公开内容的原理与应用。本领域中技术人员将显然了解到,可对本公开内容的方法与设备进行各种修改与变型,而不脱离本公开内容的精神与范围。因此,本公开内容意为涵盖这种修改与变型,只要这种修改与变型位于随附权利要求书及其等同物的范围之内。

相关技术
  • 具有改善温度均匀性的空间晶片处理
  • 具有空间分离的单个晶片处理环境
技术分类

06120112876088