掌桥专利:专业的专利平台
掌桥专利
首页

一种短路冲击电流出现时刻计算方法和系统

文献发布时间:2023-06-19 12:19:35


一种短路冲击电流出现时刻计算方法和系统

技术领域

本申请实施例涉及电力系统短路故障分析技术领域,具体涉及一种短路冲击电流出现时刻计算方法和系统。

背景技术

电力系统正常运行的破坏很大程度上是由短路故障引起的,其中三相短路较为严重,并且对称分量法的使用所有不对称短路的计算都可归结为三相短路的计算,因此对三相短路的研究很有意义。同时,为校验电气设备和载流导体的电动力稳定度必须计算短路冲击电流。

就正弦电压激励下的感性电路而言,三相短路冲击电流出现的时刻非常接近短路后的半个周期,是一近似值。由于冲击电流的大小与电路的时间常数有关,而不同时间常数的电路所对应的冲击电流出现时刻一定不会都是在三相短路发生后的半个周期,为此有必要找出所有不同时间常数的电路所对应的冲击电流出现时刻,并与半个周期进行比较,进而确定最大差值。

针对工频60Hz的电路,短路冲击电流出现的时刻与半个周期的最大差异尚未见有人研究。若按照现有方法计算,没有考虑到具体电路的时间常数,势必造成设备的裕度过大,经济性下降。

发明内容

为此,本申请实施例提供一种短路冲击电流出现时刻计算方法和系统,明确了冲击电流出现时刻的最小值与半个周期的关系,以及冲击电流出现时刻与电路时间常数的关系。

为了实现上述目的,本申请实施例提供如下技术方案:

根据本申请实施例的第一方面,提供了一种短路冲击电流出现时刻计算方法,所述方法包括:

根据电流分量特征确定短路冲击电流出现时刻t

根据函数特征计算与电流瞬时值对时间的导数等于零的最小时刻min t

可选地,所述根据电流分量特征确定短路冲击电流出现时刻t

设单相电阻电抗RL串联电路的初始状态为空载,t=0时发生短路,电流的周期分量i

总电流按照如下公式计算:

其中,

可选地,所述根据函数特征计算与电流瞬时值对时间的导数等于零的最小时刻min t

可选地,

根据本申请实施例的第二方面,提供了一种短路冲击电流出现时刻计算系统,所述系统包括

时刻范围计算模块,用于根据电流分量特征确定短路冲击电流出现时刻t

冲击电流出现时刻计算模块,用于根据函数特征计算与电流瞬时值对时间的导数等于零的最小时刻min t

可选地,所述时刻范围计算模块,具体用于:

设单相电阻电抗RL串联电路的初始状态为空载,t=0时发生短路,电流的周期分量i

总电流按照如下公式计算:

其中,

可选地,所述冲击电流出现时刻计算模块,具体用于:

可选地,

根据本申请实施例的第三方面,提供了一种设备,所述设备包括:数据采集装置、处理器和存储器;所述数据采集装置用于采集数据;所述存储器用于存储一个或多个程序指令;所述处理器,用于执行一个或多个程序指令,用以执行第一方面任一项所述的方法。

根据本申请实施例的第四方面,提供了一种计算机可读存储介质,所述计算机存储介质中包含一个或多个程序指令,所述一个或多个程序指令用于执行如第一方面任一项所述的方法。

综上所述,本申请实施例提供了一种短路冲击电流出现时刻计算方法和系统,通过根据电流分量特征确定短路冲击电流出现时刻t

附图说明

为了更清楚地说明本发明的实施方式或现有技术中的技术方案,下面将对实施方式或现有技术描述中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是示例性的,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图引伸获得其它的实施附图。

本说明书所绘示的结构、比例、大小等,均仅用以配合说明书所揭示的内容,以供熟悉此技术的人士了解与阅读,并非用以限定本发明可实施的限定条件,故不具技术上的实质意义,任何结构的修饰、比例关系的改变或大小的调整,在不影响本发明所能产生的功效及所能达成的目的下,均应仍落在本发明所揭示的技术内容能涵盖的范围内。

图1为本申请实施例提供的一种短路冲击电流出现时刻计算方法流程示意图;

图2为本申请实施例提供的t

图3为本申请实施例提供的t

图4为本申请实施例提供的RL串联电路;

图5为本申请实施例提供的一种短路冲击电流出现时刻计算系统框图。

具体实施方式

以下由特定的具体实施例说明本发明的实施方式,熟悉此技术的人士可由本说明书所揭露的内容轻易地了解本发明的其他优点及功效,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

对于恒压源供电的60Hz感性电路而言,冲击电流约出现在突然短路后的半个周期。但不同时间常数的电路所对应的冲击电流出现时刻会有所差异。为此有必要分析实际电路中冲击电流出现时刻与半个周期的最大差异,即最不利的情况。

图1示出了本申请实施例提供的一种短路冲击电流出现时刻计算方法,所述方法包括:

步骤101:根据电流分量特征确定短路冲击电流出现时刻t

步骤102:根据函数特征计算与电流瞬时值对时间的导数等于零的最小时刻mint

在一种可能的实施方式中,在步骤101中,所述根据电流分量特征确定短路冲击电流出现时刻t

在一种可能的实施方式中,在步骤102中,所述根据函数特征计算与电流瞬时值对时间的导数等于零的最小时刻min t

在一种可能的实施方式中,

下面对本申请实施例提供的方法进行进一步的详细阐述:

由于非周期分量电流的初值越大,在过渡过程中短路电流最大可能的瞬时数值也越大。设单相RL(电阻电抗)串联电路的初始状态为空载,t=0时发生短路,电流的周期分量i

总电流用公式(1)计算

其中,

由于i

由于i(t)为任意阶可导函数,为求电流i(t)最大瞬时数值所对应的时刻,求其一阶导数等于零时对应的时刻t

不失一般性,设0<R,L<+∞,即0<T

1.理论证明:

1.1证明

由式(2)得

为了与(2)中分析的区间一致,需要分析

假设

1.2证明:

由式(2)得

根据附录B,当

1.1和1.2再次确定f(t)在

说明:这里将时间t的下限由

另外,由于

1.3证明:

由式(6)得

综上所述,当

1.4证明:初值

由式(3)、(8)得,

根据1.1~1.4可知:由

本申请实施例需要证明f(t)在

在1.3中已证明:

综上所述,根据凸函数的牛顿法定理,

2.冲击电流发生的最短时刻:

2.1算例仿真

设初值

2.2一般性证明

对任意的T

同理由式(3)可得

综上所述,

2.3 t

令f(t)=0,由式(2)得

图2示出了t

(1)t

(2)t

图3示出了t

(1)t

(2)t

综上所述,对于恒压源供电的60Hz感性电路而言,只要电抗与电阻的比值为非零的有限正值,冲击电流的出现时刻一定小于短路发生后的半个周期,即

附录A:已知函数f(T

附录B:已知函数

附录C:已知函数

附录D:

附录E:

为保守计,三相短路冲击电流出现时刻的最小值近似取为0.008s,与半个周期的差异为4.0%,冲击系数约为1.37,比通常经验值的最小值1.8还小。

下面是本申请实施例提供的基于二分法的短路冲击电流出现时刻计算(迭代10次)算例。图4示出了本申请实施例使用的RL串联电路。

由公式(2),式中ω=2πf=2*3.14*60=376.8≈377(rad/s),e=2.7,t为短路持续时间(s),T

表1

表2

表3

表4示出了不同时间常数下短路冲击电流出现的时间统计。

表4

通过三个算例表明,出现三相短路冲击电流的时刻都大于0.008s,因此理论证明是正确的。并且随着迭代次数的提高,精度会进一步提高。

可以看出,本申请实施例提供的,通过应用凸函数的牛顿法定理,证明了冲击电流出现时刻的最小值约为短路发生后的0.008s,与通常认为的半个周期的最大差异小于4%。从而将通常认为的半个周期进一步精确化。通过仿真,冲击电流出现时刻是电路时间常数的拟凸函数。即冲击电流出现时刻增加时,同一个冲击电流出现时刻对应的两个电路时间常数差增大,从而对应的两个冲击系数数值差也增大。冲击电流出现时刻是电路时间常数的拟凸函数。

综上所述,本申请实施例提供了一种短路冲击电流出现时刻计算方法,通过根据电流分量特征确定短路冲击电流出现时刻t

基于相同的技术构思,本申请实施例还提供了一种短路冲击电流出现时刻计算系统,如图5所示,所述系统包括:

时刻范围计算模块501,用于根据电流分量特征确定短路冲击电流出现时刻t

冲击电流出现时刻计算模块502,用于根据函数特征计算与电流瞬时值对时间的导数等于零的最小时刻min t

在一种可能的实施方式中,所述时刻范围计算模块501,具体用于:设单相电阻电抗RL串联电路的初始状态为空载,t=0时发生短路,电流的周期分量i

在一种可能的实施方式中,所述冲击电流出现时刻计算模块,具体用于:令

在一种可能的实施方式中,

基于相同的技术构思,本申请实施例还提供了一种设备,所述设备包括:数据采集装置、处理器和存储器;所述数据采集装置用于采集数据;所述存储器用于存储一个或多个程序指令;所述处理器,用于执行一个或多个程序指令,用以执行所述的方法。

基于相同的技术构思,本申请实施例还提供了一种计算机可读存储介质,所述计算机存储介质中包含一个或多个程序指令,所述一个或多个程序指令用于执行所述的方法。

本说明书中上述方法的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。相关之处参见方法实施例的部分说明即可。

需要说明的是,尽管在附图中以特定顺序描述了本发明方法的操作,但这并非要求或者暗示必须按照该特定顺序来执行这些操作,或是必须执行全部所示的操作才能实现期望的结果。附加地或备选地,可以省略某些步骤,将多个步骤合并为一个步骤执行,和/或将一个步骤分解为多个步骤执行。

虽然本申请提供了如实施例或流程图的方法操作步骤,但基于常规或者无创造性的手段可以包括更多或者更少的操作步骤。实施例中列举的步骤顺序仅仅为众多步骤执行顺序中的一种方式,不代表唯一的执行顺序。在实际中的装置或客户端产品执行时,可以按照实施例或者附图所示的方法顺序执行或者并行执行(例如并行处理器或者多线程处理的环境,甚至为分布式数据处理环境)。术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、产品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、产品或者设备所固有的要素。在没有更多限制的情况下,并不排除在包括所述要素的过程、方法、产品或者设备中还存在另外的相同或等同要素。

上述实施例阐明的单元、装置或模块等,具体可以由计算机芯片或实体实现,或者由具有某种功能的产品来实现。为了描述的方便,描述以上装置时以功能分为各种模块分别描述。当然,在实施本申请时可以把各模块的功能在同一个或多个软件和/或硬件中实现,也可以将实现同一功能的模块由多个子模块或子单元的组合实现等。以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。

本领域技术人员也知道,除了以纯计算机可读程序代码方式实现控制器以外,完全可以通过将方法步骤进行逻辑编程来使得控制器以逻辑门、开关、专用集成电路、可编程逻辑控制器和嵌入微控制器等的形式来实现相同功能。因此这种控制器可以被认为是一种硬件部件,而对其内部包括的用于实现各种功能的装置也可以视为硬件部件内的结构。或者甚至,可以将用于实现各种功能的装置视为既可以是实现方法的软件模块又可以是硬件部件内的结构。

本申请可以在由计算机执行的计算机可执行指令的一般上下文中描述,例如程序模块。一般地,程序模块包括执行特定任务或实现特定抽象数据类型的例程、程序、对象、组件、数据结构、类等等。也可以在分布式计算环境中实践本申请,在这些分布式计算环境中,由通过通信网络而被连接的远程处理设备来执行任务。在分布式计算环境中,程序模块可以位于包括存储设备在内的本地和远程计算机存储介质中。

通过以上的实施方式的描述可知,本领域的技术人员可以清楚地了解到本申请可借助软件加必需的通用硬件平台的方式来实现。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,移动终端,服务器,或者网络设备等)执行本申请各个实施例或者实施例的某些部分所述的方法。

本说明书中的各个实施例采用递进的方式描述,各个实施例之间相同或相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。本申请可用于众多通用或专用的计算机系统环境或配置中。例如:个人计算机、服务器计算机、手持设备或便携式设备、平板型设备、多处理器系统、基于微处理器的系统、置顶盒、可编程的电子设备、网络PC、小型计算机、大型计算机、包括以上任何系统或设备的分布式计算环境等等。

以上所述的具体实施例,对本申请的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本申请的具体实施例而已,并不用于限定本申请的保护范围,凡在本申请的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

相关技术
  • 一种短路冲击电流出现时刻计算方法和系统
  • 一种可精确控制短路时刻的电力系统短路故障试验装置
技术分类

06120113256981