掌桥专利:专业的专利平台
掌桥专利
首页

一种聚丙烯酰胺负载的磁性壳聚糖吸附剂的制备方法及应用

文献发布时间:2023-06-19 13:48:08


一种聚丙烯酰胺负载的磁性壳聚糖吸附剂的制备方法及应用

技术领域

本发明属于水环境吸附材料技术领域,具体涉及聚丙烯酰胺负载的磁性壳聚糖吸附剂的制备方法及应用。

背景技术

近年来,随着科学技术的迅猛发展,在给人们的物质带来丰富、生活带来便捷的同时,不可避免地也产生了大量的有害污染,不断排入水体中的各类复杂繁多的污染物,因水体较强的流动和扩散性,使得废水的治理难度加大,不仅会危害动植物的生长于人类的健康,对生态环境长久性损伤更是不容小觑,因此水环境污染的治理成为厄待解决的问题,对各类污染水体进行必要的深度处理已经刻不容缓。

水环境的污染源主要来自于各种未经处理或仅通过初步处理便排放到江河湖泊之中的工业废水和城市生活污水,其中工业废水种类复杂,工艺繁多,运行不稳定,处理难度高,尤其是重金属工业废水往往毒性大且不易生物降解,应给予足够的重视。考虑到,壳聚糖是一种来源广泛的碱性多糖,其分子中含有丰富的羟基与游离氨基,可作为阳离子絮凝剂,使水中的悬浮物凝聚而沉降去除。并且在吸附过程中可与目标物产生氢键、配位、静电作用等多种作用,以及通过螯合作用实现对重金属离子的高效去除。通过四氧化三铁对其进行磁性改性过程则能够克服壳聚糖使用后难以回收的问题,而聚丙烯酰胺(PAM)分子链上带有羧基负电基团,可促进水中带电胶体微粒产生吸附、电中和作用,负载在磁性壳聚糖上后,可进一步提升其对重金属的吸附性能。因此,通过负载聚丙烯酰胺在磁性壳聚糖的表面制成新型吸附剂,应用于含重金属离子废水的处理过程中。

发明内容

为克服上述缺陷,本发明的目的在于提出一种丙烯酰胺负载的磁性壳聚糖吸附剂的制备方法及应用,解决现有技术中存在成本高、效果差、难回收等技术问题。

为达到上述目的,本发明的一种聚丙烯酰胺负载的磁性壳聚糖吸附剂的制备方法,包括如下步骤:

1)制备乙酸壳聚糖溶液;

2)在制备的乙酸壳聚糖溶液中加入Fe

3)在步骤2)所制备的溶液中加入二乙烯三胺及柠檬酸混合,并滴加交联剂;

4)调整步骤3)所制备的溶液的pH到9-10;

5)将步骤4)所制备的溶液通过抽滤法得固体产物;

6)将固体产物粉碎后与聚丙烯酰胺溶液充分搅拦。

进一步的,所述的步骤具体为:

21)将预定质量的壳聚糖于浓度为2%的冰乙酸溶液中浸泡,并放置至恒温水浴锅中设置温度45~65℃加热溶解,持续时间为1.5~2.5h,制得乙酸壳聚糖溶液;

22)在制得的乙酸壳聚糖溶液加入0.3~0.5g的Fe

23)加入8~12g的二乙烯三胺及柠檬酸混合,然后通过恒温振荡摇床快速搅拌使得充分均匀反应,过程中设置温度45~55℃,并滴入4~6ml量的戊二醇作为交联剂,保温1.5~2h;

24)升高温度至65~75℃水浴,并以NaOH溶液调节混合液pH在9-10,转速为180-220r/min快速搅拌4~5h,充分反应;

25)通过抽滤法得固体产物。用无水乙醇和去离子水对固体产物洗涤至中性;放入烘箱中,设置温度110~130℃,时间为12h,烘干后取出并研磨成粉,得到预处理完成的磁性壳聚糖样品;

26)称取1.5g制备的磁性壳聚糖样品,置于质量分数为1%的聚丙烯酰胺(PAM)溶液中,常温下磁力搅拌1~1.5h,搅拌均匀后,放入超声中震荡15~20min,随后常温静置12h老化,再在烘箱中于35~45℃烘干,研磨后置于干燥器中,得到聚丙烯酰胺负载的磁性壳聚糖吸附剂。

为达到上述目的,本发明的上述的制备的聚丙烯酰胺负载的磁性壳聚糖吸附剂在含铜离子废水处理中的应用。

本发明具有以下优点:

1、原材料丰富,获取途径简单,价格低廉,无危险性;壳聚糖既是优秀的天然阳离子絮凝剂,也是高效的去除重金属离子的高分子螯合剂,可通过多种作用实现对重金属离子去除。

2、通过赋予壳聚糖纳米微粒优良的磁性性能,有利于纳米材料的回收和再利用,从而有效防止纳米材料泄露入环境和二次污染的发生。

3、聚丙烯酰胺的负载可以为壳聚糖分子链上引入带有负电的羧基基团,促进水中带电胶体微粒产生吸附、电中和作用,进一步提升壳聚糖对重金属离子的吸附性能。

4、本发明制备聚丙烯酰胺负载的磁性壳聚糖吸附剂的应用吸附实验中,对于含有Cu(II)的模拟金属废水中,材料对Cu(II)的吸附容量达到75.41mg/g,且在经过五个循环后仍能表现出93.6%的吸附量,说明其吸附效率与重复再生能力均较为优异。

附图说明:

图1为本申请聚丙烯酰胺负载的磁性壳聚糖吸附剂的制备工艺流程图示意图。

具体实施方式:

下面结合说明书附图对本发明的具体实施方式作进一步详细的说明。

实施例1

如图1所示,一种聚丙烯酰胺负载的磁性壳聚糖吸附剂的制备方法,包括如下步骤:

步骤一,首先将一定质量的壳聚糖于浓度为2%的冰乙酸溶液中浸泡,并放置至恒温水浴锅中设置温度45℃加热溶解,持续时间为1.5h,随后加入0.5g的Fe

步骤二,称取1.5g步骤一中所制备的磁性壳聚糖样品,置于体积为300mL的质量分数为1%的聚丙烯酰胺(PAM)溶液中,常温下磁力搅拌1.5h,搅拌均匀后,放入超声中震荡15min,随后常温静置12h老化,再在烘箱中45℃下烘干,研磨后置于干燥器中,得到聚丙烯酰胺负载的磁性壳聚糖吸附剂。

实施例2

如图1所示,一种聚丙烯酰胺负载的磁性壳聚糖吸附剂的制备方法,包括如下步骤:

步骤一,首先将一定质量的壳聚糖于浓度为2%的冰乙酸溶液中浸泡,并放置至恒温水浴锅中设置温度45℃加热溶解,持续时间为1.5h,随后加入0.5g的Fe

步骤二,称取1.5g步骤一中所制备的磁性壳聚糖样品,置于体积为300mL的质量分数为1%的聚丙烯酰胺(PAM)溶液中,常温下磁力搅拌1.5h,搅拌均匀后,放入超声中震荡15min,随后常温静置12h老化,再在烘箱中45℃下烘干,研磨后置于干燥器中,得到聚丙烯酰胺负载的磁性壳聚糖吸附剂。

为了对制得的聚丙烯酰胺负载的磁性壳聚糖吸附剂对含铜离子(Cu(II))废水的吸附效果,分别将铜标准液稀释成浓度为5、10、20、30、40和50mg/L的Cu(II)溶液,各取0.1g聚丙烯酰胺负载的磁性壳聚糖加入作为吸附剂,同时用0.1M的NaOH溶液或0.1M的HCl溶液将混合溶液的pH调节为3.0后,放入恒温水浴振荡器中,分别在25℃、30℃和35℃下以转速150rpm反应24h,达到吸附平衡后,分别取出样品用0.45μm的针孔过滤器过滤后测其剩余金属离子的浓度。采用Langmuir和Frendlich两种等温吸附模型,分别拟合不同温度下的聚丙烯酰胺负载的磁性壳聚糖吸附剂的平衡吸附量与吸附平衡后溶液中剩余的Cu(II)浓度的关系。由拟合结果显示,Frendlich等温吸附模型对Cu(II)的吸附过程拟合效果最佳,最大吸附量为75.41mg/g,R

实施例3

如图1所示,一种聚丙烯酰胺负载的磁性壳聚糖吸附剂的制备方法,包括如下步骤:

步骤一,首先将一定质量的壳聚糖于浓度为2%的冰乙酸溶液中浸泡,并放置至恒温水浴锅中设置温度45℃加热溶解,持续时间为1.5h,随后加入0.5g的Fe

步骤二,称取1.5g步骤一中所制备的磁性壳聚糖样品,置于体积为300mL的质量分数为1%的聚丙烯酰胺(PAM)溶液中,常温下磁力搅拌1.5h,搅拌均匀后,放入超声中震荡15min,随后常温静置12h老化,再在烘箱中45℃下烘干,研磨后置于干燥器中,得到聚丙烯酰胺负载的磁性壳聚糖吸附剂。

为了对聚丙烯酰胺负载的磁性壳聚糖吸附剂的循环吸附能力进行验证,称取0.5g制备好的聚丙烯酰胺负载的磁性壳聚糖样品,投入50mg/L的Cu(II)溶液中作为吸附剂,同时用0.1M的NaOH溶液或0.1M的HCl溶液将混合溶液的pH调节为3.0后,放入恒温水浴振荡器中,在25℃下以转速150rpm反应24h,达到吸附平衡后,分别取出样品用0.45μm的针孔过滤器过滤后测其剩余金属离子的浓度。随后通过磁吸分离出吸附完成后的样品,洗涤干燥后,以浓度为1M的NaOH溶液为解吸附剂,对其进行解吸,经过真空抽滤,表面清洗干净并烘干回收,然后再次用于50mg/L的Cu(II)溶液的吸附实验,再次测定对Cu(II)的吸附量,重复以上吸附-解吸过程共五个循环,比较其去除率的下降情况。结果可知,在经过五个循环后仍能表现出93.6%的吸附量,说明聚丙烯酰胺负载的磁性壳聚糖吸附剂呈现出较为优异吸附效率与重复再生能力。

相关技术
  • 一种聚丙烯酰胺负载的磁性壳聚糖吸附剂的制备方法及应用
  • 一种壳聚糖-聚丙烯酰胺磁性复合微球材料、其制备方法及其应用
技术分类

06120113815503