掌桥专利:专业的专利平台
掌桥专利
首页

一种隧道内全自动智能化监测方法

文献发布时间:2023-06-19 19:28:50


一种隧道内全自动智能化监测方法

技术领域

本发明涉及隧道自动监测的技术领域,尤其涉及一种隧道内全自动智能监测方法。

背景技术

隧道通常埋于地下或是横穿山体,受地质、水文条件的影响大,在外界因素作用下,隧道可能出现下沉、收敛等变形影响隧道的正常使用,一旦发生隧道塌方事故,带来的后果不可谓不严重,不仅会对施工人员造成极大的人身安全威胁,还延长了隧道的施工工期、增大了工程预算、极大程度的破坏了机械设备和降低了施工单位的施工质量。同时隧道塌方具有高发性和高危性两大特点,除了给施工安全带来严重的威胁,还给社会造成了不良的影响。但是由于隧道在投入使用后禁止人员在运营时间段在隧道内活动,运营时段无法用常规手段采集变形数据,难以满足监测隧道内安全的要求。

如授权公告日为2022.12.23、授权公告号为CN112798619B的中国发明专利公开了一种隧道缺陷的快速检测系统与检测方法,其中包括中央控制中心、数据储存中心、检测硬件系统和报警系统,所述检测硬件系统用于实时采集隧道内数据,所述中央控制中心包括处理芯片、监控系统和三维GIS模型;本发明在隧道内设置特制的智能位移机器人,用于实时测量隧道内壁的沉降位移情况,通过裂缝监测模块、变形监测模块、测振模块、应力采集模块、垂直位移监测模块实时监测隧道的其他数据,通过三维GIS模型利用矢量化处理将监测的数据建模成隧道模型,通过对比模块将采集的数据变量制成折线统计图,操作人员观察隧道模型中相应坐标中的折线统计图,即可知道隧道内具体的位置情况。

上述专利,虽然可在运营时间段的隧道内采集监测数据,但是由于隧道内发生的险情往往具有突然性,所以仅仅采集足够多的监测数据进行分析,会导致数据分析不够及时,采集的数据具有滞后性,不能对工作人员进行提前预警;同时仅仅监测隧道内壁的沉降位移情况,采集的信息过于单一,对分析结果的支撑不够,容易出现误差,造成经济损失。

发明内容

针对上述背景技术中存在的技术问题,本发明提出一种隧道内全自动智能监测方法,用以解决在对于隧道监测时,分析信息滞后不能对工作人员进行提前预警、采集的信息过于单一,对分析结果的支撑不够,容易出现误差、造成经济损失的技术问题。

为了达到上述目的,本发明的技术方案是这样实现的一种隧道内全自动智能监测方法,该方法包括:

步骤一:在隧道布置传感器用于获取隧道外部和内部各个位置的数据信息,所述传感器包括用于采集隧道内部拱圈和侧墙各个位置位移信息的位移传感器、用于采集隧道外部围岩作用在支护结构上压力信息的压力传感器、用于采集隧道内部地表各个位置沉降信息的沉降传感器;

步骤二:将上述采集的隧道内部拱圈和侧墙各个位置的位移数据信息、围岩作用在支护结构上的压力数据信息和隧道内部地表各个位置的沉降数据信息进行预处理,预处理后得到位移数据序列、压力数据序列和沉降数据序列,根据位移数据序列、压力数据序列和沉降数据序列的波动程度分别得到隧道稳定程度的第一变化指标值、第二变化指标值和第三变化指标值;

步骤三:将得到的隧道稳定程度的第一变化指标值、第二变化指标值和第三变化指标值相结合得到隧道整体稳定程度评价值,收集多个历史时刻的隧道整体稳定程度评价值,构成隧道整体稳定程度评价序列,将当前时刻的隧道整体稳定程度评价值与隧道整体稳定程度评价序列中每个隧道整体稳定程度评价值做差,计算所有的差值之和得到隧道整体稳定程度的可靠系数;

步骤四:将得到的隧道整体稳定程度的可靠系数作为预测网络的权重,将隧道整体稳定程度评价序列投入预测网络进行预测,得到隧道未来整体稳定程度评价序列;

步骤五:基于得到的隧道未来整体稳定程度评价序列,设置补偿系数与隧道未来整体稳定程度评价序列中的隧道未来整体稳定程度评价值相结合,得到实际隧道未来整体稳定程度评价值;

步骤六:设置隧道整体稳定程度评价阈值与得到的实际隧道未来整体稳定程度评价值进行比较,超出阈值后进行预警。

进一步地,所述隧道整体稳定程度评价值是根据隧道稳定程度的第一变化指标值、第二变化指标值和第三变化指标值之间的乘积得到的。

进一步地,所述隧道稳定程度的第一变化指标值是通过采集相邻时刻的位移数据进行对比再通过指数函数归一化得到的、隧道稳定程度的第二变化指标值是通过采集相邻时刻的压力数据进行对比再通过指数函数归一化得到的,隧道稳定程度的第三变化指标值通过采集相邻时刻的沉降数据作差,再通过指数函数归一化得到的。

进一步地,所述补偿系数是将隧道整体稳定程度评价序列的历史数据投入预测网络中进行训练,得到预测数据与实际获取的当前隧道整体稳定程度评价值数据之间的比值得到的。

进一步地,所述得到可靠系数的计算方法为:

其中:X

进一步地,所述可靠系数作为预测网络的权重,将可靠系数在预测网络中对均方差损失函数进行加权,确保均方差损失函数的进一步收敛性。

进一步地,采用LSTM预测网络模型的训练过程为:

构建LSTM预测网络;

获取连续的各历史设定时间段内的隧道整体稳定程度评价序列,作为训练集,将训练集输入到LSTM预测网络,对所述LSTM预测网络进行训练,训练后得到LSTM神经网络模型;

训练时引入改进的损失函数,通过改进的损失函数计算输出数据与输入的训练集的实际数据的误差,对LSTM预测网络进行训练;所述改进的损失函数为:计算历史各时间段对应的隧道整体稳定程度评价序列的数据置信度,并将所述置信度加权到各时间段隧道整体稳定程度评价序列的数据对应的均方差损失函数,再将可靠系数对均方差损失函数进行进一步赋权。

进一步地,所述其中LSTM预测网络的损失函数为:使用置信度C

Loss=∑(Loss

其中:C为归一化后的质量系数,作为损失权重,loss为每个样本的损失,得到的序列为隧道整体稳定程度评价数据,X

本发明至少有如下的有益效果:本发明采用用于采集隧道内部拱圈和侧墙各个位置位移信息的位移传感器、用于采集隧道外部围岩作用在支护结构上压力信息的压力传感器、用于采集隧道内部地表各个位置沉降信息的沉降传感器,通过收集上述信息得到位移数据序列、压力数据序列和沉降数据序列,再将采集的信息相结合得到隧道整体稳定程度评价值,通过位移、压力和沉降来反映当前隧道的稳定程度,采集的信息对于分析的结果支撑足够,不容易出现误差;且采用预测网络对于采集的信息进行分析,得到隧道未来整体稳定程度评价序列,便于工作人员对于突发情况有足够的时间进行准备,降低经济损失;同时通过在预测网络中增加可靠系数,作为均方差损失函数的权重,这样确保损失函数的收敛,通过不断训练使得损失变小,使得预测结果更加准确,同时设置补偿系数进一步增加预测结果的真实性和稳定性,且能够根据预测结果进行及时正确预警,降低事故发生所带来的经济和人员的损失。

附图说明

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。

图1为本发明提供的一种智能化监测方法原理图。

具体实施方式

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

如图1所示,一种隧道内全自动智能监测方法,其方法步骤如下:

步骤一:在隧道布置传感器用于获取隧道外部和内部各个位置的数据信息,所述传感器包括用于采集隧道内部拱圈和侧墙各个位置位移信息的位移传感器、用于采集隧道外部围岩作用在支护结构上压力信息的压力传感器、用于采集隧道内部地表各个位置沉降信息的沉降传感器;

步骤二:将上述采集的隧道内部拱圈和侧墙各个位置的位移数据信息、围岩作用在支护结构上的压力数据信息和隧道内部地表各个位置的沉降数据信息进行预处理,预处理后得到位移数据序列、压力数据序列和沉降数据序列,根据位移数据序列、压力数据序列和沉降数据序列的波动程度分别得到隧道稳定程度的第一变化指标值、第二变化指标值和第三变化指标值;

步骤三:将得到的隧道稳定程度的第一变化指标值、第二变化指标值和第三变化指标值相结合得到隧道整体稳定程度评价值,收集多个历史时刻的隧道整体稳定程度评价值,构成隧道整体稳定程度评价序列,将当前时刻的隧道整体稳定程度评价值与隧道整体稳定程度评价序列中每个隧道整体稳定程度评价值做差,计算所有的差值之和得到隧道整体稳定程度的可靠系数;

步骤四:将得到的隧道整体稳定程度的可靠系数作为预测网络的权重,将隧道整体稳定程度评价序列投入预测网络进行预测,得到隧道未来整体稳定程度评价序列;

步骤五:基于得到的隧道未来整体稳定程度评价序列,设置补偿系数与隧道未来整体稳定程度评价值相结合,得到实际隧道未来整体稳定程度评价值;

步骤六:设置隧道整体稳定程度评价阈值与得到的实际隧道未来整体稳定程度评价值进行比较,超出阈值后进行预警。

进一步地,采集隧道内部拱圈和侧墙各个位置位移信息作为本发明的监测信息之一,当隧道内出现安全质量问题时,最为直观的反应就是隧道内部拱圈和侧墙发生位移,通过对隧道内部拱圈和侧墙各个位置的位移进行监测,保障监测结果的真实,同时避免发生危险。

进一步地,采集围岩作用在支护结构上的压力数据信息作为本发明的监测信息之一,稳定性越好的围岩所产生的围岩压力就越小,围岩压力越小隧道整体的稳定性就越好,围岩压力出现异常时会导致围岩失稳,隧道出现坍塌的情况,通过对围岩作用在支护结构上的压力数据进行监测,保障监测结果的真实。

进一步地,采集隧道内部地表各个位置的沉降信息作为本发明的监测信息之一,如果隧道内部发生沉降,不仅仅会对工程整体的建设甚至后期隧道的正常运行带来安全隐患,而且甚至会导致隧道发生塌方,严重危害人民的生命财产安全,通过对隧道内部地表各个位置的沉降数据进行监测,并通过对实测数据的现场分析、处理,及时向施工方、监理方、设计方和业主提供分析资料,避免隧道发生危险。

进一步地,所述隧道整体稳定程度评价值是根据隧道稳定程度的第一变化指标值、第二变化指标值和第三变化指标值之间的乘积得到的。

进一步地,所述隧道稳定程度的第一变化指标值是通过采集相邻时刻的位移数据进行对比再通过指数函数归一化得到的、隧道稳定程度的第二变化指标值是通过采集相邻时刻的压力数据进行对比再通过指数函数归一化得到的,隧道稳定程度的第三变化指标值通过采集相邻时刻的沉降数据作差,再通过指数函数归一化得到的。

进一步地,所述补偿系数是将隧道整体稳定程度评价序列的历史数据投入预测网络中进行训练,得到预测数据与当前获取的实际隧道整体稳定程度评价值数据之间的比值得到的。在获取补偿系数的过程中,在本实施例中将获取信息的时间段分为三段,分别为历史时间段、当前时间段和未来时间段,将历史时间段的隧道整体稳定程度评价序列输入预测网络中得到当前时间段的隧道整体稳定程度评价序列,将预测得到的当前时间段的隧道整体稳定程度评价序列与实际计算得到的当前时间段的隧道整体稳定程度评价序列中同一时刻的评价值进行比较,得到补偿系数,同理将当前时间段的隧道整体稳定程度评价序列输入预测网络中得到未来时间段的隧道整体稳定程度评价序列,得到未来需要使用的补偿系数,补偿系数依次迭代更新。设置补偿系数增加预测结果的真实性和稳定性,使得预测结果更加准确。

进一步地,所述得到可靠系数的计算方法为:

其中:X

进一步地,所述可靠系数作为预测网络的权重,将可靠系数在预测网络中对均方差损失函数进行加权,确保均方差损失函数的进一步收敛性。

进一步地,采用LSTM预测网络模型的训练过程为:

构建LSTM预测网络;获取连续的各历史设定时间段内的隧道整体稳定程度评价序列,作为训练集,将训练集输入到LSTM预测网络,对所述LSTM预测网络进行训练,训练后得到LSTM神经网络模型;

训练时引入改进的损失函数,通过改进的损失函数计算输出数据与输入的训练集的实际数据的误差,对LSTM预测网络进行训练;所述改进的损失函数为:计算历史各时间段对应的隧道整体稳定程度评价序列的数据置信度,并将所述置信度加权到各时间段隧道整体稳定程度评价序列的数据对应的均方差损失函数,再将可靠系数对均方差损失函数进行进一步赋权。

进一步地,所述其中LSTM预测网络的损失函数为:使用置信度C

Loss=∑(Loss

其中:C为归一化后的质量系数,作为损失权重,loss为每个样本的损失,得到的序列为隧道整体稳定程度评价数据,X

进一步地,采用预测网络对于采集的信息进行分析,得到隧道未来整体稳定程度评价序列,便于工作人员对于突发情况有足够的时间进行准备,降低经济损失。

以此类推,重复上述过程,得到序列中每个对应的预测结果;至此,得到了所预测的隧道未来整体稳定程度评价序列。实施者可依照具体要求和使用的实际场景的不同,对于预测网络中的阈值的设定,根据大数据中的历史经验,设置阈值,当达到阈值的时候,预测网络自动停止预测。

进一步地,综上所述,本发明实施例提供了一种隧道内全自动智能监测方法,该方法根据采集的隧道内部拱圈和侧墙各个位置的位移数据信息、围岩作用在支护结构上的压力数据信息和隧道内部地表各个位置的沉降数据信息得到隧道整体稳定程度评价值,收集多个历史时刻的隧道整体稳定程度评价值,构成隧道整体稳定程度评价序列,将隧道整体稳定程度评价值与每个隧道整体稳定程度评价序列中的隧道整体稳定程度评价值进行作差,计算差值和得到隧道整体稳定程度的可靠系数,将可靠系数作为预测网络的权重,将隧道整体稳定程度评价序列投入预测网络进行预测,得到隧道未来整体稳定程度评价序列,再设置补偿系数与隧道未来整体稳定程度评价序列相结合,得到实际隧道未来整体稳定程度评价序列,设置阈值进行比较,超出阈值后进行预警。通过在预测网络中增加可靠系数,作为均方差损失函数的权重,这样确保损失函数的收敛,通过不断训练使得损失变小,使得预测结果更加准确,同时设置补偿系数进一步增加预测结果的真实性和稳定性。

以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

相关技术
  • 一种隧道内车辆行驶监测的方法及系统
  • 一种基于施工台车的隧道全自动帷幕除尘装置及方法
  • 一种隧道结构的自动监测系统、自动监测方法及其用途
  • 一种隧道围岩变形监测方法及其监测系统
  • 地铁全自动无人驾驶区间隧道消防给水管道故障监测系统及智能化处理方法
  • 一种隧道内天然气泄漏监测系统与监测方法
技术分类

06120115919042