掌桥专利:专业的专利平台
掌桥专利
首页

一种超级电容器双闭环模糊PI控制方法

文献发布时间:2024-04-18 19:52:40


一种超级电容器双闭环模糊PI控制方法

技术领域

本发明涉及微网储能系统配置优化技术领域,尤其涉及一种超级电容器双闭环模糊PI控制方法。

背景技术

随着化石能源的日益枯竭,以风力和光伏为主的分布式能源(Distributedenergy resources,DER)发电方式成为研究热点之一,但发电单元受发电环境限制较多,输出功率随机性、波动性和间断性较大,导致分布式能源接入微电网时供能效率较低,降低了微电网系统的供能稳定性和电能质量。随着储能技术的不断发展,利用储能元件的功率吞吐作用,能够有效改善DER并网导致的功率波动问题,但采用传统单一的储能元件局限性较高,无法解决功率波动较大时对电网的冲击,尤其是超级电容器的瞬态响应效率较低,导致储能系统无法解决非线性稳定的问题。

发明内容

有鉴于此,本发明的目的在于提出一种超级电容器双闭环模糊PI控制方法,以解决储能系统非线性稳定的问题。

基于上述目的,本发明提供了一种超级电容器双闭环模糊PI控制方法,包括:

步骤一、初始化北方苍鹰算法的参数和种群;

步骤二、确定混合储能系统功率分配目标函数以及约束条件并进行计算,计算过程为在北方苍鹰算法求解目标函数的基础上,根据模糊算法优化PI控制,利用模糊规则,解决非线性问题,延长混合储能系统循环使用寿命,提高系统稳定性;

步骤三、采用北方苍鹰算法选择、攻击、追捕猎物,不断更新位置信息;

步骤四、判断是否达到迭代条件,若满足条件,则将目前的最优解信息保存,否则返回步骤三;

步骤五、判断是否满足终止条件,若满足则输出最优解,否则返回步骤三。

优选地,初始化北方苍鹰算法的参数和种群包括:

设置北方苍鹰种群规模为200,最大迭代次数N为400,并令迭代次数i=0。

优选地,混合储能功率分配目标函数为

当分布式发电单元输出功率小于负载需求功率时,即当P

当分布式发电单元输出功率大于负载需求功率时,即当P

其中,F为目标函数;

目标函数的约束条件包括能量守恒约束、SOC荷电状态约束、最大功率约束、功率波动约束和储能装置充放电次数约束。

优选地,目标函数的约束条件具体为:

能量守恒约束符合P

SOC荷电状态约束符合

SOC

SOC

式中,SOC

最大功率约束为

式中:P

功率波动约束为α≤α

储能装置充放电次数约束为N

优选地,计算混合储能系统功率分配目标函数的过程包括:

混合储能系统模糊设计;

模糊控制器将输入的误差变量e与误差变化率ec进行模糊调节后,输入到PI控制器中,成为PI控制器的参考值,PI控制器增量式为

式中,K

得到PI控制器的电压修正系数为

Δu(k)=u(k)-u(k-1)=K

优选地,混合储能系统模糊设计包括:

输入量模糊化,混合储能系统将电压差值U和变化幅值E作为输入量,并进行模糊化,将电压差值U的范围[-48,48]转化为{NB,NM,NS,ZO,PS,PM,PB}的模糊集,变化幅值E的范围[-4.8,4.8]转化为{NB,NM,NS,ZO,PS,PM,PB}模糊集,模糊集分别代表[负大、负中、负小、零、正小、正中、正大],电压差值与变化幅值的论域为[-6,6];

确定模糊规则表;

模糊化推理,公式为

式中,R为模糊控制规则,

去模糊化,运算规则为

其中,u

本发明的有益效果:本发明在双重低通滤波器前引入预测功率算法,提高混合储能系统瞬态响应性能,且针对超级电容提出一种基于北方苍鹰算法的模糊双闭环PI控制,该控制策略,利用改进后的北方苍鹰算法计算SOC目标函数,在目标函数的基础上,引入模糊算法,以提高超级电容储能的消纳能力,响应速度,延长蓄电池使用寿命,提高微电网系统的功能稳定性。

附图说明

为了更清楚地说明本发明或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。

图1为本发明实施例的北方苍鹰算法求解目标函数流程图;

图2为本发明实施例的模糊PI控制原理图。

具体实施方式

为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,对本发明进一步详细说明。

需要说明的是,除非另外定义,本发明使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本发明中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。

如图1、图2所示,本说明书实施例提供一种超级电容器双闭环模糊PI控制方法,包括以下步骤:

步骤一、初始化北方苍鹰算法的参数和种群;

步骤二、确定混合储能系统功率分配目标函数以及约束条件并进行计算,计算过程为在北方苍鹰算法求解目标函数的基础上,根据模糊算法优化PI控制,利用模糊规则,解决非线性问题,延长混合储能系统循环使用寿命,提高系统稳定性;

步骤三、采用北方苍鹰算法选择、攻击、追捕猎物,不断更新位置信息;

步骤四、判断是否达到迭代条件,若满足条件,则将目前的最优解信息保存,否则返回步骤三;

步骤五、判断是否满足终止条件,若满足则输出最优解,否则返回步骤三。

通过在双重低通滤波器前引入预测功率算法,提高混合储能系统瞬态响应性能,且针对超级电容提出一种基于北方苍鹰算法的模糊双闭环PI控制,该控制策略,利用改进后的北方苍鹰算法计算SOC目标函数,在目标函数的基础上,引入模糊算法,以提高超级电容储能的消纳能力,响应速度,延长蓄电池使用寿命,提高微电网系统的功能稳定性。

作为一种实施方式,混合储能系统功率分配目标函数如下;

当P

当P

其中,F为目标函数;

约束条件如下;

能量守恒约束:在微电网系统中,要遵守能量守恒定律,即,发电单元的总输出功与混合储能系统输出功率应等于负载端所需功率,数学表达式如下式:

P

SOC荷电状态约束:混合储能系统中为防止蓄电池与超级电容器出现SOC越界出现过充过放现象,SOC荷电状态应在规定范围内:

SOC

SOC

式中:SOC

最大功率约束:在实际应用中,混合储能系统有输出功率的上限,负载需求功率大小不能超过混合储能系统输出功率与分布式发电端的输出功率之和,不能超出限制,如下式:

/>

式中:P

功率波动约束:分布式电源并网产生的功率波动,经过混合储能系统的平抑,需要满足负载所能吸收的功率,要符合国家标准,不能超过电力系统所允许的最大功率波动。

α≤α

式中:α为实际功率波动;α

储能装置充放电次数约束:在混合储能系统储能装置的实际应用中,由于超级电容器功率密度较大,可进行反复的充放电,因此主要针对蓄电池充放电次数进行约束,蓄电池频繁充放电,会降低蓄电池的循环使用寿命,但降低蓄电池的充放电次数,会增加超级电容器的使用次数,降低储能系统的经济性,合理设置蓄电池充放电,会增加混合储能系统的使用寿命。

N

式中:N

作为一种实施方式,初始化北方苍鹰算法的参数和种群包括:

设置北方苍鹰种群规模为200,最大迭代次数N为400,并令迭代次数i=0。

作为一种实施方式,本方法在北方苍鹰算法求解目标函数的基础上,根据模糊算法优化PI控制,利用模糊规则,解决非线性问题,延长混合储能系统循环使用寿命,提高系统稳定性。

混合储能系统模糊设计步骤:

输入量模糊化。混合储能系统将电压差值U与变化幅值E作为输入量,并进行模糊化,将电压差值U的范围[-48,48]转化为{NB,NM,NS,ZO,PS,PM,PB}的模糊集,变化幅值E的范围[-4.8,4.8]转化为{NB,NM,NS,ZO,PS,PM,PB}模糊集,模糊集分别代表[负大、负中、负小、零、正小、正中、正大],电压差值与变化幅值的论域为[-6,6]。

模糊规则表的确定。模糊规则库是模糊PI控制的核心,模糊推理都需要依靠模糊规则库找到相应的模糊规则,进而将模糊量进一步优化得到优化后的模糊量,如表1为比例修正系数ΔK

表1

表2

模糊化推理:超级电容器的模糊控制规则有25条,超级电容器的模糊推理公式,如下式:

式中,R为模糊控制规则,

去模糊化,去模糊化是清晰化过程,是将优化后的模糊变量,经过去模糊运算规则,得到系统能够识别控制的参数,目前较为常用的方法为面积中心法,其运算规则为:

式中:u

混合储能系统模糊自适应PI控制原理如图2所示;

模糊控制器将输入的误差变量e与误差变化率ec进行模糊调节后,输入到PI控制器中,成为PI控制器的参考值,根据图2可列出PI控制器增量式如下:

式中:K

同理,可得PI控制器的电压修正系数如下:

Δu(k)=u(k)-u(k-1)=K

所属领域的普通技术人员应当理解:以上任何实施例的讨论仅为示例性的,并非旨在暗示本发明的范围(包括权利要求)被限于这些例子;在本发明的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本发明的不同方面的许多其它变化,为了简明它们没有在细节中提供。

本发明旨在涵盖落入所附权利要求的宽泛范围之内的所有这样的替换、修改和变型。因此,凡在本发明的精神和原则之内,所做的任何省略、修改、等同替换、改进等,均应包含在本发明的保护范围之内。

相关技术
  • 一种基于改进粒子群优化的变论域双闭环模糊PI永磁同步电机矢量控制方法
  • 一种双闭环模型预测与PI复合控制的DAB变换器控制方法
技术分类

06120116330425