掌桥专利:专业的专利平台
掌桥专利
首页

一种多酚复合纳米颗粒、其制备方法及应用

文献发布时间:2024-04-18 19:58:53


一种多酚复合纳米颗粒、其制备方法及应用

技术领域

本发明属于纳米载体技术领域,具体涉及一种多酚复合纳米颗粒、其制备方法及应用。

背景技术

多酚是一类天然存在于许多植物中的化合物,如槲皮素、绿原酸以及儿茶素等,其具有许多潜在的药学价值,包括抗氧化、抗炎症和抗癌作用等,在医学、健康和营养领域都具有重要的用途。然而,在应用多酚时会存在一些缺陷,例如:(1)生物利用度低;多酚通常在体内吸收和代谢的过程中被快速代谢,从而减少其对身体的潜在益处。(2)不稳定性;多酚容易受到光、氧气和温度等外部条件的影响,导致其不稳定性。这会影响多酚的保存和传递。(3)口味和气味问题;多酚具有苦味或特殊的气味,限制了其在食品和饮料中的应用。(4)溶解度问题;一些多酚难以在水中溶解,这限制了它们在口服药物中的应用。(5)剂量控制困难;确保患者摄入足够的多酚以获得期望的效果具挑战性。这些缺陷可以通过将多酚包裹在纳米载体中来解决,以提高其稳定性和生物利用度,现有技术(张亚丽.负载植物多酚的天然高分子微纳米载体的制备与评价[D].东南大学,2017)制备了一种负载白藜芦醇的玉米醇溶蛋白/甜菜果胶微球(Zein/SBP),是利用玉米醇溶蛋白和甜菜果胶作为纳米载体来负载多酚类物质白藜芦醇,所述微球是利用反溶剂法制备的,其制备方法如下:取2.5gZein溶于85%(v/v)乙醇水溶液,常温400rpm搅拌2h,让Zein完全溶解。加入0.25g白藜芦醇,搅拌3h使其充分溶解并被玉米醇溶蛋白吸附包裹。同时配制甜菜果胶水溶液,取0.83g壳聚糖,1000rpm搅拌5h,让壳聚糖完全溶解。将Zein的乙醇溶液以均匀的细流状注入甜菜果胶的水溶液,同时1000rpm磁力搅拌2h。利用真空悬蒸除去乙醇。离心机在25℃,4000rpm条件下离心10min,除去不溶的大颗粒,得到负载白藜芦醇的玉米醇溶蛋白/甜菜果胶微球。但是,通过该方法制备的复合纳米微球,白藜芦醇负载量比较低,载药量在0.1%左右,载体含水量高且白藜芦醇本身稳定性差,生物利用率低。

发明内容

本发明提供了一种多酚复合纳米颗粒的制备方法,包括如下步骤:

将多酚加入玉米醇溶蛋白溶液中,搅拌至溶解,随后加入褐藻糖胶溶液,搅拌至溶解,获得多酚-玉米醇溶蛋白/褐藻糖胶复合纳米颗粒溶液;向多酚-玉米醇溶蛋白/褐藻糖胶复合纳米颗粒溶液中加入柠檬酸溶液调节pH,低速离心,去除不溶性物质,获得多酚-玉米醇溶蛋白/褐藻糖胶复合纳米颗粒。

上述制备方法中,所述多酚-玉米醇溶蛋白/褐藻糖胶复合纳米颗粒溶液中多酚的浓度选自5~10mg/mL;优选为5mg/mL。

上述制备方法中,所述玉米醇溶蛋白溶液和褐藻糖胶溶液的体积比选自1:1~1:4;优选为1:1。

上述制备方法中,所述柠檬酸溶液的浓度选自2~5mM;优选为3mM。

上述制备方法中,所述pH选自2.4~4.5;优选为4。

上述制备方法中,所述多酚选自槲皮素、绿原酸、儿茶素、山楂素、橙皮苷、白藜芦醇、姜黄素、蓝莓花青素中的一种或几种;优选为槲皮素和/或绿原酸。

本发明提供了由上述方法制备的多酚复合纳米颗粒。

本发明提供了上述多酚复合纳米颗粒在制备具有抗食物过敏作用的药物或制剂中的应用;所述食物包括但不限于虾产品、蟹产品等易于引起过敏反应的海鲜产品。

本发明的有益效果为:

本发明以玉米醇溶蛋白和褐藻糖胶载体,利用pH驱动法,克服了现有技术中所存在的多酚在纳米载体中载药量过低的缺陷,能够实现槲皮素以及绿原酸等多酚类成分在纳米载体中的高载药量。

附图说明

图1为复合纳米颗粒的圆二色谱和内源荧光分析;其中,A图为内源荧光,B图为圆二色谱;A图和B图中,上方曲线均代表QR-NPS;下方曲线均代表CA-NPS;

图2为复合纳米颗粒的pH稳定性测试;

图3为小鼠血清中特异性抗体、肥大细胞蛋白酶以及组胺的检测;其中,A图为IgE,B图为IgG,C图为IgG1,D图为mMCP-1,E图为组胺;

图4为小鼠脾细胞上清中细胞因子的检测;其中,A图为IL-4,B图为IL-5,C图为IL-13,D图为INF-γ;

图5为小鼠的组织学评估;其中,A图为肺组织学切片,B图为十二指肠组织学切片;

图6为小鼠模型构建和口服致敏处理流程图。

具体实施方式

在本发明中,玉米醇溶蛋白简称“zein”,褐藻糖胶简称“FU”,槲皮素简称“QR”,绿原酸简称“CA”。

本发明所采用的小苏打溶液,其浓度为10mM,用于溶解玉米醇溶蛋白(zein)和褐藻糖胶(FU)。

zein储备液(溶液):将1gzein溶解于100mL小苏打溶液中,获得浓度为10mg/mL的zein储备液。

FU储备液(溶液):将0.5gFU溶解于50mL小苏打溶液中,获得浓度为10mg/mL的FU储备液。

在本发明中,多酚复合纳米颗粒可以分为溶液和粉末两种状态。根据试验所需,本发明下述实施例所制备的多酚复合纳米颗粒为溶液状多酚复合纳米颗粒。也可在溶液状多酚复合纳米颗粒的基础上,经冷冻干燥获得粉末状的多酚复合纳米颗粒。冷冻干燥技术为常规技术手段。

本发明所采用的材料,例如玉米醇溶蛋白和褐藻糖胶等,如无特殊声明,均可通过市售渠道获得。本发明所使用的术语,除非有另外说明,一般具有本领域普通技术人员通常理解的含义。下面结合具体实施例,并参照数据进一步详细的描述本发明。以下实施例只是为了举例说明本发明,而非以任何方式限制本发明的范围。

实施例1

制备QR-zein/FU复合纳米颗粒,步骤如下:

将0.1gQR加入10mLzein储备液中,搅拌溶解12h。随后加入10mLFU储备液,并搅拌溶解6h,获得QR浓度为5mg/mL的QR-zein/FU复合纳米颗粒溶液。在1000rpm转速下,将30mL柠檬酸溶液(3mM)缓慢加入QR-zein/FU复合纳米颗粒溶液中以调整溶液pH至4.0,然后低速离心(3000rpm,10min),去除不溶性物质,获得QR-zein/FU复合纳米颗粒。

实施例2

制备CA-zein/FU复合纳米颗粒,步骤如下:

将0.1gCA加入10mLzein储备液中,搅拌溶解12h。随后加入10mLFU储备液,并搅拌溶解6h,获得CA浓度为5mg/mL的CA-zein/FU复合纳米颗粒溶液。在1000rpm转速下,将30mL柠檬酸溶液(3mM)缓慢加入CA-zein/FU复合纳米颗粒溶液中以调整溶液pH至4.0,然后低速离心(3000rpm,10min),去除不溶性物质,获得CA-zein/FU复合纳米颗粒。

一、指标测定

1、内源荧光

将上述实例制备的纳米颗粒用超纯水稀释至1mg/mL。荧光信号的测量使用日立F-2700荧光分光光度计,扫描参数设定为:激发波长为295nm,发射波长范围为300~600nm,扫描速度为1300nm/s,狭缝宽度为5.0nm,响应时间0.5s,每个样品扫描3次。

测试结果如图1A所示:

图1A说明,内源性荧光光谱可用于表征蛋白质的三级结构变化。在蛋白质分子中,只有酪氨酸、色氨酸和苯丙氨酸残基能发出荧光。但是,苯丙氨酸的量子产率很低。玉米醇溶蛋白中几乎没有色氨酸残基,而酪氨酸残基含量较高。因此,玉米醇溶蛋白的内源荧光主要来自酪氨酸,其最大吸收峰在340nm左右,但其在内源荧光中的最大吸收峰通常位于紫外-可见光谱范围内的约280nm附近。负载QR和CA两种Zein-FU纳米颗粒最大峰值出现红移说明多酚与Zein-FU纳米颗粒分子间相互作用导致分子聚集,可能会改变其电子态分布,从而影响荧光发射的能量。聚集可能会导致荧光发射峰向长波长方向移动,也验证了Zein-FU对多酚具有良好的包裹性。

2、圆二色谱

将上述实例制备的复合纳米颗粒用超纯水稀释至1mg/mL,然后采用CharacinV100进行圆二光谱扫描,使用超纯水作为空白对照。参数设置如下:光谱范围为190~260nm,步长为1nm,带宽为1nm,每个样品扫描3次。

测试结果如图1B所示:

图1B说明,实验结果在远紫外线区域(190-260nm)通过圆二色谱来检测发生反应后样品二级结构的变化。研究表明圆二色谱图中表示α-螺旋和β-折叠的特征峰的理论值为190nm处的一个正峰与208nm、222nm处的两个负峰。QR-NPS在195nm处有一个正峰,209nm与224nm处有两个负峰,CA-NPS在194nm处有一个正峰,205nm与230nm处有两个负峰,出现轻微偏移的结果可能是β-折叠、无规卷曲等结构的存在。随着果胶加入后对颗粒进行包覆,zein/FU纳米颗粒特征峰值发生显著变化,表明褐藻糖胶的加入引起了玉米醇溶蛋白颗粒二级结构改变。如图也证明了采用Zein-FU纳米颗粒对QR和CA包埋后引起了二级结构的变化。进一步证明Zein-FU纳米颗粒能有效包裹两种多酚并达到控制释放的效果。

3、粒径分布、PDI和Zeta电位的测定

将5mg/mL上述实例制备的纳米颗粒用超纯水稀释1000倍,取1mL样品放入样品池中,使用粒径电位分析仪测定纳米颗粒的平均粒径、粒径分布、PDI和Zeta电位。参数设置如下:平衡时间为30s,检测角度为173°,温度为25℃。

测试结果如表1所示。

4、包封率的测定

包封率与载药量有关,包封率是用于描述在制备微胶囊、纳米颗粒、药物传递系统等分散体系中,活性物质(如药物、化合物或其他成分)被成功封装或包裹在载体中的程度的参数。它通常以百分比表示,表示封装或包封过程中成功地将活性物质捕获在载体内的比例。

首先,使用紫外可见分光光度计测体系中QR和CA的总含量。对样品进行破乳预处理,取400μLQR-Zein/FU和CA-Zein/FU样品于棕色的容量瓶中,用乙醇定容,在室温下超声45min,使载体破乳,QR和CA完全溶于乙醇,使用0.25μm有机滤头进行过滤,得到待测样品。用紫外可见分光光度计测得体系中QR和CA的总含量。然后,取400μLQR-Zein/FU和CA-Zein/FU样品于离心管中,使用高速冷冻离心机在4℃条件下,10000rpm离心30min,取离心管下层滤液于10mL离心管中,使用紫外可见分光光度计测定游离的QR和CA含量。C

包封率=C

测试结果如表1所示:

表1

经Zein-FU纳米颗粒包埋后两种多酚的平均粒径分别为340.63nm,432.33nm。多分散指数(PDI)是衡量溶液中颗粒平均分布宽度的指标。PDI越小,表明粒径分布均匀,反之则分布不均。两种样品的PDI均小于0.5,说明颗粒分布较为均匀没有明显的尺寸差距,说明新材料的性能比较均一。QR-NPS和CA-NPS的包封率分别为79.68%,81.76%,包封率的高低更直接说明了Zein-FU纳米颗粒对多酚的包裹性更强,Zein-FU纳米颗粒可以形成一种稳定的包封结构,将多酚牢固地包裹在内部。这种包封结构可以防止多酚在外部环境中受到氧化、光照或其他不利因素的影响,从而增强了多酚的稳定性。Zein-FU纳米颗粒能够调控多酚的释放速率,通过改变颗粒的结构和组成,可以控制缓慢释放,从而使其效果更持久。Zeta电位是衡量分散体系稳定性的一个参数,它与颗粒表面带电的程度相关。较高的Zeta电位可能表示颗粒之间的电荷排斥力较强,从而促进分散体系的稳定性。

5、pH稳定性测定

分别将5mg/mL的QR-NPS和CA-NPS样品用超纯水稀释300倍,使用氢氧化钠和稀盐酸调节溶液pH值为3、4、5、6、7、8、9,放置2h后,进行平均粒径和PDI的测定。

测试结果如图2所示:

QR-NPS和CA-NPS的pH稳定性如图所示。可以看出,pH值对QR-NPS和CA-NPS的平均粒径和PDI并没有没明显的影响,QR-NPS和CA-NPS的pH稳定性较好,基本稳定在350nm和450nm左右,纳米颗粒良好的稳定性可归因于复合物之间强烈的空间位阻作用和静电相互作用。在pH接近6时,粒径稍微增大,可能是由于玉米醇溶蛋白的等电点的pH接近于6,此时QR-NPS和CA-NPS可能发生轻微的颗粒聚集,导致粒径的增大。总体来说,QR-NPS和CA-NPS的pH稳定性良好。

二、致敏测试

1、小鼠模型构建和口服致敏

以6~8周龄雌性Balb/c小鼠为研究对象,采用刀额新对虾原肌球蛋白TM为过敏原敏化小鼠,建立小鼠过敏模型。将小鼠分为PBS阴性对照组、TM阳性对照组、QR组、CA组、QR-NPs组、CA-NPs组,每组6只小鼠。自然喂养一周后,在0、7、14、21、28天分别对TM阳性对照组、QR组、CA组、QR-NPs组、CA-NPs组灌胃明矾致敏佐剂200μL,PBS阴性对照组灌胃PBS与明矾佐剂混合液(PBS:明矾=1:1)200μL作为对照。QR组、CA组、QR-NPs组、CA-NPs组这四组从致敏后依次灌胃QR溶液、CA溶液、QR纳米颗粒溶液、CA纳米颗粒溶液200μL(5mg/mL,PBS作为溶剂),每组每周灌胃3次。在第35天时,将TM阳性对照组、QR组、CA组、QR-NPs组、CA-NPs组灌胃高浓度TM(15mgTM溶于300μLPBS中),每只小鼠200μL,PBS阴性对照组灌胃200μLPBS。最后一次处理24h后,收集小鼠血液、十二指肠、脾、肾、肺进行检测,如图6所示。

明矾致敏佐剂的配制:10%明矾溶液(溶于双蒸水)5mL与5%TM(溶于PBS)5mL等量混合后,用NaOH调pH值为6.5,室温孵育60min,750r/min,离心5min,去掉上清液,重溶于5mLPBS。

2、小鼠血清中特异性抗体的检测

采集的小鼠血液置于普通EP管中,4℃静置过夜,次日,8000rpm离心20min分离血清,收集的血清进行分装并储藏于-80℃备用。利用专业的ELISA试剂盒检测小鼠血清中针对每组小鼠血清的特异性抗体IgE、IgG、IgG1。

3、小鼠血清中肥大细胞蛋白酶(mMCP-1)和组胺释放水平的检测

收集小鼠的血清保存于-80℃直至使用。根据小鼠mMCP-1以及组胺ELISA试剂盒步骤检测小鼠血清中的mMCP-1和组胺的释放水平。

4、小鼠脾细胞上清中细胞因子的检测

取小鼠脾脏,用注射器柱塞研磨脾脏后,使用100μm尼龙网膜过滤细胞组织,以此得到单细胞悬浮液。然后将悬浮液转移到15mL离心管中,1000rpm离心5min。随后弃去上清液,加入5mL红细胞裂解液裂解红细胞,反应完全后加入5mL无菌RPMI-1640完全培养基终止反应,再次离心,然后用10mLRPMI-1640培养基洗涤两次,悬浮细胞,细胞以2×10

5、小鼠十二指肠、肺形态结构变化

对小鼠进行安乐死以后,切取十二指肠,长度大约4cm,用10%的福尔马林固定24h,通过标准的组织学切片技术进行处理(切片厚度为5μm;伊红,苏木红染色),然后在光学显微镜下对切片进行观察,拍照。小鼠肺采用同样方式固定和染色拍照。

试验结果如图3~图5所示:

由图3可知,首先,与TM阳性对照组相比,QR组、CA组、QR-NPs组以及CA-NPs组的IgE、IgG、IgG1、HIS、mMCP-1均降低。其次,与单一的QR和CA组相比,QR-NPs和CA-NPs的IgE、IgG、IgG1、HIS、mMCP-1的释放水平均有不同程度的降低。其中,组胺QR-NPs组相比于单一QR组从188.04pg/mL降低至153.16pg/mL,CA-NPs组也比CA降低了30.67pg/mL。同样,mMCP的释放水平也和组胺有相同的趋势。这些结果表明,多酚被纳米颗粒包埋后能起到抗过敏的作用。

由图4可知,经过QR、CA、QR-NPs以及CA-NPs刺激后,被Zein/FU包裹的QR和CA的脾细胞中与Th2相关的细胞因子(IL-5、IL-4和IL-13)的水平相比于单一的QR和CA组均有不同程度的降低。另一方面,经过QR、CA、QR-NPs以及CA-NPs刺激后,被Zein/FU包裹的QR和CA的脾细胞中与Th1相关的细胞因子(IFN-γ)相比于单一QR和CA组释放水平升高。通过调节Th1/Th2的平衡对过敏反应进行抑制。这些结果表明,被Zein/FU包裹的QR和CA可能通过调节Th1/Th2免疫平衡来抑制过敏反应。Th2免疫反应通常与过敏反应有关,而Th1免疫反应对抑制过敏反应起到积极作用。这种平衡的调节将有助于减轻或预防过敏症状。

由图5可知,除PBS组外,其他5组的十二指肠和肺的组织切片显示均有不同程度上的损伤。相比于PBS组,TM组十二指肠和肺的组织损伤程度最严重,经过单一多酚(槲皮素和绿原酸)和富含多酚(槲皮素和绿原酸)的复合纳米颗粒对小鼠作用后十二指肠和肺均有不同程度的改善。同时也观察到富含多酚的复合纳米颗粒的两组比单一多酚的两组在改善程度上要强。由此可知,多酚被纳米颗粒包埋后的释放速率、生物利用率以及靶向性得到了调整从而起到抗过敏的作用。

基于上述试验可知,本发明存在如下优点:

1、关于复合纳米颗粒

(1)提高生物利用率:将多酚包埋在纳米颗粒中可以提高其在体内的生物利用率。纳米颗粒的小尺寸和大表面积有助于增加吸收的速率和程度,从而使多酚更容易被身体吸收和利用。(2)增强稳定性:多酚在自然环境中容易受到氧化、光照等因素的影响,导致其失去活性。将其包埋在纳米颗粒中可以提供一种保护性层,防止多酚的降解,从而延长其稳定性和保存期限。(3)控制释放速率:通过调整纳米颗粒的性质和结构,可以实现对多酚释放速率的控制。这有助于实现多酚的持续释放,使多酚在体内维持一定的浓度,从而更有效地发挥作用。(4)靶向传递:纳米颗粒可以通过调整表面性质,实现对多酚的靶向传递。这意味着多酚可以更准确地送达到目标组织或细胞,减少对其他组织的影响,提高抗过敏的程度。(5)降低剂量:由于纳米颗粒可以提高多酚的生物利用率和靶向传递效果,因此可以在更低的剂量下达到相同的抗过敏效果。(6)改善口感和食用体验:多酚可能具有苦涩或特殊的口感,使其在食品中的应用受到限制。将其包埋在纳米颗粒中可以改善其口感,使其更适合在食品中使用。

2、关于制备方法

(1)温和条件:pH驱动法不涉及高温或激烈的化学反应条件,因此可以在相对温和的环境中进行。这有助于保持多酚的活性,避免其在制备过程中被破坏。(2)环境友好:pH驱动法不需要使用有毒或有害的试剂,从而降低了对环境的影响,使制备过程更加环保。(3)易于操作:pH值是一个相对容易控制的因素,因此该方法在操作上相对简单。通过调整溶液的酸碱度,可以实现对多酚的包埋效率和颗粒尺寸的控制。(4)保护多酚的稳定性:pH驱动法通常不涉及高温和激烈的物理或化学刺激,有助于保护多酚的稳定性和活性。这对于保持多酚的抗氧化和生物活性至关重要。(5)可控释放:通过调整溶液的pH值,可以实现对纳米颗粒中多酚的释放速率的控制。这有助于实现持续的药物输送,从而提高多酚的生物利用率和疗效。(6)用于食品和药物应用:pH驱动法制备的纳米颗粒通常较为稳定且无毒性,因此可以被考虑用于食品和药物应用。这为将多酚纳米颗粒应用于健康食品或药物输送提供了可能性。

3、关于具体用途

(1)抗炎和抗氧化作用:多酚具有抗炎和抗氧化特性,可以中和自由基、减轻氧化应激,从而减少炎症反应。在过敏反应中,炎症是一个关键的因素,因此多酚纳米颗粒可能有助于缓解过敏症状。(2)调节免疫系统:一些研究表明,多酚具有调节免疫系统的作用,有助于平衡免疫反应。这对于过敏反应的管理可能具有积极影响。(3)稳定性和生物利用率:将多酚包埋在纳米颗粒中可以提高其稳定性和生物利用率。这意味着在体内释放过程中,多酚可以更持续地发挥抗过敏作用,从而更有效地减轻过敏症状。(4)靶向输送:多酚纳米颗粒可以通过调整载体的性质,实现对特定组织或细胞的靶向输送。这有助于将多酚直接送达到需要的部位,增强治疗效果。(5)降低过敏原暴露:多酚纳米颗粒可能在一定程度上减少过敏原的暴露。多酚可能具有保护黏膜屏障、减少过敏原吸附的作用,从而减轻过敏症状。

以上所述,仅是本发明的较佳实施例而已,并非是对本发明作其它形式的限制,任何熟悉本专业的技术人员可能利用上述揭示的技术内容加以变更或改型为等同变化的等效实施例。但是凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与改型,仍属于本发明技术方案的保护范围。

相关技术
  • 一种金纳米颗粒/二氧化钛纳米管阵列复合异质结薄膜的制备方法
  • 一种多步球磨与多步气相还原制备纳米陶瓷颗粒弥散强化铜基复合材料的制备方法
  • 负载银纳米颗粒和石墨相氮化碳纳米片的钽酸钠复合光催化剂及其制备方法和应用
  • 纳米碳颗粒-多孔骨架复合材料、其金属锂复合物、它们的制备方法及应用
  • 一种儿茶酚纳米颗粒、儿茶酚蛋白质纳米颗粒及其制备方法和应用
  • 一种儿茶酚纳米颗粒、儿茶酚蛋白质纳米颗粒及其制备方法和应用
技术分类

06120116514733